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Abstract: Ovarian cancer (OC) is the seventh most common type of cancer in women worldwide.
Treatment for OC usually involves a combination of surgery and chemotherapy with carboplatin and
paclitaxel. Platinum-based agents exert their cytotoxic action through development of DNA damage,
including the formation of intra- and inter-strand cross-links, as well as single-nucleotide damage of
guanine. Although these agents are highly efficient, intrinsic and acquired resistance during treatment
are relatively common and remain a major challenge for platinum-based therapy. There is strong
evidence to show that the functionality of various DNA repair pathways significantly impacts tumor
response to treatment. Various DNA repair molecular components were found deregulated in ovarian
cancer, including molecules involved in homologous recombination repair (HRR), nucleotide excision
repair (NER), mismatch repair (MMR), non-homologous end-joining (NHEJ), and base excision
repair (BER), which can be possibly exploited as novel therapeutic targets and sensitive/effective
biomarkers. This review attempts to summarize published data on this subject and thus help in the
design of new mechanistic studies to better understand the involvement of the DNA repair in the
platinum drugs resistance, as well as to suggest new therapeutic perspectives and potential targets.
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1. Ovarian Cancer

Ovarian cancer (OC) represents the seventh most common type of cancer for women
worldwide, with a frequency of 4% of all new cancer cases in females annually. It is
associated with the highest fatality rate among gynecological cancers, mainly because of
delayed diagnosis. Indeed, the majority of early-stage ovarian cancers is asymptomatic and
cannot be easily diagnosed [1,2].

According to the 2020 World Health Organization (WHO) classification, at least five
main types of ovarian carcinomas are identified based on morphology: high-grade serous
carcinoma (HGSC, the most prevalent subtype of ovarian cancer; 70%), endometrioid carci-
noma (EC, 10%), clear cell carcinoma (CCC, 6–10%), low-grade serous carcinoma (LGSC,
5%), and mucinous carcinoma (MC, 3–4%) [3]. These histological subtypes display distinct
molecular characteristics both at the genomic and transcriptomic level. For example, the
most frequent molecular defect in HGSC at the genomic level is the TP53 mutation [4].
Interestingly, about half of HGSC have identifiable germline, somatic, or epigenetic de-
fects in the homologous recombination DNA repair (HRR) pathway, with most of these
defects being germline or somatic BRCA1 (breast cancer type 1 susceptibility protein) or
BRCA2 (breast cancer type 2 susceptibility protein) mutations, which together account
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for approximately 20% of cases [5–7]. Mutations deregulating the PI3K pathway are also
common in the endometrioid OC; around 20% of cases harbor PTEN tumor suppressor
gene mutations and around 30% display activating PIK3CA mutations [8]. Endometrioid
OC also commonly displays activated Wnt signaling, with about half showing CTNNB1
mutation. Such as endometrioid OC, clear cell carcinomas harbor defects in PTEN (~10%
of cases), PIK3CA (~50% of cases), and ARID1A (~50% of cases), consistent with the shared
molecular pathogenesis and developmental origins of these carcinomas [8]. Moreover,
KRAS mutation and HER2 gene amplification are known common events in mucinous OC,
with 50% and 20% of cases displaying these defects, respectively [9]. All the above charac-
teristics are connected not only with the prognosis, but also with the choice of therapeutic
interventions.

Ovarian cancer is primarily staged using the FIGO (International Federation of Gyne-
cology and Obstetrics) staging system [10]. The system is based mainly on local, regional,
and distant cancer’s spread and is closely related to prognosis. Thus, stage I OC patients
have a 5-year survival rate of 90%, stage II of 70%, and stage III of ~39%, whereas stage VI
patients show a rate of 17%. Unfortunately, most patients are diagnosed with stage III or IV
disease, which underlines the significant need for further progress in the management of
this disease.

2. Treatment of Advanced Ovarian Cancer

The mainstay of front-line treatment of advanced OC has not changed in the last
decade. Patients are submitted to cytoreductive surgery aiming to achieve minimal or
no residual disease and to systemic chemotherapy with the combination of carboplatin
and paclitaxel, before or after cytoreductive surgery. Although the response rate for
this first-line approach is 70–80%, with more than 50% achieving complete remission
after surgery and chemotherapy, the majority of patients with advanced ovarian cancer
will subsequently relapse or progress and require further intervention, which again may
include the combination of chemotherapy and surgery, although the role of the former is
increasingly more critical as the disease continues to relapse. Platinum-based chemotherapy
can be successfully used in relapses of the disease provided that the time period from the
end of prior platinum therapy is more than six months. It is, therefore, evident that platinum
is essential for patients in many phases of their disease and resistance to this agent signals
a significant worsening of their prognosis [11].

The mechanism of action of both cisplatin and carboplatin includes their interaction
with DNA and the formation of monoadducts, mostly covalently interacting with N7-
position of guanine. Afterwards, this monoadduct evolves, through a second covalent
binding, to a DNA cross-link, which can be on the same DNA strand (intra-strand) or
on the opposite strand (inter-strand). The kinetics of monoadduct and monoadduct to
cross-links formation are the most important differences between cisplatin and carboplatin,
owing to various aquation rates and steric hindrance (Figure 1).
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Figure 1. Cisplatin-induced DNA adducts. (A) Structure formulas of cisplatin and carboplatin. (B) The
type of DNA adducts formed by cisplatin: single-nucleotide damage of guanine (monoadducts), intra-
strand cross-links [Pt-d(GpG)], 1,2-intra-strand crosslinks, 65%; Pt-d(ApG), 1,2-intra-strand cross-links,
25%; Pt-d(GpNgG), 1,3-intra-strand cross-links, 5–10%] and inter-strand cross-links (1.5%).

