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Regular series of doubly excited states inside two-electron continua: Application to 2s2-hole
states in neon above the Ne2+ 1s22s22 p4 and 1s22s2 p5 thresholds
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We report results of many-electron calculations that predict the presence of a regular series of autoionizing
doubly excited states (DESs) of 1P osymmetry embedded inside one- as well as two-electron continua of neon, in
the range of excitation 105.9–121.9 eV above the ground state. The limit of 121.9 eV represents the two-electron
ionization threshold (TEIT) labeled by Ne2+ 1s22p6 1S. The wave functions of these unstable states and their
properties are computed according to the theoretical framework, which is explained and justified in the text. Their
formal structure is (ψcore) 1S ⊗ �( �r1, �r2) 1P o, where both ψcore and �(�r1,�r2) are correlated wave functions, the latter
being represented reasonably accurately by a self-consistently obtained superposition of nsnp and np(n + 1)d
configurations n = 3–7. By fitting the calculated lowest energies at each value of n, (five states), an effective
hydrogenic formula is obtained, which gives the whole energy spectrum up to the TEIT. The autoionization
widths are small and decrease with excitation energy. Oscillator strengths for the excitation of these narrow
resonance states by absorption of one photon are also small. Because of their electronic structure, these states are
compared to 1P o DESs in He, which were found in the 1980s to constitute a regular ladder with wave-function
characteristics that tend to those of the so-called Wannier state at threshold. In the present case, the presence of
the core and the concomitant interactions do not permit the emergence of such geometrical features.
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I. INTRODUCTION

The currently available light sources, such as the syn-
chrotron or the free-electron laser and the anticipated improve-
ments in versions of the near future, provide a spectacular
range of frequencies and of intensities for the probing of both
the valence and the inner (sub)shells of atoms throughout
the Periodic Table and for creating conditions favoring the
measurement of a variety of physical effects.

The normally observed and expected type of excitation is
the one whereby one electron is excited via absorption of one or
more photons. On the other hand, multiple electron excitations
are also probable. In this case, given the possibility of using
radiation of short wavelengths, an interesting and challenging
topic of research is to explore and to understand quantitatively,
via the construction and solution of prototypical problems, the
possibility of existence of a series of multiply excited states
(MESs), which, in the independent electron shell model, can
be associated with excitation of electrons initially occupying
inner rather than valence subshells.

A recent experimental example of two-electron excitation
from inner subshells is provided by the publication of Argenti
et al. [1]. These authors presented results of measurements
of the triple differential cross sections (TDCSs) for the
photodouble ionization of He, Ne, Ar, and Xe from the 1s2,
2s2, 3s2, and 5s2 subshells, respectively, at energies of 20 eV
above threshold, and successfully demonstrated an approach
to the parametrization of the TDCSs. Their analysis of the
data included a discussion on the role of angular electron
correlation.

Investigations and analyses, such as those of Ref. [1]
contribute to the quest for quantitative knowledge and insight
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for processes, spectra, and phenomena resulting from the high-
energy double-electron excitation of rare gases larger than He,
which is the system that is normally examined theoretically
for studies of double-electron excitation. Needless to add, such
information is even more difficult to obtain quantitatively for
N-electron states whose zero-order description involves open
subshells.

In the continuous spectrum of effectively Coulomb attrac-
tive potentials in N-electron systems, there is an infinity of
states that can be labeled in zero order as doubly or multiply
excited configurations or as superpositions of them. They may
or may not correspond to observable resonance states. Of all
the possible such MESs, (whose experimental identification
and quantitative understanding is still in its infancy), it has
been established quantitatively, via the implementation of
appropriate theory, that there are classes whose members
form regular series as a function of the principal quantum
number, leading to the corresponding two- [2], three- [3], or
four-electron [4] fragmentation thresholds where the electrons
exit in unique symmetrical geometries with respect to the
nuclear position. Specifically, for double ionization, the series
tends to a linear geometrical configuration, with the angle of
the two vectors tending to ϑ = 180◦ and with 〈r1〉 = 〈r2〉,
(the Wannier geometry), for triple ionization, the series of 4So

symmetry tends to an equilateral triangle [3], and for quadruple
ionization, the four-electron ladder of MESs of 5So symmetry
in Be tends to a tetrahedral configuration [4]. A concomitant
remarkable result is that, in all these cases, the energy spectrum
is given accurately by a hydrogenic formula whose effective
parameters are obtained by fitting the analytic formula to the
energies that are calculated from first principles [2–4].

We stress that the preceding conclusions were quantitative
and were obtained by first solving the Schrödinger equation
and then using the wave functions and the energies. Alternative
studies of MESs, which are keen to descriptive analyses
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and conclusions, start by assuming a classical geometry
of the electrons and then obtain results that are related to
the corresponding symmetries, such as theoretical rovibronic
spectra. For work along these lines, see, for example,
Refs. [5,6] for triply excited states and Ref. [7] for quadruply
excited states.

