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Nonperturbative computation of the time-resolved formation of the profile of autoionizing
states as a function of the intensity and duration of ultrashort pulses
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By solving the time-dependent Schrödinger equation nonperturbatively by the state-specific expansion
approach, we have obtained reliable results showing the dependence of the formation of the excitation profile
of the autoionizing state He ′2s2p′ 1P o for Gaussian pulses of intensities in the range I ≈ 1010 W/cm2 to
I ≈ 1015 W/cm2, and of duration 100–2 fs. Conclusions are drawn as regards the breakdown of first-order
time-dependent perturbation theory.
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I. Theory and computation of time-resolved quantities
concerning the preparation and decay of autoionizing states.
Over decades of implementation of quantum mechanics
to real atomic and molecular systems, the framework for
the theoretical and computational treatment of autoionizing
(resonance) states has been time independent. In other words,
the concepts and the physically relevant quantities have been
and, to an overwhelming extent, are still being determined
based on the time-independent Schrödinger equation. For
example, Fano’s seminal paper of 1961 [1] provided the
formalism which can explain in terms of matrix elements
on the real energy axis the profile of the photoabsorption
cross section from a bound state to a region of a resonance
state, the topic of the present paper. Years later, application
of the same type of formalism provided the profile for the
cross section of a resonance-resonance transition, with a
first-principles implementation to the one-photon transition
between doubly excited states, He ′2s2p′ 1P o → ′2p3p′ 1D,
for tunable radiation around 3.4 eV [2].

On the other hand, one may argue that resonance formation
and autoionization are processes and, as such, are intrinsically
time dependent. Therefore, they, and properties connected to
them, could in principle be time resolved in real systems,
provided the appropriate theoretical and experimental tools
exist and are used in a practical manner. As regards the-
ory, it must be able to handle the many-electron problem
while solving nonperturbatively and reliably for arbitrary
electronic structures and radiation pulses the time-dependent
Schrödinger equation (TDSE).

The work reported in this paper serves this frontier dis-
cipline. The computational methodology and corresponding
analysis utilize the state-specific expansion approach (SSEA),
which was initiated about 2 decades ago for the purpose of
solving from first principles the many-electron TDSE. In the
case of problems involving resonance states, the investigations
have been separated into two categories.
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In the first category, the focus is on the concept and
properties of the decaying state, assumed to be established
as an unstable polyelectronic wave packet at t = 0, without
memory of the excitation mechanism. Indeed, about 15 years
ago [3,4], we demonstrated the possibility of computing
from first principles the time-resolved decay of prototypical
unstable states of polyelectronic atoms. The computations
produced energies, lifetimes, and energy distributions. Most
importantly, in view of the well-documented “law” of expo-
nential decay (ED), emphasis was placed on the fundamental
issue of determining the magnitudes of the deviation from
ED for very long [3,4] and for very short [5] times, using
as test cases not simple models and formal manipulations,
but real many-electron systems where the operators caus-
ing the decay are nonrelativistic or relativistic (Breit-Pauli
Hamiltonian) and where the N-electron wave functions in-
clude the information of electronic structure and of electron
correlation.

In the second category, the excitation and the decay of the
atomic resonance state are treated as a single coherent process.
In 2002, soon after the announcement of the production of
single pulses of ultrashort duration in the scale of attoseconds
(as) [6], we reported the results and analysis of an ab initio,
electronic structure-dependent nonperturbative calculation,
which involved the time-resolved effects at the attosecond
scale of strong electron-pair correlations [7,8]. Specifically,
by including in the Hamiltonian two simultaneous and short
excitation pulses, we computed the time-resolved preparation
and autoionization of low-lying 1P odoubly excited resonance
states of He, the corresponding amplitudes of the electron
correlation beats, and the time-resolved rearrangement of pairs
of electrons into different geometrical locations [7,8].

In this way, the choice of the problems in [7,8] and their
quantitative solution in terms of the SSEA demonstrated from
the point of view of theory a possible domain of useful
applications of spectroscopy at the attosecond scale, namely,
the probing of electron correlations in strongly correlated
systems and of the interplay between electronic structure and
electron dynamics.

A couple of years later, Wickenhauser et al. [9] investigated
another aspect of the phenomenology of the time dependence
of autoionizing states, using a model of Coster-Kronig fast
transitions. Specifically, they looked at the time-differential
ionization rate in the vicinity of an autoionizing state, from
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which information about the time-resolved formation of the
Fano profile (originating from the discrete-scattering states
interference) can be obtained. This idea stimulated us to return
to the prototypical helium system and to solve the TDSE so
as to obtain from first principles and in a quantitative way the
time-dependent preparation of the well-known He 2s2p 1P o

resonance state at about 60.1 eV, in terms of the time-resolved
formation of its photoabsorption profile which is created by the
interaction between an ultrashort pulse and the ground state,
He1s2 1S [10].