In response to these genotoxic insults, the DNA damage response (DDR) network
orchestrates DNA damage checkpoint activation and facilitates the removal of DNA le-
sions [12]. Indeed, following detection of DNA lesions, there is an induction of a signal
transduction cascade, including molecules that activate genome-protection pathways, such
as DNA repair, cell cycle control, apoptosis, transcription, and chromatin remodeling. As
DDR is a signal transduction pathway that determines the cell’s ability to repair DNA
damage or to undergo apoptosis, its role has been implicated in the disease process and
the successful outcome of chemotherapy [13]. Notably, another important type of DNA
damage induced by platinum-based drugs is covalent DNA-protein crosslinks. This in-
cludes the crosslinking of histones but also of potentially any protein in the vicinity of
DNA [14]. DNA-protein crosslinks are particularly toxic DNA lesions, as they impede
fundamental DNA processes. More importantly, there is evidence indicating a positive
correlation between the clinical efficacy of platinum-based compounds and the extent to
which they induce DNA-protein crosslinks [15,16].

Resistance to cisplatin has been associated with multiple mechanisms, including
tumor heterogeneity, reduced drug uptake, alterations in pro-survival and pro-apoptotic
pathways, modification of a drug target, inactivation of the drug, and upregulation of DNA
repair pathways. In fact, there is strong evidence to show that the functionality of various
DNA repair pathways significantly impacts tumor response to cisplatin treatment [17,18].
Guided by this notion, this review attempts to summarize aspects of published data on
this subject and thus help in the design of new mechanistic studies to better understand
the involvement of the DDR network in the platinum-based drugs resistance, as well as to
suggest new therapeutic perspectives and potential targets (Figure 2).



Biomedicines 2022, 10, 82 4 of 18Biomedicines 2022, 10, x FOR PEER REVIEW 4 of 18 
 

 

Figure 2. Molecular mechanisms of cisplatin resistance. Cells block cisplatin from damaging DNA 

by decreasing drug uptake, increasing drug efflux, and augmenting drug detoxification by binding 

to glutathione or metalloproteins. Following DNA damage induction, cells remove the lesions using 

critical DNA repair mechanisms. Molecular components that were found deregulated in OC, in-

cluding MLH1, MLH3, MSH2, MSH3, MSH6, PMS1, PMS2 (MMR), APE1, Polβ, UNG, XRCC1 

(BER), XRCC4 (NHEJ), ERCC1, DDB2, XPA, XPB/ERCC3, XPC, XPD/ERCC2, XPG/ERCC5 (NER) 

and BRCA1, BRCA2, CDK12, EMSY, PTEN, and RAD51C (HRR) can be possibly exploited as novel 

therapeutic targets and sensitive/effective biomarkers. 

3. DNA Repair Responses to Cisplatin-Induced DNA Damage 

3.1. Homologous Recombination Repair (HRR) 

HRR is an error-free DNA repair mechanism, which operates during the S and G2 

phases of the cell cycle so that it can find a large area of homology on a sister chromatid 

to use as a template for resynthesizing damaged or lost bases [19]. HRR begins with nu-

cleolytic resection of DNA ends, mediated by the combined action of the MRN 

(Mre11/Rad50/Nbs1) complex, CtIP, and BRCA1, which yields 3′ single-stranded DNA 

tails that are stabilized by the replication protein A (RPA). Then, BRCA2 catalyzes the 

displacement of RPA protein and the formation of a RAD51 nucleoprotein filament, which 

promotes homology search and catalyzes an exchange strand between the broken duplex 

and an intact sister chromatid. The 3′-end of the invading strand is extended by DNA 

synthesis using the sister chromatid as a template, and intact duplexes are eventually re-

stored using a resolution mechanism [19,20]. As mentioned above, up to 50% of high-

grade serous ovarian cancer displays homologous recombination deficiency (HRD). The 

most frequently noticed and well-studied mutations are observed in the BRCA1 and 

BRCA2 genes and may be germline or somatic mutations [21] (Table 1). Of note, defective 

HR in OC may also occur via alterations in genes that are indirectly modulating the HR 

pathway and thus cause HR deficiency [22]. For example, a focal deletion region at 

10q23.31 that includes only the phosphatase and tensin homolog (PTEN) gene has been 

found in approximately 7% of high-grade serous OCs [23]. Moreover, several studies have 

reported both overexpression and amplification of the BRCA2-Interacting Transcriptional 

Figure 2. Molecular mechanisms of cisplatin resistance. Cells block cisplatin from damaging DNA
by decreasing drug uptake, increasing drug efflux, and augmenting drug detoxification by binding
to glutathione or metalloproteins. Following DNA damage induction, cells remove the lesions
using critical DNA repair mechanisms. Molecular components that were found deregulated in OC,
including MLH1, MLH3, MSH2, MSH3, MSH6, PMS1, PMS2 (MMR), APE1, Polβ, UNG, XRCC1
(BER), XRCC4 (NHEJ), ERCC1, DDB2, XPA, XPB/ERCC3, XPC, XPD/ERCC2, XPG/ERCC5 (NER)
and BRCA1, BRCA2, CDK12, EMSY, PTEN, and RAD51C (HRR) can be possibly exploited as novel
therapeutic targets and sensitive/effective biomarkers.

