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Abstract: Tyrosol, a natural product present in olive oil and white wine, possesses a wide range of
bioactivity. The aim of this study was to optimize the preparation of nanosystems encapsulating
tyrosol in carbohydrate matrices and the investigation of their ability to bind with DNA. The first
encapsulation matrix of choice was chitosan using the ionic gelation method. The second matrix was
β-cyclodextrin (βCD) using the kneading method. Coating of the tyrosol-βCD ICs with chitosan
resulted in a third nanosystem with very interesting properties. Optimal preparation parameters
of each nanosystem were obtained through two three-factor, three-level Box-Behnken experimental
designs and statistical analysis of the results. Thereafter, the nanoparticles were evaluated for their
physical and thermal characteristics using several techniques (DLS, NMR, FT-IR, DSC, TGA). The
study was completed with the investigation of the impact of the encapsulation on the ability of
tyrosol to bind to calf thymus DNA. The results revealed that tyrosol and all the studied systems
bind to the minor groove of ctDNA. Tyrosol interacts with ctDNA via hydrogen bond formation,
as predicted via molecular modeling studies and corroborated by the experiments. The tyrosol-
chitosan nanosystem does not show any binding to ctDNA whereas the βCD inclusion complex
shows analogous interaction with that of free tyrosol.

Keywords: tyrosol; nanoparticles; Design of Experiment (DoE); chitosan; β cyclodextrin; DNA binding

1. Introduction

Tyrosol (2-(4-Hydroxyphenyl)ethanol) is a biophenol that is found in olive oil, white
wine, beer and vermouth (Figure 1) [1]. Even though tyrosol does not exhibit strong antiox-
idant activity, it contributes to the cellular defences due to intracellular accumulation [2,3].
Moreover, numerous studies affirm that tyrosol offers neuroprotective and cardiopro-
tective effect and enhances the regulation of the human LDL levels [4,5]. However, its
hydrophilic nature impedes its incorporation in lipid substrates and limits its absorption
and bioavailability [6].

Figure 1. Structure of tyrosol.

Nanoencapsulation of bioactive compounds and pharmaceutical agents in suitable
carriers is a very promising technology, as it offers protection and stabilisation of the
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encapsulated compound. Furthermore, the encapsulation of a compound may lead to a
controllable and sustained release, thus enhancing its activity. Therefore, this technology is
incorporated in a broad range of applications in different fields, such as in medicinal and
pharmaceutical science, cosmetics, agrochemical and food industry [7–10].

β-cyclodextrin (βCD) is a truncated cone-shaped oligosaccharide, with a hydrophobic
inner cavity and a hydrophilic outer surface [11]. Small, hydrophobic molecules can be
entrapped in the cavity forming an inclusion complex (IC), increasing their solubility, while
more hydrophilic compounds can be bound on the external surface [12–14].

Chitosan (CS) is a naturally occurring polymer widely used as a nanocarrier. It is
nontoxic, biocompatible and biodegradable and is recognised as Generally Recognised
as Safe (GRAS) by the Food and Drug Administration (FDA) [15,16]. The process of
encapsulation in chitosan nanoparticles (NPs) has been extensively studied and various
techniques have been reported. The nature of the polymer permits the encapsulation of
small or larger molecules, natural products like plant extracts and essential oils, or even
other nanosystems [17–19].

The properties of the particulate system are defined by the selected carrier and prepa-
ration process. Therefore, the ability to design and engineer the experimental process in
order to obtain desirable results is an asset for any application. To that end, experimental
design and statistical analysis are implemented. Box-Behnken design (BBD) is a Response
Surface Methodology (RSM) that enables the multivariate optimisation of a quadratic
model [20–22].

Intercalators and groove binders are a class of compounds that interact with the double-
stranded DNA. Many anticancer drugs, such as anthracyclines, interact with the DNA
through intercalation between adjacent base pairs perpendicularly to the axis of the helix.
Many substituents in the intercalator molecule can greatly influence the binding mechanism,
the geometry of the ligand–DNA complex and the selectivity of the sequence [23,24].

The interactions between the various cyclodextrins and DNA have yet to be com-
pletely identified; however, they are of utmost importance as there are many marketed
formulations that contain cyclodextrins. Modified cationic cyclodextrins are known to
interact with DNA for gene therapy applications while a strong interaction of a βCD
complex was proved to be formed with DNA as the ribose and phosphate groups of the
DNA exert a stabilizing effect by forming H-bonds with the outer surface of CD [25,26].

The aim of this study was to develop and optimize the encapsulation process of tyrosol
in nanosystems using different matrices namely: chitosan (TYR/CS), βCD (TYR-βCD) as
well as in the combined system of βCD/CS (TYR-βCD/CS). The kneading method was
used for the preparation of the inclusion complex of tyrosol with βCD (TYR-βCD) and
ionic gelation for the synthesis of the chitosan nanoparticles. The process optimisation was
performed in both cases using a three-factor three-level BBD. The independent variables
were set as the initial concentration of the polymer, the loading capacity of TYR or the
TYR-βCD inclusion complex and the amount of the cross-linking agent. The examined
range was elicited from literature data and data from preliminary experiments.

Complete characterisation of the systems was performed by various methods and tech-
niques, such as Nuclear Magnetic Resonance Spectroscopy (NMR), Infrared Spectroscopy
(FT-IR), antioxidant activity determination by the DPPH method, Dynamic Light Scattering
(DLS) for the measurement of size, polydispersity index and ζ-potential, Thermogravi-
metric Analysis (TGA) and Scanning Electron Microscopy (SEM). Finally, the effect of the
encapsulation matrix on the ability of tyrosol to interact with Calf-thymus DNA (ctDNA)
was investigated.