In view of the current experimental possibilities, the
objective of the theoretical study on which we report here was
to explore theoretically and computationally the possibility of
the existence of a regular series of doubly excited states (DESs)
in the realm of many-electron systems, thereby breaking away
from the standard cases of the double excitations in the
two-electron systems, He or H− or positive ions Li+, etc.

The reliable treatment of DESs in many-electron atoms
(molecules) requires the implementation of a theoretical and
computational framework that accounts for a number of
important elements of the many-electron problem (MEP),
such as the opening of various one-, as well as two-electron
continua, the presence of electronic cores and corresponding
valence-core orbital orthogonalities and interaction integrals,
and the general relevance of many-electron self-consistent
fields and electron correlations.

Specifically, we wanted to explore the possibility of the
existence of a regular series of DESs in many-electron atoms
that are associated with the following conditions:

(1) They correspond to one-photon double excitations of
inner subshell electrons.

(2) They are embedded inside one- as well as two-electron
continua of thresholds different from their own fragmentation
threshold.

(3) The wave functions and the properties of these series of
states exhibit some type of distinct regularity as a function
of excitation energy below the corresponding two-electron
ionization threshold (TEIT), analogous to that of the core-free
He-like atoms [2].

For this purpose, we chose to study the possibility that
such states, having 1P o symmetry, are created in Ne by the
one-photon excitation of the pair 2s2 above the thresholds Ne2+
1s22s22p4 (3P,1D,1S) and 1s22s2p5 (3P o,1P o) and below the
two-electron ionization threshold 1s22p6 1S, which is 121.9 eV
above the ground state of Ne.

The theoretical and computational frameworks within
which the present calculations and analysis were done are
explained and justified in Secs. III–V. The results allowed the
identification of a novel series of DESs in a polyelectronic
system, representing excitations of the 2s2 pair in Ne, which
are inside the aforementioned two-electron continua and which
lead in a regular way (energywise) to the Ne2+ 1s22p6 1S

threshold. (Figure 1 and Sec. V.) The main features of these
DESs are as follows:

(1) Their wave functions are represented mainly by the
superposition a1(core ⊗ nsnp) + a2[(core ⊗ np(n + 1)d)]
+ · · · and represent the lowest root at each n manifold. The
core is a correlated wave function having the aforementioned
threshold configurations as components. The position of the
lowest member is 105.9 eV above Ne 1s22s22p6 1S.

(2) As in the coreless cases [2–4], the energy spectrum
is given by an effective hydrogenic formula. However, the
presence of the open-shell correlated core introduces interac-
tions that destroy the geometrical symmetry of the electron

Ne "1s 2p (5s5p)" P    117.5 eV
Ne "1s 2p (4s4p)" P    114.3 eV
Ne "1s 2p (3s3p)" P    105.9 eV

Ne++ 1s22p6 1S   121.9 eV

Ne++ 1s22s2p5 3Po   87.8 eV + (εs, ε'd)

Ne++ 1s22s22p4 3P   62.5 eV +( εs, ε'p)

Ne+ 1s22s2p6 2S   48.5 eV + (εp)

Ne+ 1s22s22p5 2Po   21.6 eV + (εs or εd)

Ne 1s22s22p6 1S  0.0 eV

FIG. 1. The part of the Ne spectrum, which is relevant to the 2s2-
hole DESs of 1P osymmetry, labeled by (1s22p6) nsnp configurations.
The energies for the thresholds are experimental (NIST tables). The
predicted excitation energies of the DESs are obtained as explained
in the text.

densities. Specifically, the angle does open but with a slower
rate than in the case of He, and no conclusion as its final
value at the TEIT has been drawn. At the same time, the radii
do not satisfy the Wannier condition at threshold 〈r1〉 = 〈r2〉,
a relation that holds in the case of He-like atoms and that
emerges quantum mechanically from plots of conditional
probability [2].

(3) The autoionization widths as well as the absorption
oscillator strengths from the Ne ground state are very small
and decrease as a function of excitation energy.

II. STATEMENT OF THE PROBLEM

Obviously, in almost all aspects of atomic physics and
of quantum chemistry, the case of He does not present the
richness of possibilities and the complexities that characterize
the spectra and properties of polyelectronic systems.

The theoretical study whose results and conclusions are
reported here, was inspired and was guided by the current
advances in photon sources, (well-controlled, high-energy,
and high-intensity beams), and by the theoretical background
that can be found in Refs. [2–4] and in publications cited
therein, where the DESs and the MESs are formed in potentials
without a multielectron core. These publications have reported
numerically accurate results for energies, autoionization total
and partial widths, geometries of electron distributions,
excitation-dependent trends, and angular correlations, radial
correlation, excitation oscillator strengths, new quantum
numbers, etc. Indeed, in order to acquire more definitive
knowledge as to the behavior of various types of DESs
in He, (effective Coulomb attractive potential), as well
as in H−, the computations have dealt with intrashell as
well as intershell DESs up to the hydrogenic threshold
N = 25 and have been accompanied by analysis and
a brief commentary concerning other approaches [8].
In fact, by being able to obtain and to use wave functions of
different degrees of accuracy with regard to the contribution
of electron correlation, we explored the degree of validity of
the Herrick-Sinanoğlu (K,T ) quantum numbers [9] and of
new ones, namely, the (F,T ) classification scheme, which was
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introduced in 1993 [8]. It was demonstrated that the accurate
wave functions of the series of DESs are best represented by the
(F,T ) scheme as compared to the (K,T ) one [8]. Furthermore,
given the interest in the energy dependence of the double
photoionization cross section at E = 0, related theory and
computations with quantitative conclusions were published in
Ref. [10].