3. DNA Repair Responses to Cisplatin-Induced DNA Damage
3.1. Homologous Recombination Repair (HRR)

HRR is an error-free DNA repair mechanism, which operates during the S and G2
phases of the cell cycle so that it can find a large area of homology on a sister chro-
matid to use as a template for resynthesizing damaged or lost bases [19]. HRR begins
with nucleolytic resection of DNA ends, mediated by the combined action of the MRN
(Mre11/Rad50/Nbs1) complex, CtIP, and BRCA1, which yields 3′ single-stranded DNA
tails that are stabilized by the replication protein A (RPA). Then, BRCA2 catalyzes the
displacement of RPA protein and the formation of a RAD51 nucleoprotein filament, which
promotes homology search and catalyzes an exchange strand between the broken duplex
and an intact sister chromatid. The 3′-end of the invading strand is extended by DNA syn-
thesis using the sister chromatid as a template, and intact duplexes are eventually restored
using a resolution mechanism [19,20]. As mentioned above, up to 50% of high-grade serous
ovarian cancer displays homologous recombination deficiency (HRD). The most frequently
noticed and well-studied mutations are observed in the BRCA1 and BRCA2 genes and
may be germline or somatic mutations [21] (Table 1). Of note, defective HR in OC may
also occur via alterations in genes that are indirectly modulating the HR pathway and thus
cause HR deficiency [22]. For example, a focal deletion region at 10q23.31 that includes only
the phosphatase and tensin homolog (PTEN) gene has been found in approximately 7% of
high-grade serous OCs [23]. Moreover, several studies have reported both overexpression
and amplification of the BRCA2-Interacting Transcriptional Repressor (EMSY) gene as
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another mechanism of HR deficiency in as high as 17% of high-grade sporadic OC [24].
Cyclin-dependent kinase 12 (CDK12) is also one of the only nine significantly mutated
genes in ovarian cancer (3% of cases in the TCGA dataset) and is known to promote the
transcription of several HR pathway genes, including BRCA1 [25]. In addition, individuals
with a RAD51 Homolog C (RAD51C) mutation have an increased risk to develop ovarian
cancer [26].

Nowadays, a major number of assays are under investigation in order to classify
tumors as HR-proficient or HR-deficient. In general, there are two main methods to classify
tumors: methods that determine genomic alterations and those that determine the function
of proteins. The first ones indicated (BROCA, Myriad, Foundation Medicine, HRD detect)
adopt techniques such as NGS or whole genome sequencing. These assays quantitate
genomic instability in a tumor genome based on three independent measures of genomic
instability, and they can be summarized in the loss of telomeric allelic imbalance (TAI), loss
of heterozygosity (LOH), and large-scale transition (LST). The above-mentioned parameters
have been estimated not only as a whole but also separately, and it is worth stating that the
combination of the approaches offers the most valid results. Moreover, it can be inferred
that it is a convenient assay owing to the fact that it uses blood tests [27,28]. In addition,
the tissue-based assay foundation focus on CDx examines both germline and somatic
mutations in a tumor, while the Myriad Genetics BRCA analysis CDx platform identifies
only germline mutations in blood. Both of them are FDA approved so as to determine
the subgroup of OC patients, who may benefit from treatment with poly (ADP-ribose)
polymerase inhibitors (PARPi). Other efforts to validate assays have been performed in
order to indicate the functionality of proteins related to HR. One of them detects RAD51
foci formation, a single downstream event of HR activation. On the whole, the above assays
show some limitations such as the difficult processing of formalin-fixed paraffin-embedded
(FFPE) tissue specimens, the formation of large amounts of artifacts, the difficulty of post-
treatment biopsies in clinical practice, the unidentified timing of RAD51 foci formation,
and false negative results. [29,30]

Accumulated data have shown that the HRD approach is a positive predictor of
response to platinum-based drugs [31]. The response is relied not only on progression free
survival (PFS) or treatment free interval (TFI), but also on overall survival (OS), since the
method used to estimate HRD did not focus only on the detection of BRCA and other genes
mutations but gave emphasis on other alterations having already been mentioned [32–34].
It is worth noting that a few studies prove that a mutation on BRCA2 and not on BRCA1 is
related to the response to platinum. It is possibly attributed to the fact that the two genes
have not only complementary but also distinct functions. However, this fact concerns a
limited number of patients and previous studies, and there is a necessity of further research
to confirm the findings [21]. Additionally, the polyclonality of the tumor or the existence
of more than one responsible mechanism is of great importance in clinical practice, as has
already been validated by SCOTROC4 clinical trial. Through this trial, it has also been
confirmed that OC patients with BRCA mutations have HR deficiency and are characterized
by increased platinum sensitivity.According to a study of exploratory analysis, a decrease of
threshold of HDR score in lower levels than 33 appears to be a result of platinum sensitivity.
Of note, a previous analysis of plasma has shown that platinum dose-intensification may
benefit the drug-sensitive subpopulation of OC patients [31]. It is true that there are
negatives results, too. That means that the existence of mutations in BRCA genes or
“BRCAness” condition is not connected with the response to platinum [32,33].