2. Materials and Methods
2.1. Materials

Tyrosol was purchased from Fluorochem (Hadfield, Derbyshire, UK), β-Cyclodextrin
in an assay ≥99% (HPLC) was obtained from Fluka (Buchs, Switzerland) and Chitosan
(5–20 mPa·s, 0.5% in 0.5% Acetic Acid at 20 ◦C) from TCI (TCI (Shanghai, China). Tween 80,
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Tris Base, rhodamine B and deoxyribonucleic acid sodium salt, calf thymus were purchased
from Alfa Aesar (Ward Hill, MA, USA) and Sodium Tripolyphosphate from Acros Organics
(Morris Plains, NJ, USA). For all the experiments double-deionised water was used.

2.2. Synthesis of Nanoparticles
2.2.1. Preparation of Inclusion Complexes of Tyrosol with βCD (TYR-βCD)

The kneading method was used for the preparation of the inclusion complex. Briefly,
equimolar quantities of βCD (569 mg) and TYR (70 mg) were mixed in an agate mortar
and pestle with minimum amount of the solvent (H2O:EtOH 7:3 v/v) for 30 min. The paste
was dried to constant weight in a high vacuum pump [27].

2.2.2. Encapsulation of Tyrosol in Chitosan Nanoparticles (TYR/CS)

In a 1% aqueous acetic acid solution, 0.05%, 0.2% or 0.35% CS was fully dissolved.
Then, an equal to CS amount of emulsifier Tween 80 is added and left to stir at room
temperature overnight until complete dissolution. In 5 mL of the occurring solution 2.5, 10
or 17.5 mg of tyrosol was added and the solution was left to stir until total dissolution. Then
1 mL of TPP solution of concentration 0.42, 1.67 or 0.35 mg/mL was added dropwise. The
sample was left under magnetic stirring at 700 rpm, for 10 min at 25 ◦C. The nanoparticles
were centrifuged at 30,000 rpm for 45 min. The sediment was dispersed and washed with
two more consecutive centrifugations. Finally, the nanoparticles were freeze dried and
stored in a desiccator.

2.2.3. Coating of the Tyrosol-βCD Inclusion Complexes with Chitosan (TYR-βCD/CS)

For the synthesis of TYR-βCD/CS nanoparticles, the procedure described in
“Section 2.2.2” was followed, adding TYR-βCD instead of tyrosol. For preparation of
blank chitosan nanoparticles, in 5 mL of 0.2% chitosan, 1 mL of TPP solution 1.67 mg/mL
was added and the solution was left to stir for 10 min.

2.3. Design of Experiments (DoE)

Two experimental designs were conducted to optimize the processes for preparation
of TYR/CS and TYR-βCD/CS nanoparticles. Design-Expert® in trial version (Version 12,
Stat-Ease, Inc., Minneapolis, MN, USA) was used.

Three factors at three levels were selected to control the size (response R1) and ζ-
potential (response R2) of the nanosystem. Factor A was the concentration of the chitosan
solution, factor B was the mg of TPP and factor C the amount of tyrosol for the TYR/CS
nanosystem or of the inclusion complex for the TYR-βCD/CS system.

Factors’ levels and their normalised values are shown in Table 1. Central Point (0, 0, 0)
was repeated three times, and a total of 15 runs were performed for each set.

Table 1. Factors, level and responses of the DoE studies.

Factors
Levels Responses Constrains

−1 0 +1
R1 Size (nm) Minimize

A CS (% w/v) 0.05 0.20 0.35

B TPP (mg) 0.42 1.67 2.92
R2 ζ-potential (mV) Maximize

C (i) TYR (mg)
(ii) TYR-βCD (mg) 2.5 10.0 17.5

The data obtained were analysed with Analysis of Variance (ANOVA). Linear, second-
order and quadratic models were evaluated for all responses and in terms of statistical
significance, R2 values and the deviation of the predicted to the experimentally obtained
results.

The confidence level was set at 95% and p-values ≤ 0.05 to determine statistically
significant factors.
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2.4. Characterisation of the Nanoparticles
2.4.1. Dynamic Light Scattering (DLS)

The measurements for size, polydispersity index (PDI) and ζ-potential were performed
in a Zetasizer Nano ZS, Malvern Instruments Ltd. (Malvern, UK) using a cuvette DTS1070.
The results were analysed with the Zetasizer 7.12, Malvern Instruments Ltd. Software.

For TYR-βCD, 1 mg of the dried sample was dissolved in 4 mL of water and was fully
dispersed with 2 min ultrasound at a 2210 Ultrasonic Bath, Branson. DLS measurements of
the TYR/CS and TYR-βCD/CS samples were conducted by diluting 1 mL of freshly made
sample in 1 mL of water.

2.4.2. Encapsulation Efficiency (EE%) and Loading Capacity (LC%)

After ultracentrifugation, the quantification of free tyrosol in the supernatant was
performed using UV-Vis spectroscopy.

EE% =
Total TYR (mg)− TYR in supernatant (mg)

Total TYR (mg)
× 100 (1)

LC% = [Total encapsulated (mg)/total nanoparticles weight (mg)] × 100 (2)

2.4.3. Release Study

The release profile of tyrosol was investigated by determining the quantity of tyrosol
released form the nanosystem at given time intervals. For that reason, 50 mg of the each
nanosystem were dissolved in a 12 mL solution of aqueous 1% acetic acid (6 mL) and 6 mL
DMSO and were stirred at 37 ◦C at 100 rpm. At specific time intervals, 0.5 mL of sample
was obtained and filtered through a 0.45 µm pore syringe filter and analysed by UV-Vis
spectroscopy. Each time 0.5 mL of fresh solvent was added to the solution

2.4.4. Fourier Transform Infrared Spectroscopy (FTIR)

KBr pellets containing the dried sample were prepared with hydraulic pellet press. The
FT-IR spectra were recorded with a JASCO FT/IR-4200 spectrometer (Japan Spectroscopic
Company, Tokyo, Japan).

2.4.5. Nuclear Magnetic Resonance Spectroscopy (NMR)
1H NMR spectrum of TYR-βCD IC was obtained to determine the host–guest interac-

tions. The spectra were obtained on a Varian V 600 MHz instrument (National Hellenic
Research Foundation, Institute of Chemical Biology, Athens, Greece). The inclusion com-
plex was dissolved in deuterium oxide (D2O).