Given this background, we asked the question whether
it is possible to produce, from first principles, quantitative
information as to the formation or not of a series of DESs in
many-electron atoms having regular properties analogous to
those discussed earlier for He, and which could, in principle,
be created from the two-electron excitation of inner electrons.
Such highly excited unstable DESs, if they can be formed,
would exist not only inside one-electron continua below a
particular TEIT, but also inside two-electron continua of
different TEITs.

If such states exist, of experimental relevance would be
questions, such as:

(1) What are the excitation energies? Can they be fit to an
analytical formula so as to be able to extrapolate up to the
TEIT?

(2) Is there an identifiable symmetric geometry of the two
outer electrons as they approach the corresponding TEIT?

(3) What are the magnitudes of the photoabsorption tran-
sition probabilities (oscillator strengths) for such one-photon
two-electron excitations?

(4) What are the magnitudes of the autoionization widths of
these DESs?

Suppose we consider the two-electron excitation from the
2s2 subshell of Ne by absorption of one photon. The feasibility
of such a process is documented in Ref. [1]. However, now,
instead of the scattering two-electron continuum above the
threshold labeled by the Ne2+ 1s22p6 1S configuration, we
focus on the part of the spectrum below this threshold and,
specifically, on the possibility of establishing the existence of
a few Ne DESs of 1P osymmetry that are obviously unstable
(resonance states) and have, possibly, properties of regularity
as a function of excitation energy toward the Ne2+ 1s22p6 1S

threshold.
The main difficulties of this problem can be expressed in

terms of the following questions (see Fig. 1 for the relevant
energy spectrum):

(1) According to the tables of the USA National Institute of
Standards and Technology (NIST) (available on the Internet),
the Ne2+ 1s22p6 1S TEIT is a discrete state located at 121.9 eV
above the Ne ground state. Therefore, this discrete level of
Ne2+ is deep into the two-electron continua defined by, at
least, five TEITs of Ne2+: 1s22s22p4 (3P at 62.5 eV, 1D

at 65.7 eV, 1S at 69.4 eV), 1s22s2p5 (3P o at 87.8 eV, 1P o

at 98.4 eV).
As we know from our previous work since the early

1970s on electron correlation of excited states, the wave
function labeled by the 1s22p6 1S configuration is expected
to be highly correlated. Even in zero order, the state is
best represented by the three-term superposition of [1s22p6,
1s22s22p4, (1s22s2p4) 2D 3d] with self-consistent orbitals.
This fact, together with the energy spectrum cited previously,
means that any Ne DESs of 1P osymmetry leading to the Ne2+
1s22p6 1S TEIT will have energies above the 1s22s22p4 and

1s22s2p5 TEITs, while their main components will have the
same core structure as these open two-electron channels. So
the question arises: How can we computationally establish the
existence of 1P o Ne DESs, which are embedded inside these
two-electron continua having the same symmetry?

(2) Indeed, suppose that there are unstable DESs in the
energy region of interest. Considering the plethora of possible
configurational labels for DESs of 1P osymmetry, how can we
identify and compute valid wave functions for those DESs
(if any) that lead in a regular way to the TEIT of Ne2+
1s22p6,1S and how can we determine their geometry?

III. THEORY AND JUSTIFICATION OF THE
STATE-SPECIFIC METHODOLOGY FOR THE

COMPUTATION OF THE SERIES OF DESs INSIDE
TWO-ELECTRON CONTINUA OF NEON

A. Introduction

In order to find the solution to the problem stated earlier and
to produce reliable numbers for the intrinsic characteristics of
such states, it is necessary to tackle the MEP for open-shell
states that, at the start of the treatment of the problem, are
hypothesized as being created inside two-electron continua.
This implies the possibility of combining the theory of unstable
(resonance) states with the polyelectronic structure theory and
methods of computation of the electronic structure of excited
states in such a way so as to allow the practical reduction of
the complexity to physically transparent and computationally
tractable levels, without loss of essential accuracy of the
relevant answers.

In the following paragraphs, we explain and justify the
ingredients of our approach, by first reviewing and comment-
ing on the essential ideas, the computational methods and the
results from our earlier publications, which were implemented
in this paper. These have been developed according to the
following idea: Especially for excited states, it is critically
important to utilize state-specific forms of the trial wave
functions, to analyze the origin and contributions of the
different main parts, to represent them by different function
spaces, which reflect their different types of contribution
to the physics of each problem, and to optimize these
functions by suitable procedures. For this reason, the relevant
formalisms and methodologies have been named collectively
the state-specific theory (SST) (e.g., Ref. [11] and references
therein).