Furthermore, there are important findings related to drug-induced restoration of HR
due to the selective pressure of using platinum as treatment. This restoration occurs by
multiple different mechanisms, such as reversion mutations or intragenic deletions in
BRCA1 and 2 mutated genes or the loss of BRCA1 promoter methylation. In essence,
through the above mechanisms, the protein frame is restored resulting in the formation
of functional protein and the re-acquiring of HR adequacy. These alterations can be
detected by examining cell-free DNA, progression biopsies, or germline DNA samples.
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As for the last method followed, practical obstacles are mentioned, since re-biopsy in
OC is not a clinical practice [35,36]. Another mechanism of HR restoration is HSP90-
mediated stabilization of a BRCA C-terminal (BRCT) domain of BRCA mutant BRCA1
protein under platinum treatment. The stabilized mutant BRCA1 protein confers cisplatin
resistance due to interaction with PALB2-BRCA2-RAD51, which is essential for RAD51
focus formation.Interestingly, it has been demonstrated that mutation RAD51C/RAD51D
in post progression tumor biopsy samples collected from patients in ARIEL2 Part 1, a
phase II study of the PARPi rucaparib as treatment for platinum-sensitive, relapsed ovarian
carcinoma is a mechanism of restoration of HR and acquired PARPi resistance [35,37–39].

3.2. Nucleotide Excision Repair (NER)

NER is a fundamental DNA repair mechanism involved in the removal of bulky, helix-
distorting lesions from DNA [40]. In literature, NER pathway was first mentioned in 1980
by Haisson and his partners. Since then, research has been conducted so as to determine
the sequence of the molecular events and the significance of each component. NER is
an essential DNA repair mechanism involved in the removal of bulky, helix-distorting
lesions from DNA. DNA adducts that are repaired by NER involve cyclobutane pyrimidine
dimers (CPDs) and 6-4 photoproducts (6-4 PPs) produced by UV radiation, DNA lesions
generated by reactive oxygen species (ROS), or endogenous lipid peroxidation products,
intra-strand cross-links and adducts produced by genotoxic drugs (melphalan, cisplatin),
or environmental carcinogens (benzo[a]pyrene). Two sub-pathways of NER could be
mentioned, termed GGR (global genome repair) and TCR (transcription-coupled repair),
where almost 30 proteins are involved in each one. As for the first step, the recognition of
DNA damage differs between the two sub-pathways. In GGR, the formation of a bulky
DNA adduct induces an increase in helix distortion, which facilitates the recruitment of
the damage recognition factor XPC/RAD23/CETN2 and UV-DDB. Nevertheless, damage
recognition in TCR is initiated when an elongating RNA polymerase II (RNAPII) is arrested
upon encountering a site of DNA damage. In both GGR and TCR sub-pathways, the
damaged duplex DNA is opened around the lesion by TFIIH, a multi-subunit helicase
complex that includes XPB, p62, p52, p44, p34, p8, XPD, and the CDK-activating kinase
(CAK). Next, the structure-specific endonucleases XPG and XPF/ERCC1 excise DNA 3′ and
5′ to the lesion, to eliminate a 25–30 nt-long oligonucleotide, including the DNA damage.
Finally, new DNA is synthetized by the DNA polymerases delta (Pol δ), kappa (Pol κ), and
epsilon (Pol ε), using the intact strand as template, and terminated by the XRCC1/ligase
3 [40].

Taking into consideration the vital role of NER in the repair of platinum drug-induced
DNA damage, it has been attempted to associate NER deficiency with patients’ sensitivity
to platinum [41]. Interestingly, about 8% of OC patients showing alterations in NER-
associated genes are characterized by augmented OS and PFS. However, during the last
decade, there is no medical interest due to conflicting results and the fact that more and
more studies agree that the time of evaluation of the deficiency affects the result. In the
majority of studies, deficiency was evaluated before administering platinum. According
to further studies, it has been proven that low NER protein expression after platinum
treatment is associated with platinum resistance [42]. Most studies have quantified not
only protein levels of NER components but also mRNA or gene polymorphisms. Other
studies use cell lines deficient in NER proteins [43].

As for the GGR sub-pathway of NER, a previous study assessed the association of
22 single-nucleotide polymorphisms (SNPs) of the GGR repair gene xeroderma pigmento-
sum, complementation group C (XPC) with PFS in patients with advanced ovarian cancer
who underwent primary cytoreductive surgery followed by platinum-based chemotherapy
(Table 1). Three SNPs were associated significantly with prolonged PFS in that cohort,
suggesting that SNPs in this gene may represent novel markers of ovarian cancer response
to platinum-based chemotherapy [44]. Moreover, the results of another study showed that
the XPC protein is involved in the cisplatin DNA damage-mediated signaling process,
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suggesting that this protein plays an important role in eliminating damaged cells and in
preventing cancer occurrence and that XPC defects can lead to a high risk of cancer occur-
rence [45]. In addition, other reports have confirmed that the damage-specific DNA binding
protein 2 (DDB2) gene, a molecular GGR/NER component that also plays an important role
in apoptosis, participates in the sensitivity of platinum-based drugs in ovarian carcinoma
cells [46,47].