2.4.6. Thermal Characterisation

Thermal characterisation of the dried samples was performed with Differential Scan-
ning Calorimetry (DSC) with a DSC 1 STARe System device (Mettler Toledo, Columbus,
OH, USA) at temperature range from 20 ◦C to 350 ◦C with heating rate 10 ◦C/min, under
nitrogen gas flow 20 mL/min and Thermogravimetric Analysis (TGA) the TGA/DSC 1
STARe System Thermobalance (Mettler Toledo, Columbus, OH, USA) at 25 ◦C–600 ◦C,
with heating rate 10 ◦C/min, under nitrogen gas flow 10 mL/min.

2.5. Molecular Docking

The study of the interaction mode and binding affinity docking studies has been
performed with the crystal structure of the DNA (PDB ID: 1bna), was obtained from the
RSCB protein Data Bank. The optimisation of the docking parameters was performed
using AutoDock Vina software (The Scripps Research Institute, La Jolla, CA, USA) and
implemented empirical free energy function. Only polar hydrogens were added to the
DNA in AutoDock Tools [28]. Finally, the image has been generated using PyMol software.
The name and the number of nucleotides were designed according to PyMol software.
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2.6. DNA Binding Studies Using UV-Vis Spectroscopy

Lyophilised Calf-thymus DNA (ctDNA) was dissolved in Tris-HCl buffer solution
of concentration 10 mM and pH 7.4, and left overnight at 4 ◦C. Then, 1 mg ctDNA was
dissolved in 1 mL buffer and the concentration was determined from the absorbance at
260 nm using an extinction coefficient of 6600 M−1 cm−1 [29]. Tyrosol, βCD, CS, TYR-βCD,
TYR-βCD/CS, TYR/CS and Rhodamine B were dissolved in the buffer to a concentration of
10 mM for tyrosol or Rhodamine B or 2 mg/mL for the two carriers and all the nanosystems,
which were then used as the stock solution for the preparation of the concentration of
100µM. Afterwards, various concentrations (0–100 µM) of ctDNA were added to the
prepared solutions which were incubated for 5 min and 30 min at 37 ◦C. Absorption spectra
were measured using a JASCO double beam V-770 UV-Vis/NIR spectrophotometer in
range of 230–400 nm.

3. Results
3.1. DoE for the TYR/CS Preparation Process

The measured responses for the TYR/CS nanoparticles are presented in Table 2.

Table 2. Experimental data of TYR/CS nanosystem and obtained results.

No Coded Name

Factors Responses

A B C R1
Size (nm)

R2
ζ-Potential (mV)

1 TYR/CS 54 1 0 −1 168.8 41.6

2 TYR/CS 52 1 −1 0 574.6 46.4

3 TYR/CS 49 −1 1 0 precipitated 4.3

4 TYR/CS 50 0 −1 −1 679.6 41.7

5 TYR/CS 77 0 0 0 127.2 24.8

6 TYR/CS 57 0 1 −1 139.4 32.0

7 TYR/CS 45 0 −1 1 474.8 36.4

8 TYR/CS 53 1 0 1 199.3 43.3

9 TYR/CS 42 0 0 0 139.8 36.4

10 TYR/CS 51 0 0 0 115.3 35.5

11 TYR/CS 56 0 1 1 148.9 37.5

12 TYR/CS 47 −1 −1 0 393.4 28.6

13 TYR/CS 43 −1 0 −1 precipitated 8.7

14 TYR/CS 46 −1 0 1 precipitated 12.7

15 TYR/CS 55 1 1 0 206.1 37.0

From the table above, it can be observed that the size of the occurring nanoparticles
ranged from 115.3 nm at central point to 679.6 nm except for points (−1, 1, 0), (−1, 0, 1)
and (−1, 0, −1) in which the particles were over 3 µm and precipitated.

ζ-potential was positive in all cases and ranged from 4.3 to 46.4 mV. As chitosan is
a cationic polymer at acidic environments, highly positive ζ-potential is expected, and
is indicative of its stability in dispersion. However, the presence of the polyanion TPP
manages to reduce the value, by interacting with the protonated amino groups.

Particles in the micro scale were observed only in three points in all of which the
concentration of chitosan was at the low level while the concentration of TPP was on
its medium or high level. Hence, it can be deduced that when the ratio of chitosan to
TPP is low, there is accumulation of the cross-linker in the particles surface, which can
also be confirmed by the low ζ-potential. On the other hand, increase in the particles’
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size is also observed when the ratio of chitosan to TPP is high, as it occurs from points
(1, −1, 0), (0, −1, −1) and (0, −1, 1). This could be attributed to an excess of chitosan in
the particles surface resulting in insufficient cross-linking of the polymer and low cross-
linking density between the polymer and the cross-linking agent. The high ζ-potential of
those points confirms the existence of protonated amino groups on the surface of the NPs.
Moreover, increased concentration of chitosan leads in decreased intermolecular distance
and increased intermolecular hydrogen bonding between the polymeric chains [30–34].

3D surface plots of R1 were designed (Figure 2), and statistical analysis of the results
was performed. A Reduced Quadratic Model better described the results (Equation (3)) and
was found to be statistically significant (p-value 0.0012). Factors A, B, AB, A2 were found
to be statistically significant, verifying the observation that the size of the nanoparticles
depends both on the amount of chitosan and the interaction with the crosslinking agent
TPP. The Model F-value was calculated to be 9.43, indicating a significant model.

The coded equation that describes the size response is:

R1= −85.74 − 2666.41 A + 1450.25 B + 162.06 C − 3301.28 AB + 2674.75 A2 + 729.22 B2 (3)

Figure 2. 3D surface plot of response R1 of TYR/CS system (a) CS Vs TPP (tyrosol: 10 mg) (b) CS Vs TYR (TPP: 1.67 mg)
(c) TPP Vs TYR (CS: 0.2%).
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For the ζ-potential response, the linear model (Equation (4)) best described the relation
between the experiment data of R2 and the model F-value was 9.64. The 3D surface plots
of R2 are presented in Figure 3.