B. Justification of the theoretical framework and of the basics
of the methodology implemented in this paper

In our publications on the SST and on the computation
of highly excited states that correspond to resonances, it
has been emphasized that fundamental to any rigorous and
computationally oriented theory is the possibility of obtaining,
in a systematic way, the N-electron square-integrable wave
packet, symbolized by ψ0 (r1, . . . ,rN ), which represents the
localized part of the unstable state and whose energy, (not an
exact eigenvalue of the exact Hamiltonian H ), is determined
as a local energy minimum E0 = 〈ψ0|H |ψ0〉 inside the
continuous spectrum (e.g., Ref. [12] and references therein).
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One way to see the distinct significance of (�0,E0) is to
consider that, on the exact energy of the resonance state Er ,
the N electron �0 dominates the character of the resonance
state �r (E), through the relation

�r (E) ≈ a(E)�0 for E ≈ E0, (1)

which approximates the exact superposition that includes scat-
tering states [13]. In normal cases of isolated resonances, the
energy-dependent complex coefficient a(E) gives a Lorentzian
distribution and satisfies π

2 |a(Er )|2 = τ , where τ is the
mean lifetime corresponding to exponential decay. As the
distribution given by |a(E)|2 tends to a Dirac δ function,
the resonance state tends to a square integrable discrete state,
and τ becomes infinite.

In general, the MEP in resonance states of many-electron
atoms (molecules) complicates things not only computation-
ally, but also conceptually and formally. For example, the
resonance state is in the continuous spectrum, with an infinity
of lower states of the same symmetry. In fact, in the case
that is studied here, we are looking for resonance states
that are embedded in two-electron continua whose thresholds
appear as components in the resonance �0. Neither the
exact resonance eigenfunction nor the localized part (�0,E0)
rigorously obey a variational energy minimum principle to
all orders. Instead, in a variational calculation subject to
appropriate orbital constraints [12,14], what one expects, if
the resonance state exists, is a correct convergence to a local
energy minimum, secured by the anticipated localization of
the state. In addition, there are complications from possible
near degeneracies with other resonance states of the same
symmetry, and, of course, from the mixing of scattering
components.

The key feature in our approach is the argument that,
in most cases, wave-function localization is associated with
the possibility of finding valid square-integrable solutions
of appropriate Hartree-Fock (HF) or, better, of multiconfig-
urational Hartree-Fock (MCHF) equations for each state of
interest. In this way, the computational and interpretational
shortcomings, with regard to the MEP, of methods that require
the repeated diagonalization of huge Hamiltonian matrices
in search of stable roots inside the continuous spectrum,
as they were applied in the 1960s to low-lying states of
two- or three-electron systems (e.g., Refs. [15–18]) before
the introduction of the SST for resonance states [12,14], are
bypassed.

Because of the importance of the foregoing argument in
this paper, we elaborate by reviewing and commenting on the
state-specific computation of �0, which was the focus of this
paper in the search for the TEIL 1P o DESs of neon that could
possibly result from the double-electron excitation of the 2s2

pair. The use of a basis of explicitly scattering wave functions
that are energy normalized is done at the level of frozen core
HF theory for the purpose of computing autoionization widths
or, if required, photoabsorption cross sections.

The proposal and demonstration in Ref. [14] and in subse-
quent papers were that, given the correspondence decaying
state ↔ resonance state, the MEP for the computation of
�0 is best solved by adjusting and adapting formalism and
advanced computational methods that were in the process

of being developed in the 1960s (and are still used) for the
lowest-lying discrete states. Accordingly, the �0 for an isolated
state [19] is obtained in the form

ψ0 = �0 + Xloc. (2)

�0 stands for the state-specific HF or MCHF solution. Xloc

stands for localized correlation and represents those parts of
the one-, two-, three-, etc., electron correlation function space
that contributes, together with �0, to the stability of the state.
Since �0 is the zero-order approximation, the calculation
of a valid �0 hinges on the capacity of first producing a
valid state-specific HF or MCHF solution. Once this has been
accomplished, useful conclusions may already be drawn at this
level and, of course, it becomes possible to proceed with the
computation of those parts of Xloc that are deemed important
for the problem under investigation.

Until the beginning of the 1970s, it was not known whether
it was legitimate and/or possible to directly solve the HF
equations for complicated excited-state structures with open
subshells that are in the continuous spectrum. The possibility
of state-specific HF computation of even difficult cases of
resonance states and the development of theory in the spirit
of Eqs. (1) and (2) were first demonstrated in Ref. [14]
(see also Ref. [12]) by applying the analytic HF method of
Roothaan [20] through the slight modification and judicious
use of the computer program written by Roos et al. [21]. Since
1972, this approach has been understood better with regard
to the computation of both �0 and Xloc and has been applied
to various problems. One such improvement has to do with
the fact that, starting in the mid-1970s, upon the appropriate
adaptation of the code published by Froese-Fischer [22], the
SST for excited atomic structures has been using the numerical
MCHF method for the calculation of �0.