On the other hand, deficiency of the TCR-NER sub-pathway correlates with platinum
resistance. Below, it is attempted to describe data concerning TCR disfunction related to
cisplatin sensitivity. In this way, predictive markers of response in cisplatin treatment could
be found [48].

The xeroderma pigmentosum complementation group D (XPD) gene, also known as
ERCC2, plays important roles in the nucleotide NER pathway. It encodes an evolutionar-
ily conserved helicase that participates in DNA unwinding and the recognition of bulky
adducts and thymidine dimers. Previous studies have shown that the XPD gene poly-
morphism Lys751Gln may be associated with an increased risk of ovarian carcinoma [49],
as well as increased PFS and OS following platinum treatment [50,51]. Moreover, the
xeroderma pigmentosum, complementation group B (XPB/ERCC3) gene encodes an ATP-
dependent DNA helicase that functions in TCR/NER; the encoded protein is a subunit of
basal transcription factor 2 (TFIIH) and, therefore, also functions in class II transcription.
A previous study has shown that the mRNA levels of the XPB gene were higher in clear
cell tumors as opposed to other types of epithelial ovarian cancer. This is consistent with
the long-standing observation that clear cell tumors are more likely to show de novo drug
resistance against DNA damaging agents in the clinic [52]. On the other hand, other studies
investigating XPB and XPD, both at the mRNA level and gene polymorphisms, did not
find any correlation with cisplatin resistance in ovarian carcinoma [18].

The xeroderma pigmentosum, complementation group A (XPA) gene seems to be
involved during UV damage recognition in both GGR/NER and TCR/NER. XPA is a
first-order clock-controlled protein, and as a consequence, the rate of NER exhibits high-
amplitude circadian rhythmicity [53]. Because NER plays a crucial mechanism for removing
the predominant DNA adducts induced by the anticancer drug cisplatin, the repair rates of
these adducts exhibit circadian rhythmicity in brain, liver, kidney, skin, and all other tissues
tested [54]. Thus, in tumors arising in tissues with circadian rhythmicity, provided the
tumor maintains rhythmicity in phase with the normal tissue, administration of cisplatin
when excision repair is in the descending phase is expected to improve the therapeutic
index by administering a less toxic dose. Furthermore, during the sequencing of events and
the activation of NER, XPA protein interacts with ERCC1 protein, and it has been indicated
that the quantification of XPA level with ERCC1 in mRNA and protein level is the most
reliable indicator of response to platinum.

The excision repair cross complementing-group 1 (ERCC1) component is a mam-
malian endonuclease that incises the damaged strand of DNA during NER and inter-strand
cross-link repair. Current studies have shown contradictive results concerning ERCC1 as
a predictive factor of response to platinum treatment. That is the reason why measure-
ment of ERCC1 is not in clinical practice despite having been studied since 1990. All the
assessments have taken place in mRNA level, protein level. or gene expression level in
order to detect particular SNPs. As for the conflicting results, they may be due to lack
of validated antibodies working in immune-histochemistry or evaluation of all the iso-
forms of ERCC1 [55,56]. In an effort to overcome the above limitations, new antibodies
that recognize isoform ERCC1 related to XPF molecule have been discovered. Moreover,
new methods are used to recognize the active ERCC1 isoform XPF complex, which im-
plies NER proficiency [57]. Relative method is PLA-proximity ligation assay and the first
findings connecting ERCC1 functional proficiency with cisplatin sensitivity in OC have
already been published. Interestingly, a previous study reported that the expression of
ERCC1 in circulating tumor cells may be used as an independent predictive biomarker for
platinum-resistance and poor prognosis of ovarian cancer [58].
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The xeroderma pigmentosum, complementation group G (XPG/ERCC5) component
of NER, as a complex with ERCC1, is a structure-specific endonuclease that makes the 3’
incision in DNA excision repair following UV-induced damage. Interestingly, previous
studies have shown that low XPG expression is associated with good cisplatin response in
ovarian patients [59].

Taken together, NER recognizes DNA crosslinks caused by platinum and converts
them into DNA double strand breaks, which are repaired through the activation of HR.
It has been proven that either NER or HR deficiency leads to sensitivity to platinum on
account of the accumulation of irreversible DNA damages, and as a consequence, the
process of apoptosis is activated. However, in case both mechanisms do not work properly,
such as a mutation in NER genes in BRCA mutation background, the cell is not sensitive to
platinum. Particularly, due to NER deficiency, double strand breaks will not be formed,
and the cell will activate other mechanisms and pathways in order to repair DNA damage.