Figure 3. 3D surface plot of response R2 of TYR/CS system (a) CS Vs TPP (tyrosol: 10 mg) (b) CS Vs TYR (TPP: 1.67 mg)
(c) TPP Vs TYR (CS: 0.2%).

The coded equation that describes the ζ-potential-response is:

R2 = 30.64 + 14.25 A − 5.29 B + 0.74 C (4)

Table 3 summarises the significance of each factor for the responses R1 and R2 of the
TYR/CS nanosystem.

Optimal preparation conditions for TYR/CS nanoparticles are found to be close to
the Central Point (CP) values of factors B and C and in the range 0.2–0.35% for the CS
concentration.

Those results are in accordance with literature. Shah et al. [31], prepared CS nanopar-
ticles loaded with quetiapine fumarate sized between 140 and 487 nm. The optimal prepa-
ration conditions were CS concentration 0.1% and CS:TPP ratio 4.8:1, with stirring time
15 min at 700 rpm and resulted in nanoparticles of size 131.08 nm with ζ-potential 34.4 mV.
Delan et al. [30] used BBD for the optimisation of the synthesis of chitosan nanoparticles
loaded with the anionic and lipophilic drug simvastatin. It was found that the best CS
concentration was 0.34% and the CS:TPP ratio was 3:1, leading to nanoparticles of size
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106 nm and ζ-potential 43.3 mv. Sharma et al. [34] ran a four-factor, three-level BBD to
assess the process of synthesis of Carvedilol loaded CS nanoparticles. In their research,
optimum CS concentration was found to be 0.262% and the nanoparticle size was measured
with TEM 102.12 nm.

Table 3. Significance of each factor equation model terms of the TYR/CS system.

Factor
p-Value

R1 R2

Model 0.0012 0.0013

A 0.0010 0.0002

B 0.0309 0.0843

C 0.7848 0.7984

AB 0.0024 -

A2 0.0072 -

B2 0.3807 -

R2 0.850 0.6899

Adjusted R2 0.760 0.6184

Adeq Precision 11.385 10.0663

3.2. DoE for TYR-βCD/CS

The aqueous dispersion of the inclusion complex of tyrosol with βCD is formed by
nanoparticles of size 478.1 nm with a negative, almost neutral ζ-potential of −7.18 mV. The
entrapment of the inclusion complex into the chains of chitosan reversed the ζ-potential,
due to the presence of chitosan in the outer layer of the inclusion complexes. Furthermore,
in most of the 15 runs of the experimental design, the obtained particles were significantly
smaller than the inclusion complex. This could be attributed to the strong electrostatic
interaction between the oppositely charged carriers, which could separate agglomerations.

From the data in Table 4, it can be observed that the measured sizes ranged from
132.6 nm to over 3 µm, which precipitate, while the ζ-potential ranged from 4.8 to 46.5 mV.

The lowest result for R1 is at the point (0, +1, −1), but at the CP, the size is also very
close (average is 190.5 nm). In this design, it can also be observed that the chitosan-to-
TPP ratio has a strong impact on the particles’ size and ζ-potential. Therefore, for points
(−1, 1, 0), (−1, 0, −1) and (−1, 0, 1), the particles precipitate, and the ζ-potential is very
low. Moreover, from the 3D surface plot of the response R1 (Figure 4), the size tends to
decrease when the concentration of CS increases.

According to the mathematical analysis, the Reduced Quadratic Model was the most
suitable for describing this response (F = 12.08). The coded equation (Equation (5)) that
describes the system is:

R1 = −185.97 − 3350.14 A + 1093.59 B − 226.53 C − 2506.92 AB + 3392.22 A2 + 906.57 C2, (5)

The ζ-potential values range from 4.8 to 46.5 mV for the TYR-βCD/CS system.
Response R2 is best described by the quadratic model, with F-value = 24.02. The coded

equation (Equation (6)) of the model is as follows:

R2 = 25.04 + 13.11 A − 4.30 B + 2.54 C + 2.18 AB + 1.50 AC − 1.03 BC − 6.72 A2 + 7.21 B2 + 5.98 C2, (6)

The 3D surface plots of R2 are presented in Figure 5.
Table 5 summarises the significance of each factor for the responses R1 and R2 of the

TYR-βCD/CS nanosystem.
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Table 4. Experimental data of TYR-βCD/CS nanosystem and obtained results.

Run Coded Name
Factors Responses

A B C R1 R2

1 TYR-βCD/CS 67 0 −1 −1 364.8 36.9

2 TYR-βCD/CS 78 0 0 0 159.0 28.7

3 TYR-βCD/CS 66 −1 +1 0 precipitated 4.8

4 TYR-βCD/CS 73 0 +1 +1 142.2 37.5

5 TYR-βCD/CS 70 +1 0 +1 231.0 39.9

6 TYR-βCD/CS 68 0 0 0 162.5 21.2

7 TYR-βCD/CS 71 +1 0 −1 190.3 34.3

8 TYR-βCD/CS 64 −1 −1 0 276.7 19.4

9 TYR-βCD/CS 72 +1 +1 0 221.3 36.0

10 TYR-βCD/CS 69 +1 −1 0 595.0 41.9

11 TYR-βCD/CS 79 0 0 0 141.5 27.8

12 TYR-βCD/CS 62 0 −1 +1 441.5 46.5

13 TYR-βCD/CS 61 −1 0 −1 precipitated 11.7

14 TYR-βCD/CS 63 −1 0 +1 precipitated 11.3

15 TYR-βCD/CS 74 0 +1 −1 132.6 32.0

Table 5. Significance of each factor equation model terms of the TYR-βCD/CS system.