C. The computation of �0 of Eq. (2) via the solution
of state-specific MCHF equations

The procedure of solving the MCHF equations for highly
excited and heavily mixed states may often provide misleading
evidence regarding the question of proper convergence. False
convergence is often distinguished because of the appearance
of an unlikely orbital with positive energy or of solutions for
which the orbital becomes overextended or oscillatory, etc.
When proper convergence is absolutely impossible, judgment
must be exercised as to whether the resonance exists at all,
since there is no localization at this level.

Once the �MCHF of Eq. (2) is obtained, (in modern times,
this is done systematically for many types of structures), it is
possible to compute the main effects of electron correlation
and of the multichannel continuum via advanced but practical
methods that are based on the use of appropriate function
spaces (e.g., Refs. [10–12,19]).

One of the advantages of the state-specific calculation of
�MCHF is that this wave function accounts in an efficient
way for the self-consistently adjusting major correlations that
contribute to localization, including a few that incorporate
parts of the open-channel continuous spectrum, which we have
named the open-channel-like (OCL) configurations [23–25].
In the work of this paper, such OCL configurations have been
eliminated via appropriate transformations.
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State-specific calculations for excited-state structures show
that, most often, there is significant dependence of the zero-
order orbitals and their electron correlation on symmetry
and on spin couplings. The concomitant sensitivity of prop-
erties to the level of numerical accuracy at the zero-order
approximation constitutes an additional reason for the slow
convergence of methods that use a basis set common to
various terms of the same configurations, let alone of different
configurations. In contradistinction, an SST calculation, by
obtaining state-specific zero-order orbitals and corresponding
optimized correlation configurations, immediately reduces
the magnitude of calculation while considerably increasing
its accuracy. Specifically, the calculation of Xloc involves
the proper construction of symmetry-adapted configurations
consisting of MCHF and of virtual orbitals and their variational
optimization, separately (if needed), and via the minimization
into a local minimum of the total energyE0 using orthonormal
or nonorthonormal configuration-interaction techniques [11].

In view of the existing publications to which the reader
may refer for extensive discussions and applications of wave
functions of the forms (1) and (2), and of their variations, here,
we focus briefly on the following three points.

(1) The task of computing �MCHF for unstable (resonance)
states correctly requires considerable care. For example, it
requires stability and high numerical accuracy for large radial
distances, the satisfaction of the virial theorem (which is a
condition of localization), as a guiding tool for accepting the
solution that has converged into a local energy minimum, the
attention to the major features of the radial characteristics
and of the satisfaction of asymptotically vanishing boundary
conditions, the satisfaction of proper orbital orthogonalities,
the inclusion of nearly degenerate and OCL configurations,
the application of appropriate orbital rotations, etc. Related
discussions can be found in Refs. [11,23–25]. These tech-
niques were applied in the present paper when necessary in
addition to ones specific to the problem—see Sec. V.

(2) In current times, it may seem that the calculation of
highly excited atomic states via the solution of the numerical
MCHF scheme is as straightforward as it is for ordinary ground
or low-lying discrete excited states in view of the existence
of published computer programs, such as the one of Froese-
Fischer (Ref. [22] and later versions). This is not so, except
for some of the cases of well-localized states, as are Auger
states of simple structures, and it certainly was not the case in
the early 1970s. For example, in 1978, Froese-Fischer [22],
in the preface of her publication, writes: “. . .Since bound
states in the continuum interact most strongly with continuum
states, a multiconfiguration calculation for such states cannot
be performed with this program.” Indeed, for DESs, such as
the ones treated here, the determination of proper �MCHF wave
functions requires careful computation, subject to the criteria
mentioned previously.

(3) The strategy of initializing the calculation of autoioniz-
ing states with a state-specific MCHF wave function allows the
major configurational features of, say, a multiple excited state,
to emerge clearly and quantitatively, while the MCHF energy
is reasonably close to E0. A class of configurations that is
very useful and many times absolutely necessary components
of �MCHF are the OCL type [23–25]. Their presence accounts
for a portion of the contribution from the continuum of a

lower-lying threshold, which does not destroy the square
integrability of the zeroth-order function. For example, for the
triply excited resonance in He− whose label is 2p3 2Do, such an
OCL configuration is the MCHF (2s2p) 3P o“3d”2Do, which
incorporates part of the open channel [He(2s2p) 3P o + εd]
2Do. On the other hand, if for some type of electronic
structure, it is impossible to obtain valid convergence of the
state-specific MCHF equations because of the presence of
correlating configurations whose structure corresponds to open
channels, then the calculation of �MCHF and of �0 should
exclude them. For example, this is the case of He− 2s2p2 2S,
which interacts with the [He(2s2) + εs ]2S continuum. Their
effect is then incorporated from principal value integrals over
purely scattering function spaces.

IV. TREATMENT OF THE ELECTRONIC STRUCTURES
OF THE 2s2- HOLE STATES IN NEON

In the present paper, the DESs of interest have the formal
structure of (ψcore) 1S ⊗ �( �r1, �r2)1P o, where both ψcore and
�(�r1,�r2) are correlated wave functions, the latter being rep-
resented reasonably accurately by a self-consistently obtained
superposition of nsnp and np(n + 1)d configurations n = 3–7.