The high level of accuracy of this type of computation
eventually led to the recent proposal of using such results
for the characterization of ultrashort pulses from free-electron
lasers in the regimes of a few femtoseconds (fs) to a few
hundreds of attoseconds [11]. In the work of [11], both
the analytic and the numerical calculations were done for
field strengths below 0.04 a.u.. This is the calculated value
above which first-order time-dependent perturbation theory
(FOTDPT) [10] starts breaking down for the particular case
treated in [11].

II. The problem. In this paper, we report results of the
second phase of our recent study of time-resolved features
of autoionizing states. This phase concerns the possibility
of knowing quantitatively what happens when this problem
of time-dependent excitation and autoionization is examined
in the regime where FOTDPT breaks down, due either to
stronger peak field strengths (with fixed pulse duration) or to
longer pulse durations (with fixed peak-field-strength). For this
system, the nonperturbative regime which was recognized in
our previous publication [11] starts with a peak field strength
of 0.04 a.u. (5 × 1013 W/cm2) and a Gaussian pulse with a
full width at half maximum (FWHM), tFWHM, of 10.9 fs. The
SSEA computations of the present paper were done for tFWHM

of a Gaussian pulse in the range 2–100 fs and for intensities
ranging from I ≈ 1010 W/cm2 up to I ≈ 1015 W/cm2.

The excitation scheme whose time dependence we in-
vestigated, mainly with respect to the formation of the
autoionization profile as a function of field strength and pulse
duration, is the following:

He�g(1s2 1S)
ultrashort Gaussian pulse−−−−−−−−−−−−−→
one-photon of 60.17 eV

�(′2s2p′,1sεp), (1)

where �(′2s2p′,1sεp) symbolizes the superposition of the
correlated localized wave function,�0(2s2p), with the contin-
uum of scattering states, U (1sεp).

The question is: What are the accurate values of the quantity
expressing the differential ionization probability in the region
of the autoionizing state, i.e., of

PHe(ε,t) = |〈′1sεp′|�(t)〉|2, ε ≈ 35.6 eV, (2)

when computed for field strengths and pulse durations which
start destroying the regime of FOTDPT for this system? In
Eq. (2), �(t) is the solution of the TDSE to all orders, where the
Hamiltonian includes the atom-field interaction in the electric
dipole approximation for linearly polarized light.
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FIG. 1. The excitation scheme of He 1s2 1S by an intense short
Gaussian pulse with ω = 60.17 eV, implemented in the present SSEA
computations. Apart from the one-photon direct transition to the He
(′2s2p′, 1sεp) 1P o stationary state, higher order transitions involving
the depicted continua have been included in the expansion.

III. Solution of the problem in the framework of the SSEA.
The crucial aspect of the implementation of the SSEA is the
understanding of the significance of the state-specific wave
functions that play the major role in the time evolution of
�(t) for a given Hamiltonian. In our problem, the dominant
channel transitions that must be included in the calculation
beyond the perturbative regime are depicted in the energy
spectrum of Fig. 1. The main component of the time evolution
of the system, which is present already at the level of first-
order perturbation theory, is the time-dependent population
from the He ground state of the stationary-state superposition
of He (′2s2p′, 1sεp), while, at the same time, the unstable,
doubly excited ′2s2p′ state decays into the 1sεp continuum
via Coulomb coupling.

Specifically, in addition to the 1s2, 2s2p 1P o and the
U (1sεp) 1P o states, the state-specific expansion contains the
following wave functions:

(i) The scattering channel states above the n = 2
shell, 2sεs 1S , 2sεd 1D, and 2pεp 1S, 1P, 1D, with en-
ergies E2sε� = E

(He+)
2s + ε = −0.5 a.u. + ε and E2pεp =

−0.5 a.u. + ε. These are the dominant scattering channels
that are connected, through the electric dipole coupling,
with the ′2s2p′ 1P o localized component, since the magnitudes
of the matrix elements 〈′2s2p′ 1P o|z|nsε� or npε ′�′ 1L〉,
with n > 2, are smaller than those of 〈′2s2p′ 1

P o|z|2sε

�1L or 2pεp1S ,1P,1D〉.
(ii) The scattering channel states 1sεs 1S and 1sεd 1D

with energies E1sε� = E
(He+)

1s + ε = −2.0 a.u. + ε, which are
dominantly connected, via dipole coupling, to the 1sεp1P o

states that host the autoionizing ′2s2p′ 1
P o state.

In this framework, we made an approximation regarding
the energy dependence of the continuum-continuum dipole
moment matrix elements 〈1sε1p

1P o|z|1sε2s
1S or 1sε2d

1D〉:
They are assumed to be independent of the energies ε1 and
ε2 in a narrow region around ε1r = E

(He)
1s2 + ω − E

(He+)
1s and

ε2r = ε1 + ω. The values of these matrix elements correspond
to the accurate one for ε1r and ε2r , which are connected
resonantly through the ultra-short pulse. This approximation
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enhances computational economy without jeopardizing the
required accuracy of the overall calculation.