Factor
p-Value

R1 R2

Model 0.0028 0.0016

A 0.0006 <0.0001

B 0.1131 0.0130

C 0.7221 0.0766

AB 0.0204 0.2353

AC - 0.3950

BC - 0.5530

A2 0.0046 0.0080

B2 - 0.0100

C2 0.2881 0.0213

R2 0.8773 0.9760

Adjusted R2 0.7853 0.9327

Adeq Precision 9.8620 15.2455

For this system, the optimal preparation formula was found to be the CP, giving the
smallest nanoparticles and a ζ-potential of 25.9 mV. This point was chosen for further
experiments.
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Figure 4. 3D surface plot of response R1 of TYR-βCD/CS system (a) CS Vs TPP (TYR-βCD: 10 mg) (b) CS Vs TYR-βCD
(TPP: 1.67 mg) (c) TPP Vs TYR-βCD (CS: 0.2%).

Comparing the experimental results, the lowest size values were given at the point
(0, +1, −1) and the CP. In both cases, the ζ-potential was highly positive; hence, the central
point was chosen for comparative reasons. This result is in accordance with the software’s
predictions of the optimal points.

Comparing the two nanosystems, many similarities can be observed. First, the initial
concentration of chitosan in the nanoparticle-forming solution plays a significant role in the
properties of the particles. Increased concentration of chitosan results in the agglomeration
of particles and a very high ζ-potential, attributed to the presence of many protonated
amino groups. On the other hand, chitosan to TPP ratio is also important and strongly
affects both responses. Moreover, the range of both responses does not differ significantly
for the two systems, suggesting that the polymeric chains form a matrix entrapping the
molecule or the inclusion complex and form the nanoparticles.

The main difference between the two systems is the impact of the TYR-βCD to
the ζ-potential. The reason for this difference could be that the inclusion complex is
negatively charged and that a strong electrostatic interaction between the oligosaccharide
and chitosan exists.
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Figure 5. 3D surface plot of response R2 of the TYR-βCD/CS system (a) CS Vs TPP (TYR-βCD: 10 mg) (b) CS Vs TYR-βCD
(TPP: 1.67 mg) (c) TPP Vs TYR-βCD (CS: 0.2%).

3.3. Encapsulation Efficiency and Loading Capacity Calculation

After identifying the optimal conditions for obtaining nanoparticles, the encapsulation
efficiency (EE%) and loading capacities (LC%) were determined for the three nanosystems.

For the inclusion complex of tyrosol with the βCD, it was found that the EE% was 98%.
The high encapsulation efficiency is expected for this system, as the kneading technique
was implemented, and no washing of the tyrosol was performed. The structure of βCd is
presented in Figure 6.

Figure 6. The glucose monomer in βCD.
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For the TYR/CS nanosystem, the EE% was found to be 46% and the LC 12%, while for
the TYR-βCD/CS nanosystem, the corresponding values were 12 and 4.2%, respectively.

3.4. Structural Identification of TYR-βCD Using 1H NMR Spectroscopy

The analysis of the 1H NMR spectrum of the inclusion complexes with βCD provides
important evidence regarding the host–guest interactions. The 1H NMR spectrum of
TYR-βCD, as well as those of tyrosol and βCD, are presented in Figure 7. In Table 6, the
chemical shift changes of 1H-NMR signals of the protons of βCD before and after the
formation of the TYR-βCD inclusion complexes are shown.

Table 6. Chemical shift changes of 1H-NMR signals of βCD before and after the formation of the
TYR-βCD IC.

Proton Chemical Shifts (δ1) of
βCD Protons (ppm)

Chemical Shifts (δ2) of
βCD Protons (ppm) in

TYR-βCD IC
∆δ = (δ2 − δ1) ppm

1 5.081 5.077 −0.004

2 3.661 3.658 −0.003

3 3.975 3.945 −0.030

4 3.596 3.595 −0.001

5
3.867–3.913

3.813 −0.100

6a,b 3.874 −0.039

Figure 7. Cont.



Polymers 2021, 13, 87 13 of 25

Figure 7. 1H NMR spectrum (600MHz, D2O) of (a) TYR-βCD and expansion of the region 3.4–4.1 ppm, (b) βCD, and (c) tyrosol.

The peaks of the H-3 and H-5 protons of βCD (which are located inside the cavity)
present significant upfield shift (−0.030 and −0.100 ppm, respectively), indicative of strong
hydrophobic interactions between tyrosol and βCD inside the cavity. The upfield shift
of the H-6 (−0.039 ppm), which lie at the primary face of the cyclodextrin cone, implies
that there is also a strong interaction with tyrosol, probably between the aliphatic OH
of the tyrosol molecule and the 6-OH of βCD. These results lead us to believe that the
tyrosol molecule enters the cyclodextrin cone in such a way that the aromatic ring lies well
inside the hydrophobic cavity whereas the aliphatic hydroxyethyl moiety points towards
the primary face of the cone and strong hydrogen bonds are formed between the OH
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groups. These observations are in accordance with the results of Rescifina et al. [35] and
Lopez-Garcia et al. [36], who studied the structure of the inclusion complexes of tyrosol
and hydroxytyrosol with βCD.

3.5. FT-IR Analysis of the TYR-β-CD IC

The analysis of the FT-IR spectra of pure βCD, tyrosol and the inclusion complex can
serve as further proof of the formation of the inclusion complex. The most characteristic
peaks in the FT-IR spectra of the above-mentioned compounds are shown in Table 7 and
the spectra in Figure 8.

Table 7. Characteristic FT-IR absorption bands of β-CD, tyrosol and the tyrosol-β-CD inclusion com-
plex.

Characteristic Absorption Bands (cm−1)

βCD Tyrosol Inclusion Complex

OH stretching 3382 3389 3376

C–H stretching (aromatic compounds) - 3148 -

C–H stretching 2925 - 2924

C–H asymmetric stretching (CH2) 1643 - 1643

C=C stretching (Aromatic compounds) - 1512 1541

O-H bending (alcohol) 1415 1452 1423

C–O stretching (secondary alcohols) 1029 - 1029

C–H stretching (aromatic, para substituted) - 818 -

Figure 8. FT-IR spectra of β-CD (red), tyrosol (green) and tyrosol-β-CD inclusion complex (blue).