At first sight, this fact suggests the presence of OCL
configurations in the MCHF equations that must be solved,
entering as correlation components whose formal structure is
the same as that of the open two-electron channels. For exam-
ple, the [1s22s22p4 1S] ⊗ �(r1,r2)1P o correlation component
has the same structure as the [1s22s22p4 1S] ⊗ (ε	,ε′	 + 1)1P o

two-electron continua, where the orbital angular momen-
tum 	 = 0,1, . . . . On the other hand, the [1s22s2p43d1S] ⊗
�(r1,r2)1P o correlation component corresponds to closed
two-electron channels.

Here, it is computationally convenient to restructure the
wave functions so as to have the inner orbital part of the OCL
configurations appear as part of the correlation of the (N−2)-
electron core. As a result, the presence of OCL configurations
is eliminated from the total wave function. This is achieved as
follows.

The zero-order symmetry-adapted MCHF solution for the
(2s)0double core-hole 1S state of Ne2+ is obtained as

�c = b1(1s22p6) + b2(1s22s22p4) + b3(1s22s2p43d), (3)

with b1 = 0.939, b2 = 0.189, and b3 = 0.289. Note the im-
portance of the 1s22s2p43d configuration, which represents
the virtual orbital excitation s → d, known to be a significant
correlation effect. The presence of this configuration in the
core wave function implies that, in the overall calculation,
the d orbitals in the valence wave function �(�r1,�r2) must be
kept orthogonal to the 3d orbital of the wave function Eq. (2).
This is why the MCHF d orbitals for each shell are written as
(n + 1)d.

The energy corresponding to this wave function is Ec =
−124.1878 a.u. and has been used to determine the energy
difference between each DES and the TEIT.

In the foregoing superposition, the first component is the
dominant one. However, there exist two more linear combi-
nations, orthogonal to Eq. (3), where the other components
are dominant. They can be considered as approximations to
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the core wave functions of the corresponding two-electron
continua. Provided that one selects the solutions with the
correct core, the DESs will be, to a fair approximation,
orthogonal to some important two-electron continua lying
energetically below them. Furthermore, a series of states of
the same type will converge energetically to the correct value
of the core state, which is Ec in the present case. This selection
requires a reorganization of the N-electron wave functions in
a form that makes the part representing the (N−2)-electron
core of Eq. (3) distinct from the excited pair of electrons. We
proceed to show how this is done.

Let us start by writing the (N−2)-electron core �c in
the form

�c =
∑

i

bi�
(N−2)
i . (4)

We then label the wave functions of the DESs by a pair of
indices. Index i runs over the (N−2)-electron configurations
of the core, while j runs over the configurations of the excited
electron pair. The total wave function is written as

� =
∑
i,j

cij�
(N)
ij . (5)

Wave function (5) will now be reorganized as an expansion
in terms of the two-electron excitations. This is achieved by a
reformulation of the coefficients in a way that the inner core
appears as a common factor. Define

aj =
√∑

i

|cij |2 and b̄ij = cij

aj

. (6)

The wave function of Eq. (5) is now written as

� =
∑

j

aj

{∑
i

b̄ij�
(N)
ij

}
. (7)

The N-electron wave functions inside the curly brackets
resemble the (N−2)-electron core wave function of Eq. (4)
with the basis functions additionally containing a certain pair
excitation j. We define

�
(N−2,2)
j =

∑
i

b̄ij�
(N)
ij , (8)

and select wave functions for which b̄ij ≈ bi (i.e., those with
a structure that resembles �c). Such solutions are expected to
exist, as the effect of the excited pair of valence electrons on
the core is insignificant for the problem of interest.

In terms of the basis wave functions (8), the total wave
function (7) is expanded as

� =
∑

j

aj�
(N−2,2)
j . (9)

Since, by construction,
∑

i |b̄ij |2 = 1, while by definition,∑
i |cij |2 = 1, it also holds that

∑
j |aj |2 = 1. In this way, the

initial wave function (5) is reformulated as an expansion in
terms of the two-electron excitations in such a way that the
combination with the correct core wave function, Eq. (8), is
made obvious. As a consequence, these states are orthogonal to
the double-electron continua, which correspond to a different
linear combination of the (N−2)-electron core wave function.

Therefore, OCL configurations are actually excluded from the
expansion.

The preceding formulation simplifies the result of the calcu-
lations by separating out the correlated core and transforming
the N-electron problem to a two-electron one, thus, permitting
comparison with the two-electron excitations in He. In order
to appreciate the similarities as well as the differences with the
case of He, the following discussion is relevant.

Let Hc be the Hamiltonian matrix that refers to the wave
function of the core state. In our approximation, this state
is described by three configurations, Eq. (3), and so Hc is
a 3 × 3 matrix. Also, let Hv be the Hamiltonian matrix that
refers to the excited pair of valence electrons. In general, this
pair is described by M configurations, and so Hv is an M × M

matrix. If we neglect the core-valence coupling, the zero-order
total Hamiltonian 3M × 3M matrix is the Kronecker sum,

H0 = Hv ⊕ Hc ≡ Hv ⊗ I3 + IM ⊗ Hc,

where IK denotes the K × K identity matrix and ⊗ is the
Kronecker product [26] of two matrices.