3.3. Mismatch Repair (MMR)

MMR system is an important contributor to replication fidelity, removing base substi-
tution and insertion/deletion mismatches that arise because of replication errors escaping
the proofreading function of DNA polymerases. It is consisted of seven molecular com-
ponents (MutS homolog 2 (MSH2), MutS homolog 3 (MSH3), MutS homolog 6 (MSH6),
MutL homolog 1 (MLH1), MutL homolog 3 (MLH3), post meiotic segregation increased
1 (PMS1), and post meiotic segregation increased 2 (PMS2)), whose alterations are the
second most common cause of hereditary OC, following BRCA1 and BRCA2 mutations
(Table 1) [60]. Previous reports have shown that the incidence of germline MMR gene muta-
tions in OC is only 2%. However, other mechanisms of gene inactivation (such as promoter
hypermethylation) leading to the loss of expression of one of the seven main MMR genes
also occur in up to 29% of cases [61]. The recognition of DNA lesions is accomplished
by the complex MUTSα, a heterodimer of the DNA mismatch repair proteins MSH2 and
MSH6. Another heterodimer complex, called MUTSβ (MSH2/MSH3), is able to bind only
to insertion/deletion mismatches. Lesion recognition is followed by the recruitment of
MutLα (MLH1/PMS2) or MutLβ (MLH1/MLH3), which have endonuclease activity that
can incise DNA near the mismatch. The nick is used by the 5′-exonuclease-1 (Exo1) as an
entry point to degrade DNA past the mismatch, the resulting single-stranded DNA gap is
filled in by the Pol δ and finally sealed with DNA ligase I [62,63].

One of the most important issues is that the clinical characteristics of the subgroup of
OC patients related to MMR genes alterations have not been identified yet. Nevertheless,
according to the majority of the findings, MMR deficiency is associated with sensitivity to
platinum-based drugs. For example, MSH2 can interact with ATR and recruit it to the sites
of DNA damage, further activating a series of apoptosis proteins and resulting in apoptosis
of the cells. Therefore, inactivation of this important MMR component plays a crucial
role in platinum resistance of ovarian cancer [64]. In line with these data, another study
suggested that the expression profile of hMSH2 could be a potential prognostic biomarker
in epithelial ovarian cancer [65]. In addition, studies in ovarian cancer have reported a
frequency of MLH1 promoter hypermethylation that ranges between 10% and 50%, with
the higher estimates reported in microsatellite instability high (MSI-H) tumors [66,67].

3.4. Non-Homologous End-Joining (NHEJ)

NHEJ is an important pathway in eukaryotic cells responsible for the repair of
DNA double-strand breaks (DSBs) throughout the cell cycle, including during S and
G2 phases [68]. It is essential to mention that in the absence of BRCA1, DNA double
strand breaks may be repaired by NHEJ pathway and 40% of OC patients display defective
NHEJ. NHEJ starts with the recognition of DNA ends by Ku70/80 and is followed by the
recruitment and activation of the DNA-dependent protein kinase (DNA-PKcs), and of DNA
end-processing enzymes such as Artemis and template-independent polymerases (poly-
merases λ and µ) that might be necessary for end ligation by the XLF-XRCC4-DNA ligase 4
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complex [68]. A critical protein required for NHEJ is the DNA ligase IV (LIGIV) accessory
factor, X-ray cross complementing 4 (XRCC4). XRCC4 is believed to stabilize LIGIV, partici-
pate in LIGIV activation, and help tether the broken DSB ends together (Table 1). Previous
studies have shown that overexpression of the XRCC4 gene was dramatically linked to
worse PFS and OS for patients with serous ovarian carcinoma, suggesting the prognostic
significance of XRCC4 in serous and endometrioid ovarian carcinomas patients [69].

3.5. Base Excision Repair (BER)

BER is a conserved DNA repair pathway that removes damaged DNA bases that
do not considerably distort the structure of the DNA helix. It is considered to play an
important role in the repair of small base lesions such as alkylations and oxidations [70].
BER consists of two sub-pathways, known as single-nucleotide or short-patch and long-
patch; the activation of one or the other is predicated by the cause and type of damage, the
type of abasic (AP; apurinic/apyrimidinic) site generated in the first repair step, and the cell
cycle phase in progress when the damage occurs. The short-patch pathway quickly repairs
single-base damage during the G1 phase of the cell cycle, while the long-patch pathway
handles lengthier repair during the S or G2 phases when resynthesis of 2–8 nucleotides
surrounding the AP-site is required. Among the enzymes that take part in BER, DNA
glycosylases and mono- or bi-functional, are the most important. They recognize and
hydrolyze the N-glycosylic bond between the damaged base and the sugar phosphate
backbone, creating an AP intermediate site.

Accumulated data have shown that BER plays an important role in mediating the
cytotoxicity of ICL-inducing agents (including platinum drugs) and modulates cisplatin
cytotoxicity via specific AP endonuclease 1 (APE1), uracil-DNA glycosylase (UNG), and
DNA polymerase β (Polβ) functions (Table 1). Indeed, a previous study has shown that the
inhibition of human major AP endonuclease 1 and APE1, combined with the knockdown
of UNG and Polβ, makes cancer cells more resistant to cisplatin [70]. Interestingly, the
authors showed that despite the presence of ICL, UNG excises neighboring uracil residues
to generate AP sites, which are then cleaved by APE1, followed by the Polβ-catalyzed
gap-filling DNA repair synthesis. This futile BER adjacent to cisplatin ICL sites initiated by
the DNA glycosylase-mediated excision generates persistent DNA strand breaks, which
would interfere with the productive repair of ICLs and increase cisplatin cytotoxicity [71].
Of note, previous reports have shown a correlation between the abnormal cytoplasmic
level of APE1 and platinum resistance.