The FT-IR spectrum of the inclusion complex of tyrosol with βCD (TYR-βCD) shows
a broad absorption band at 3376 cm−1 owed to the OH stretching vibration. This band is
shifted compared to the corresponding band at the spectra of pure βCD (3382 cm−1) and
tyrosol (3389 cm−1). This shift is indicative of strong interactive forces between the host
and guest in the inclusion complex. The band at 1543 cm−1 present in the FT-IR spectrum of
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the inclusion complex is attributed to the C=C stretching vibration in aromatic compounds
and is shifted by 29 cm−1 from the value of the same band at the spectrum of pure tyrosol.
This large shift is further evidence of the efficient inclusion of tyrosol in the cyclodextrin
cone with the aromatic part of the molecule lying inside the cone, as concluded also by the
NMR spectra. The absorption band of the OH bending vibration appears at 1423 cm−1 in
the spectrum of the inclusion complex and is shifted from the value of the same absorbance
at the spectra of β-CD and tyrosol by 9 cm−1 and 29 cm−1, respectively. Again, these shifts
corroborate the strong interaction between tyrosol and β-CD.

3.6. Differential Scanning Calorimetry Analysis (DSC)

The DSC thermograms of tyrosol, the two carbohydrate carriers and the corresponding
nanosystems are presented in Figure 9.

Figure 9. DSC thermograms of tyrosol (black), β-cyclodextrin (cyan), chitosan (blue), TYR-βCD
inclusion complex (magenta), TYR/CS (red), TYR-βCD/CS (green).

In the DSC thermogram of tyrosol, the sharp endothermic process at 85–113 ◦C with
peak at 95 ◦C, corresponds to the melting point of the compound [6]. In the chitosan DSC
thermogram, in the studied range, only the loss of water is observed at the temperature
range 85–107 ◦C, with a peak at 94 ◦C corresponding to the loss of water. The loss of
water from cyclodextrin occurs in the range 98–155 ◦C with an endothermic peak at
131 ◦C [37–39].

The DSC thermogram of the inclusion complex undergoes an endothermic thermal
transition from 87 to 133 ◦C with peak observed at 116 ◦C, ascribed to the water loss. The
melting of tyrosol cannot be observed in this curve, yet the decrease of the temperature
of water loss, compared to the one of the pure βCD, may be evidence of the protection
that the carrier offers to the molecule. This is in accordance with what has previously been
reported when encapsulating a molecule in βCD [37,39].

In the TYR/CS nanosystem, water loss occurs at 60 ◦C. Similarly, in the TYR-βCD/CS
nanosystem, the water loss is observed with an endothermic peak at 61 ◦C. Moreover, in
this system a second endothermic process takes place at the temperature range 75–87 ◦C
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with peak at 79 ◦C and could correspond to the loss of the water bound inside the cavity of
the βCD.

The endothermic peak owed to the melting of tyrosol is not present in any of the
nanosystems studied, and can be considered as further evidence of the successful encapsu-
lation of the compound in the different matrices.

3.7. Thermogravimetric Analysis (TGA)

The thermal stability of the samples can be determined using TGA. As can be seen in
Figure 10, the degradation temperature (Td) of TYR is 220 ◦C.

Figure 10. The TGA thermogram of tyrosol.

The thermal degradation of chitosan (Figure 11) occurs in two stages: water loss
occurs at 92 ◦C, resulting in an 8% mass loss; whereas the decomposition temperature is
300 ◦C. The residue of the polymer at 500 ◦C is approximately 44%.

Figure 11. TGA thermograms of (a) β-cyclodextrin and TYR-βCD and (b) chitosan, TYR/CS and TYR-βCD.
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For the TYR/CS nanosystem, the TGA profile presents three stages of degradation
((Figure 11). First, there is the water loss of at 67 ◦C then there is a mass loss of 5.0% at
187 ◦C that could be ascribed to tyrosol and, finally, the decomposition of chitosan occurs
at 270 ◦C, leaving a residue of 52% at 500 ◦C. The slight decrease in the Td of chitosan
is attributed to the formation of nanoparticles through anionic gelation and, hence, the
synthesis of a new material [40].

In the TG curve of βCD, first there is the loss of water molecules, externally and
internally bound, at 103 ◦C, resulting in a decrease of 11% of the total mass [41]. The
decomposition of βCD happens at 323.8 ◦C and the mass loss is 72.4%. The degradation
profile of TYR-βCD presents three stages: the water loss at 105 ◦C with 4.7% mass loss,
then the decomposition of tyrosol at 266 ◦C, resulting in further mass loss of 9.5%, and
finally, at 316 ◦C, the decomposition of the βCD. The decomposition of tyrosol happens at
a significantly higher temperature compared to the decomposition of the free molecule,
confirming that the formation of the inclusion complex protects it from thermal degradation.
The residue of the inclusion complex at 500 ◦C is 11%.

For the double-encapsulation system TYR-βCD/CS, TGA reveals an improved ther-
mal stability of the system. This system degrades in two stages: at 64 ◦C, the dehydration
of the sample happens, losing approximately 14% of the mass, and at the temperature
range 161–438 ◦C, there is another mass loss of 37%, which corresponds to the degradation
of the nanosystem. The residue of the sample at 500 ◦C is 44%.

Therefore, it seems that tyrosol is better protected in the double encapsulated system
than in the chitosan matrix.

3.8. Molecular Docking

In Figure 12, the binding architecture of tyrosol in the crystal structure of DNA
(source: PDB:1bna) is presented, depicting its stabilisation in the binding cavity of minor
groove of DNA. The docked complex between tyrosol and DNA is illustrated as cartoon
(Figure 12a,c,d) and in the form of spheres (Figure 12b) showing the interaction of tyrosol
in the binding cavity of minor groove of DNA. The minor groove is smaller in size than the
major groove and has the benefit that it is available for attack from small molecules such
as tyrosol. Most of the anticancer and antibiotic drugs that have been reported are small
molecules, so the minor groove is important as their main binding site.