The spectrum of H0 consists of all pairwise sums of
eigenvalues of the two Hamiltonian matrices [26], while the
eigenvectors consist of the Kronecker products of the corre-
sponding eigenvectors. One would then have eigenvectors of
the form (7), where the b coefficients are given by Eq. (3),
while the a coefficients are close to the ones obtained for
the equivalent He problem of 1P osymmetry [2]. For the latter
statement to be correct, care must be taken to include in Hv only
the part of the Coulomb attraction that is due to two charges.
In other words, full screening must be assumed. The rest of
the Coulomb attraction [i.e., the one due to the (Z−2) charge]
is attributed to the core-valence part, where it counterbalances
the F 0 integrals that take screening into account.

One might expect that the neglect of the core-valence
interaction results in a reasonably accurate zero-order approx-
imation allowing the transfer of the coefficients from the He
problem. In fact, this is not the case. The eigenvectors of the
Hamiltonian matrix H = H0 + Vcv, where Vcv is a diagonal
3M × 3M matrix containing the core-valence couplings, are
quite different from those of the He case where such a coupling
is absent. The presence of Vcv mainly affects the spectrum of
Hv, so the mixing coefficients of the core part are close to the
ones given by Eq. (3). This is expected on physical grounds
since the presence of loosely bound valence electrons does
not have a significant effect on the core. On the other hand,
the behavior of the a coefficients of Eq. (7) is found to be
radically different from the values obtained for the equivalent
He problem of 1P osymmetry. Specifically, while in the latter
case, the dominant coefficient shifts rapidly to configurations
containing higher values of orbital angular momenta [2], in
the former case, the dominant coefficient is the one of the nsnp
configuration, even for the highest excitation examined n = 7.

V. CALCULATIONS AND RESULTS

As explained in Sec. III, the fundamental first step is to
determine a reliably converged zero-order wave function of
the MCHF type. It turns out that, because of the multiconfig-
urational wave function of the core, Eq. (3), the construction
and convergence of the symmetry-adapted N-electron wave
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functions for the Ne intrashell 1P o DESs with high n, where
many angular momentum are, in principle, present, becomes
unrealistic and, in fact, unnecessary for the information that we
have required. Instead, the DESs MCHF wave functions were
obtained by using only the nsnp and np(n + 1)d components
of the excited pair wave functions for n = 3,4, . . . ,7. There are
six important configurations in all, organized into two groups
of three.

Upon transformation of the coefficients leading to Eq. (9),
we find a3s3p = 0.96 and a3p4d = −0.27. These values change
little with increasing n, the first slowly decreasing, and the
second slowly increasing. This finding can be compared with
the corresponding intrashell states of He, where, already at
n = 3, the mixing coefficients from angular correlation are
a3s3p = 0.77 and a3p3d = 0.64. In fact, as can be found in
our previous publication [2], for the coreless case of He,
the mixing of intrashell configurations with higher angular
momenta increases rapidly as a function of excitation energy,
while the coefficient of the nsnp component diminishes. The
obviously significant difference between the two cases is due
to the presence of the correlated core in neon.

By subtracting the energies from the MCHF energy of the
core threshold state, Eq. (3), we obtained energy differences
that were then used in conjunction with the experimental
energies of the thresholds of Fig. 1 in order to establish
reasonably accurate excitation energies. These are presented
in Table I, together with the oscillator strengths from the
neon ground state in the length and velocity forms. For
the calculation of the oscillator strengths, the wave function
of the ground state includes the important correlation config-
urations for the L shell [11].

With regard to the Wannier-state characteristics that were
found for the He TEIL series [2], these are absent here. We re-
call that, in the He-like Wannier TEIL states, the MCHF orbital
characteristics of radii 〈r〉l and orbital energies for each n are
very similar, something that is absent in the present DESs of
Ne. Furthermore, contrary to the present situation, in He, angu-
lar correlation is such that, as n increases, configurations with
higher angular momenta already start dominating for n = 5 [2],
something that does not occur in the case that is studied here.

Nevertheless, the energies of these series of DESs do exhibit
a regular behavior, with their spectrum given by the hydrogenic
formula, as in the case of fragmentation into symmetrical
geometries [2–4]. Specifically,

En = Ec − (Z − σ )2

(n − µ)2
, (10)

with Z − σ ≈ 1.70 and µ = 0.77.

TABLE I. Excitation energies, in eV, and oscillator strengths, fL
(length form), fV (velocity form), from the Ne ground state to the
1P oseries of DESs created by the excitation of the (2s2) electrons.

n E (eV) fL fV

3 105.9 0.35 × 10−4 0.66 × 10−5

4 114.3 0.30 × 10−6 0.18 × 10−6

5 117.5 0.18 × 10−7 0.22 × 10−7

6 119.0 0.27 × 10−8 0.69 × 10−8

7 119.8 0.67 × 10−9 0.20 × 10−8

TABLE II. Partial half-widths of the Ne 1P o DESs autoionizing
states discussed in the text, in a.u..