Finally, a previous report has shown that the expression of the X-ray repair cross-
complementing gene 1 (XRCC1), a critical factor in BER and single strand break repair
pathway, has clinicopathological significance and predicts resistance to platinum therapy
in ovarian cancer patients [72].

Table 1. Critical factors implicated in the repair of cisplatin-induced DNA damage.

DNA Repair Pathway Symbol Description Reference

Homologous recombination repair
(HRR)

BRCA1 Breast cancer type 1 susceptibility protein Pietragalla et al. [6]

BRCA2 Breast cancer type 2 susceptibility protein Pietragalla et al. [6]

CDK12 Cyclin-dependent kinase 12 Joshi et al. [25]

EMSY BRCA2-interacting transcriptional repressor EMSY Hughes-Davies et al. [24]

PTEN Phosphatase and tensin homolog The Cancer Genome Atlas Research
Network [23]

RAD51C RAD51 homolog C Hurley et al. [26]
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Table 1. Cont.

DNA Repair Pathway Symbol Description Reference

Nucleotide excision repair (NER)

ERCC1 Excision repair cross-complementation, group 1 Chebouti et al. [58]

DDB2 Damage-specific DNA binding protein 2 Cui et al. [46]

XPA Xeroderma pigmentosum, complementation
group A Kang et al. [53]; Sancar et al. [54]

XPB/ERCC3 Xeroderma pigmentosum, complementation
group B Reed et al. [52]; Damia et al. [18]

XPC Xeroderma pigmentosum, complementation
group C Wang et al. [45]; Fleming et al. [44]

XPD/ERCC2 Xeroderma pigmentosum, complementation
group D Michalska et al. [49]; Kang et al. [50]

XPG/ERCC5 Xeroderma pigmentosum, complementation
group G Walsh et al. [59]

Mismatch repair (MMR)

MLH1 MutL homolog 1, colon cancer, nonpolyposis type 2 Gras et al. [66]; Kawashima et al. [67]

MLH3 MutL homolog 3 Zhao et al. [60]

MSH2 MutS homolog 2, colon cancer, nonpolyposis Type 1 Pabla et al. [64]

MSH3 MutS homolog 3 Zhao et al. [60]

MSH6 MutS homolog 6 Zhao et al. [60]

PMS1 PMS1 post meiotic segregation increased 1 Zhao et al. [60]

PMS2 PMS2 post meiotic segregation increased 2 Zhao et al. [60]

Non-homologous end-joining (NHEJ) XRCC4 X-ray repair cross complementing 4 Liu et al. [69]

Base excision repair (BER)

APE1 Apurinic/apyrimidinic endo deoxyribonuclease 1 Kothandapani et al. [70,71]

Polβ DNA polymerase beta subunit Kothandapani et al. [70,71]

UNG Uracil-DNA glycosylase Kothandapani et al. [70,71]

XRCC1 X-ray repair cross complementing 1 Abdel-Fatah et al. [72]

4. New Therapeutic Perspectives in Epithelial Ovarian Cancer
4.1. PARP Inhibition in Epithelial Ovarian Cancer

The clinical development of PARPi has significantly altered our approach to OC
care. Due to its cytotoxic effects via synthetic lethality, PARPi have been authorized for
the treatment of advanced OC in both relapsed and front-line scenarios [73,74]. The US
Food and Drug Administration (FDA) and the European Medicines Agency (EMA) have
authorized three PARP inhibitors for ovarian cancer: Olaparib, Rucaparib, and Niraparib.
All three PARP inhibitors have shown substantial improvements in objective response rate
and progression-free survival (PFS) in patients with relapsed platinum-sensitive ovarian
cancer and are approved for this setting [75–77].

The PARP enzymes are involved in a variety of cellular processes that govern energy
consumption as well as gene transcription, cell death, and epigenetic alterations [78]. PARP
and BRAC1/2, both of which are essential in DNA double-strand break repair [79], are
linked by a synthetic lethal connection. Permanent single-strand DNA breaks (SSBs), which
are normally repaired by active base-excision repair pathways, become more common
as a result of PARP inhibition, resulting in a buildup of double strand breaks. [73,80,81].
Despite PARPi sharing common mechanisms of action with platinum salts, PARP trapping
could signify therapeutic implications for these agents also for patients’ resistance to
platinum [82].

Indeed, PARPi have shown efficacy as monotherapy in individuals with platinum-
resistant advanced OC, who also have BRCAm. Olaparib had excellent outcomes in
platinumresistant EOC in a phase II study involving patients with BRCA mutations and ad-
vanced cancer; ORR was 26.2% and stable disease (SD) was reached in 40% of patients [77].
Additionally, it was demonstrated in a pooled analysis of phase I/II studies with Olaparib
monotherapy in advanced BRCA mutant cancer that patients with extensively pretreated
OC, who were naive to PARPi, had rather persistent responses (RR 31%, median duration
of response 7.8 months) [78]. Rucaparib was also licensed by the FDA as monotherapy for
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BRCA mutant platinum-resistant illness, based on encouraging results from a pooled anal-
ysis of phase II studies that demonstrated a 25% response rate [69]. Additionally, Niraparib
was examined as monotherapy in recurrent OC in the fourth or subsequent line of treatment
in the phase III QUADRA study. ORR was 33% in patients with platinum-resistant disease
and 19% in patients with platinum-refractory disease (defined as progression within one
month after the last dose of platinum) in the BRCA mutant group, with a median duration
of response of 9.2 months [79]. Thus, the FDA authorized Niraparib as monotherapy in
platinum-resistant and platinum-refractory illness in October 2019.