The stabilisation of the complex is achieved by the formation of hydrogen bond
(Figure 12), polar and hydrophobic interactions. From the five hydrogen bonds between
DC-11, DG-10, DG-14 and DG-16 nucleotides, three hydrogen bonds are formed between
the aliphatic hydroxyl group of tyrosol and the purines of DG-10 and DG-16 base pairs.
One more hydrogen bond is formed between the hydroxyl group and the pentose of DG-11
nucleotide and another hydrogen bond between the phenolic hydroxyl group of tyrosol
and the purines of DG-14 base pair.

In addition, Table 8 illustrates the nucleotides, the number of hydrogen bonds, and
the binding energy that are formed with tyrosol.

Table 8. Binding scores of the docked tyrosol on the active site of DNA.

Ligand Binding Energy
(kcal/mol)

No. of Hydrogen
Bonds Nucleotides

−5.0 5 DC-11, DG-10, DG-14,
DG-16

The above results are in accordance with the results obtained from the DNA-binding
studies using UV spectroscopy, which indicated an external interaction between TYR
and ctDNA.
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Figure 12. Binding architecture of tyrosol in the crystal structure of CT DNA (PDB:1bna) depicting its stabilisation in the
binding cavity of minor groove of DNA. (a) DNA structure and tyrosol are illustrated as cartoons, (b) DNA structure and
tyrosol are formed as spheres, (c) The docking pose from a view above the axis of the helix, (d) Nucleotides are rendered in
line mode and the yellow dotted lines indicate hydrogen bonds between the docked molecule and the nucleotides of the
binding pocket in the minor groove of DNA.

3.9. DNA Binding Studies with ctDNA Using UV Spectroscopy

The interaction of the compounds and nanosystems with ctDNA was studied by
UV spectroscopy to obtain information on the existence of any interaction and to further
calculate the DNA-binding constants of the compounds (kb). An interaction between
a chemical entity and DNA can disrupt the ctDNA band located at 260–280 nm in the
presence of increasing amounts of ctDNA.

In absorption spectroscopy, hyperchromism and hypochromism are significant spec-
tral features to study the changes of the double helical structure of DNA. Due to the strong
interactions between a molecule and DNA bases, a change in absorption is observed,
showing the proximity of the molecule to the DNA bases. On the basis of the interaction of
compounds with DNA, the binding constant kb for ligand–DNA binding was determined
in the present work, using the Benesi–Hildebrand plot [42]. For the sake of comparison, the
binding of a well-known xanthene dye, namely Rhodamine B, which has been shown to
have a nonintercalative ctDNA binding in the DNA minor groove [43,44], was also studied.
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It is worth noting that, in the present work, no ctDNA binding was observed for any
of the nanosystems at 5 min; thus, the measurements were repeated after 30 min. This
phenomenon is attributed to the nature of the nanosystems: at 5 min, no significant amount
of tyrosol was released from the matrix of the nanosystem; whereas after 30 min, the
released tyrosol was able to bind to ctDNA. On the other hand, the binding of rhodamine B
and tyrosol to ctDNA at 5 min and 30 min did not show specific change. The UV-Vis data
are summarised in Table 9.

Table 9. UV-Vis absorption data for rhodamine B, tyrosol and nanosystems in the absence and presence of ctDNA.

Compound or
Nanosystem

λmax Absent
(nm)

λmax Present
(nm) ∆λ (nm) Hypochromicity

(%)
Hyperchromicity *

(%) Kb 104 (M−1)

Rhodamine B 554 554 0 26.90 - 10.92 ± 0.20

Tyrosol 275.8 274 1.8 - 43.44 2.09 ± 0.07

βCD 261 259.2 1.8 - 93.43 0.78 ± 0.05

TYR-βCD 276.4 272.6 3.8 - 76.61 2.40 ± 0.16

TYR-βCD/CS 260.2 258.8 1.4 - 92.97 1.30 ± 0.08

* Hyperchromicity for complexes formed by compounds and nanosystems and 100 µM of ctDNA in comparison to free ligands.

As shown in Figure 13a, TYR (100 µM, pH = 7.4) showed absorption maxima at
275.8 nm. With incremental addition of ctDNA to the solution of TYR, an increase in the
absorption intensity at 275.8 nm was observed with concomitant blue shift of the λmax at
274 nm. This hyperchromism suggests that TYR binds to ctDNA by groove binding mode.
The binding constant (k) of TYR was calculated from the ratio of the intercept to the slope
and was found to be k = 2.09 ± 0.07 × 104 M−1. The results indicate the binding of TYR in
the minor groove of ctDNA, as predicted by the molecular modeling studies.

Figure 13. Absorption spectra of (a) TYR and (b) βCD (100 µM, pH 7.4) in Tris-HCl buffer with increasing concentrations of
ctDNA (0–100 µM). Arrows ( ) and ( ) refer to hyperchromic and hypochromic (blue shift) effects, respectively.

CDs are known to interact with nucleic acids. Recently, it was reported that when a
complex with βCD is formed, the deoxyribose or ribose and the phosphate groups stabilize
the docked complex by hydrogen bonds with the outer rim of the CD molecules [26,45]. In
this context, the interaction of β-CD and the TYR-β-CD inclusion complex with ctDNA
was investigated.

As shown in Figure 13b, βCD showed absorption maxima at 261 nm. With incremental
addition of ctDNA to the βCD solution, an increase in the absorption intensity at 261 nm
was observed with concomitant shift of the λmax at 259.2 nm (blue shift). The binding
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constant (k) of βCD was calculated from the ratio of the intercept to the slope and was
found to be k = 0.78 ± 0.05 × 104 M−1. Therefore, it seems that βCD binds to ctDNA in a
non-intercalative mode, yet much less strongly than tyrosol.

As shown in Figure 14 the complex TYR-βCD showed absorption maxima at 276.4 nm.
With incremental addition of ctDNA to the solution of TYR-βCD, an increase in the
absorption intensity at 276.4 nm was observed with a blue shift at λmax 272.6 nm. The
binding constant was found to be k = 2.40 ± 0.16 × 104 M−1. The complex TYR-βCD
showed enhanced interaction with ctDNA in comparison to the free tyrosol, which could
be explained by the enhanced aqueous solubility of the inclusion complex and by the mode
of insertion of tyrosol in the βCD cavity. As previously mentioned, if the aromatic ring lies
well inside the hydrophobic cavity, while the aliphatic hydroxyethyl group points towards
the primary face of the cone, it means that hydrogen bonds can be formed and stabilize the
interaction between the complex and ctDNA.