N “nsnp” → 2sεp “nsnp” → 2pεs “nsnp” → 2pεd

3 1.2 × 10−4 6.9 × 10−8 3.3 × 10−6

4 5.3 × 10−6 3.7 × 10−8 2.1 × 10−7

5 7.8 × 10−7 8.8 × 10−9 3.6 × 10−8

6 2.1 × 10−7 2.4 × 10−9 1.0 × 10−8

7 7.4 × 10−8 1.0 × 10−9 3.7 × 10−9

The main channels of decay of the series are the
Ne+ 1s22p22p5εs 1P o and Ne+ 1s22s22p5εd 1P o through the
nsnp → 2pεs and 2pεd autoionizing transitions, respec-
tively, as well as the excited-core channel Ne+[1s22s2p6 +
1s22s22p43d]εp 1P o through the nsnp → 2pεs autoionizing
transition. The one-electron scattering orbitals, εs, εp, and
εd, were computed in the frozen core potential of the
corresponding configurations. We observe, from Table II, that
it is the nsnp → 2sεp channel that dominates and essentially
determines the resonance width.

The DESs of interest also lie inside the two-electron
continua with the Ne++ core states 1s22s22p4 (3P , 1D, 1S)
and 1s22s2p5 (3P o,1P o). Of these channels, the five ones with
symmetries that are different from 1S do not contribute in a
significant way due to orthogonality. The remaining group of
channels (i.e., those with the 1S core) is indeed allowed by
symmetry. However, these states are also orthogonal to a very
good approximation. This is because, on one hand, they exactly
diagonalize the core Hamiltonian, and, on the other hand, the
corrections to the core due to the presence of the excited pair
of electrons are very small.

VI. SYNOPSIS AND CONCLUSION

This theoretical and computational paper has focused on the
possibility of quantitatively formulating and solving problems
of many-electron structures and dynamics that have not been
explored thus far, although they are relevant to possible
experiments that can probe the deep electronic continuum
by using well-characterized radiation of high energy and
spectroscopies with high resolution. The essence of these
problems is that they are concerned with MESs—in the present
case with DESs—in polyelectronic atoms and not just with the
DESs of the two-electron systems H−, He, Li+, etc. The latter
systems have been studied over many decades in various ways,
especially when excitation is low and is far (in relative energy
terms) from the TEIT. Presently, on the other hand, if one
defines a main theme of atomic physics as the one that aims
at the quantitative understanding of MESs of high energy for
polyelectronic atoms across the Periodic Table, then he will
find himself in terra incognita.

The theoretical framework and justification of the work
that was discussed in Secs. II–V, in conjunction with its
computational implementation, have allowed the quantitative
prediction of the existence and properties of a novel series
of unstable DESs inside one- and two-electron continua of a
prototypical and experimentally friendly system, namely, the
Ne atom.
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Specifically, we chose to examine the possibility of
computing approximate solutions of the Schrödinger equa-
tion that represent DESs of 1P o symmetry that are below
the Ne2+ 1s22p6 1S threshold and are embedded inside
the two-electron continua of the Ne2+ 1s22s22p4 3P , 1D,
1S and 1s22s2p5 3P o, 1P o thresholds in addition to one-
electron continua. The understanding and proper use of
these solutions have allowed the computation of energies
and their description by an effective hydrogenic formula
leading to the Ne2+ 1s22p6 1S TEIT [Eq. (10)], of oscil-
lator strengths for the one-photon excitation of the two
electrons in the 2s subshell of the 1S ground state of
Ne into these DESs and of the autoionization widths of
these DESs, which, because of electronic structure and
orthogonality constraints, turn out to be very narrow, de-
spite the fact that they are embedded inside two-electron
continua.

With regard to notions of geometry of the electron densities
in these DESs as they reach the TEIT, we found that these
differ from the analogous ones in coreless He. Now, since we
found that the opening of the angle occurs at a slower rate,

it has not been possible to predict with certainty the limiting
value. Similarly, the average values of the electron radii are not
the same. Therefore, we have concluded that, due mainly to the
presence of the core-valence interactions, the series of these
1P o DESs does not have the characteristics of the Wannier
two-electron ionization ladder that was established for He-like
systems [2].

Finally, we comment on the possible relevance of the
present results to a recently published experimental-theoretical
study of delay in photoemission [27].

That paper investigated the delay in emission between the
2s and the 2p electrons of neon upon the absorption of a
photon pulse with the experimental energy of 106 eV and a
width at half maximum of 14 eV. The fact that the herein
predicted first 1P o resonance at 105.9 eV is so close to the
photon energy of Ref. [27] has motivated us and a colleague
(V. Yakovlev) to explore the possibility that the presence of
this resonance influences the overall time delay as measured in
Ref. [27]. However, calculations using the approach described
in Ref. [27] showed that this is not the case due to the fact that
the width of this resonance is very narrow [28].
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