On the other hand, the dipole matrix elements
〈2s2p1P o|z|2sε�1L, or 2pεp 1S 1P,1D〉 are indeed calculated,
for each energy ε, using the compact, three-term wave function
for the 2s2p1P oautoionizing state given in [11].

In view of the above construction, the SSEA form
of �(t) is

�(t) = Cg(t)�g(1s2 1S) + Cres(t)�res(2s2p 1P o)

+
∫

0

dεC(ε, t)ψ(1sεp 1P o) +
∫

dεC1(ε,t)ψ(2sεs 1S)

+
∫

dεC2(ε,t)ψ(2sεd 1D) +
∫

dεC3(ε,t)ψ(2pεp 1S)

+
∫

dεC4(ε,t)ψ(2pεp 1P ) +
∫

dεC5(ε,t)ψ(2pεp 1D)

+
∫

dεC6(ε,t)ψ(1sεd 1D). (3)

When this wave function is substituted into the TDSE,

i
∂�(t)

∂t
= [HA+V (ω,t)]�(t), V (ω,t) = zFg(t) sin(ωt)

(4)

(F is the field strength and g(t) is the Gaussian form), the
system of integrodifferential equations that must be solved for
the time-dependent coefficients is compact and transparent.
The nonperturbative SSEA solution is then used for the
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FIG. 2. (a) Quantitative behavior of the main maximum of the reduced differential ionization probability, Eq. (5), for tFWHM = 2.4 fs, as a
function of the pulse peak-intensity, I. (b) As in panel (a), for tFWHM = 10.9 fs. (c) As in panel (a), for tFWHM = 25.4 fs. (d) As in panel (a), for
tFWHM = 50.8 fs. (e) As in panel (a), for tFWHM = 100.4 fs. Comparison of the results of these figures demonstrates quantitatively the distinct
effect of the pulse duration on the breakdown of FOTDPT for this problem, in conjunction with the dependence on the pulse intensity.
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computation of Eq. (2), which is PHe(ε,t) = |C(ε,t)|2, for each
set of values of [F,g(t)].

In order to make comparisons with the previous results that
are valid in FOTDPT, we recall that in the context of FOTDPT,
whose validity rests on the condition that Cg(t) ≈ 1 after the
pulse-atom interaction, it is possible to define a ‘reduced”
differential ionization probability as [11]

PR ≡ P (ε,t)

F 2t2
FWHM

. (5)

This quantity is independent of F 2 and of tFWHM for a
Gaussian temporal shape,

g(t) = e
−2 ln(2) (t−t0)2

t2FWHM ,

and for t � t0 + tFWHM√
2 ln(2)

[11].
IV. Results. The intense fields for this problem, defined as

I > IFOTDPT, were determined by comparing the FOTDPT
results with those obtained here from the nonperturbative
solution of the TDSE. Such a comparison clearly delineates
the two regimes as a function of field strength and of pulse
duration.

Figures 2(a)–2(e) show the main maximum of Eq. (5)
as a function of pulse peak-intensities ranging from I ≈
1010 W/cm2 up to I ≈ 1015 W/cm2, for four different values
of the pulse tFWHM, ranging from 2 to 100 fs.

At this point, it is appropriate to mention that, in order
to obtain convergent results for the aforementioned peak
intensities and for large times (t � t0 + tFWHM√

2 ln(2)
), the system

of integrodifferential equations of Eq. (3) has to contain up to
90 000 equations, which corresponds to a very dense energy
mesh for the scattering-state wave functions.

The results show that the value of the main maximum of
PR for I > IFOTDPT decreases quickly.

In addition, the sets of critical values of pulse intensity and
duration at which the FOTDPT starts breaking down exhibit
the anticipated relationship. Specifically, this breakdown takes
place when the critical value of the pulse tFWHM increases even
when the critical value of the peak intensity decreases or the
converse. In either case, the FOTDPT condition Cg(t) ≈ 1
loses validity.

V. Conclusion. The significance of the results presented here
is twofold. First, they represent a nonperturbative solution of
the TDSE for the time-resolved formation of an autoionizing
state beyond the limit of FOTDPT. The results are reliable
and can serve as reference data for further theoretical or
experimental investigations.

Second, the accuracy of such an approach is such that
it is possible to draw the following experimentally relevant
conclusion when examining the dependence of the profile
of He (or of other prototypical resonance states) on the
pulse duration and strength: When the peak intensity is low
enough so as to satisfy the requirements of FOTDPT, it is
possible to control the temporal characteristics of the ultrashort
pulse as described in [11]. Then, it is possible to determine
the value of peak intensity, I , at which the system enters
the nonperturbative regime by monitoring the quantitative
behavior of the maximum of PR as a function of I .
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