Figure 14. Absorption spectra of (a) TYR-βCD and (b) TYR-βCD/CS (100 µM, pH 7.4) in Tris-HCl buffer with increasing
concentrations of ctDNA (0–100 µM). Arrows ( ) and ( ) refer to hyperchromic and hypsochromic (blue shift) effects
respectively.

The complex TYR-βCD/CS showed absorption maxima at 260.2 nm (Figure 14). With
incremental addition of ctDNA to the solution of TYR-βCD/CS, an increase in the absorp-
tion intensity at 260.2 nm was observed, with a blue shift of the λmax 258.8 nm. The binding
constant was found to be k = 1.30 ± 0.08 × 104 M−1.

Rhodamine B showed a hypochromic behaviour and the binding constant was deter-
mined to be 10.92 ± 0.20 × 104 M−1 (Figure 15). This is consistent with the minor groove
binding of Rhodamine B in ctDNA, in accordance with the work of Islam et al. [44].

All the tested compounds and nanosystems, with the exception of Rhodamine B,
showed hyperchromism and a blue-shift upon increasing DNA concentration, indicating
that they all interact with the DNA helix. However, as no significant changes in the spectra
could be observed, the results indicate a nonintercalative mode of binding. CS and TYR/CS
were also studied, but no binding with ctDNA was observed.
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Figure 15. UV-Vis spectra of Rhodamine B with increasing concentrations of ctDNA (0–100 µM). Arrow refers to
hypochromic effect.

3.10. Release Profiles

The release profile of tyrosol was investigated for all nanosystems prepared, and the
results are presented in Figure 16. For all systems, the release study was carried out for
45 h in a solution of pH 3.4.

Figure 16. The release profile of tyrosol from TYR-βCD (blue line), TYR/CS (black line) and TYR-βCD/CS (red line).
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All nanosystems showed a “burst release” of tyrosol during the first hour. For the
TYR-βCD system, approximately 77% of the encapsulated tyrosol was released during
that time. Thereafter, the release rate significantly slowed down, reaching 93% after 18 h.

On the other hand, the release profile of tyrosol from the TYR/CS system was signifi-
cantly different. During the first hour of the study, 13% of tyrosol was released reaching
the maximum release after 23 h (26%).

For the TYR-βCD/CS system, 37% of the encapsulated tyrosol was released during
the first hour, reaching the 99% after 45 h. The slower rate presented by this system as
compared to the TYR-βCD system can be attributed to the existence of chitosan as a coating
and provides proof that this “double” encapsulation system can offer a more sustained
release than the TYR/βCD by slowing down the initial burst effect observed in the case of
the inclusion complex.

4. Discussion

The comparative study of the optimisation of the encapsulation parameters of tyrosol
and the inclusion complex of β-cyclodextrin:tyrosol in chitosan revealed that the concen-
tration of chitosan plays a significant role on the properties of the particles that are formed.
Moreover, the ratio between the polymer and the cross-linking agent or the molecule to be
encapsulated also affects the responses of the particulate system. In both systems studied,
it was observed that the smaller sized particles presented a good ζ-potential, which is
indicative of a very stable formulation.

The interaction of tyrosol, the inclusion complex of tyrosol with βCD and the inclu-
sion complex coated with chitosan with ctDNA was studied in an effort to elucidate the
potential of the prepared nanosystems to be exploited as pharmacologically active agents.
Tyrosol and all the examined nanosystems showed a nonintercalative mode of binding to
ctDNA. The complexation of tyrosol with cyclodextrin resulted in slightly better interaction
with ctDNA as compared to the interaction exhibited by the TYR-βCD/CS system. This
difference is attributed to the small, yet existent, interaction of the oligosaccharide with
ctDNA whereas the polysaccharide chitosan did not interact with ctDNA in the performed
experiments. Moreover, from the NMR analysis of the inclusion complex, it was deduced
that the aromatic ring of the molecule lies inside the cavity, while the aliphatic hydrox-
yethyl moiety points towards the primary face of the cone. Therefore, it could be suggested
that βCD carries the molecule close to ctDNA and an interaction can be observed. On
the other hand, no interaction was observed when tyrosol was encapsulated in chitosan
nanoparticles, presumably due to the strong positive charge on the surface of the TYR/CS
nanosystem which impedes it from approaching DNA.

Finally, the release profile of tyrosol is different for each nanosystem. A burst effect is
observed for all systems. The release of tyrosol from the inclusion complex formed with
βCD is completed in approximately 20 h hours, but when chitosan coating is added, the
release rate is delayed significantly. On the other hand, when tyrosol is encapsulated into
chitosan nanoparticles, the release of only the 26% of encapsulated tyrosol occurs during
the same time.

5. Conclusions

In the present study, the impact of two different carriers for the encapsulation of tyrosol
is investigated: the oligosaccharide β-cyclodextrin and the polysaccharide chitosan. The
effect of coating the tyrosol-βCD inclusion complex with chitosan was also investigated as
a potential tool to modify the release profile of the bioactive compound. We were gratified
to find that this was true for the systems studied in this work: the coating resulted in a
sustained release of tyrosol and slowed down the initial burst effect observed from the
inclusion complex.

For the formation of the tyrosol-βCD inclusion complex a well-known methodology
was implemented, whereas for the two chitosan-containing systems, the formation of the
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nanoparticles was succeeded via the ionic gelation method with sodium tripolyphosphate.
The latter processes were optimised using experimental design.

Moreover, the interaction of tyrosol and the corresponding nanosystems with ctDNA
was investigated. The results show that tyrosol is a ctDNA groove binder and this was
confirmed by molecular modeling studies. The same mode of binding was found for the
TYR/βCD and TYR/βCD/CS nanosystems.
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