Resistance to PARPi is a typical occurrence in advanced OC following a period of
effective therapy. Three general mechanisms can result in acquired resistance to PARPi:
restoration of HRR as a result of the recovery of BRCA1/2 function or the reversal of DNA
end-protection; restoration of replication fork stability; drug target-related effects, such as
the upregulation of drug efflux pumps, mainly of the transporter ABCB1, also known as
P-glycoprotein, or mutations in PARP and functionally related proteins [83]. BRCA1 or
BRCA2 secondary “revertant” mutations, which restore the genes’ open reading frames
and adequate HRR function, have been completely confirmed as a resistance mechanism
to PARPi, which also results in resistance to platinum-based treatment [84,85]. This has
been clearly shown in the SOLO-2 trial [86]. An exploratory analysis of the study eval-
uated efficacy of post progression chemotherapy [87]. Patients in the Olaparib arm had
significantly decreased mPFS with the subsequent chemotherapy, and this difference was
most pronounced among patients receiving platinum-base therapy. Therefore, further
development of agents that will overcome resistance to PARPi is an unmet medical need
and a field of extensive research.

4.2. CHK1/2, ATR Inhibitors

Deficiency in DNA repair mechanisms as well as administration of DNA damaging
agents, including platinum agents and PARP inhibitors, induce replication stress. In
response to replication stress, the DDR pathway is activated, mediated by apical (ATM and
ATR) and downstream (CHK1 and CHK2) serine threonine protein kinases, halting cell
cycle progression, and initiating DNA repair mechanisms [88]. Thus, targeting DDR kinases
has a strong scientific rationale in ovarian carcinomas and could exert synergistic activity
with PARP inhibitors. Indeed, the dual CHK1/2 inhibitor prexasertib has shown activity in
preclinical models as monotherapy or in combination with Olaparib [89]. In patients with
recurrent ovarian cancer, prexasertib also demonstrated a 33% overall response rate [90],
and the drug is further evaluated in a BRCA mutant population [91].

ATR inhibition also impairs cell cycle progression and selective ATR inhibitors, includ-
ing ceralasertib (AZD6738) and berzosertib (M6620/VX-970/VE-822), have shown anti-
tumor activity both as single agents or in combination with DNA-damaging chemotherapy,
irradiation, and PARP inhibitors [92]. In a phase II trial enrolling patients with platinum
resistant ovarian cancer, berzosertib in addition to gemcitabine prolonged mPFS in compar-
ison to gemcitabine alone [93]. Of interest, the benefit was limited to patients that did not
harbor genomic replication stress alterations [94]. Currently, several studies with selective
ATR inhibitors are ongoing testing combinations with chemotherapy or PARP inhibitors in
recurrent ovarian cancer patients [95,96].

4.3. Wee1 Inhibitors

WEE1 mediates G2/M transition and induces cell cycle arrest upon DNA damage
to allow for DNA repair. Cancer cells selectively rely on G2 arrest to avoid mitotic catas-
trophe [97]. Under this perspective, WEE1 inhibition has been investigated in several
neoplasms in phase I trials [98] showing efficacy in ovarian and endometrial carcinomas. In
a recently presented phase II clinical trial (NCT03579316), the WEE1 inhibitor adavosertib
showed promising clinical activity both as monotherapy and in combination with Ola-
parib, in patients with recurrent ovarian cancer irrespective of BRCA mutational status.
Adavosertib has also been tested in combination with chemotherapy in platinum resistant
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settings with significant efficacy. The most promising combination was with carboplatin
showing disease control in all treated patients, but the combination needs further optimiza-
tion due to increased hematological toxicity [99]. Finally, in a phase II randomized trial,
adavosertib combined with gemcitabine provided significant benefit in mPFS in compari-
son to gemcitabine alone in patients with platinum resistant recurrence of the disease [100],
warranting further investigation in a larger confirmatory trial.

4.4. Immunotherapy

The role of immunotherapy is currently under investigation in advanced ovarian
cancer. Based on molecular profile analysis, only a small percentage of ovarian carcino-
mas have increased tumor mutational burden (TMB) or T cell–inflamed gene expression
profile (GEP) favoring response to immunotherapy [101]. Indeed, phase III clinical trials
conducted so far with the addition of anti-PD1/anti-PD-L1 antibodies to standard treat-
ment in either frontline setting or recurrent disease were negative [102,103]. Introduction
of PARPi in the therapeutic algorithm of ovarian cancer has provided the rational for
combinations with immune-checkpoint inhibitors since PARPi has been shown to activate
the STING pathway [104]. Early phase clinical trials have provided clinical evidence of
activity [105,106], and the results of three phase III randomized clinical trials evaluating the
efficacy of PARPi-immunotherapy combinations as maintenance treatment after platinum
doublet chemotherapy in the frontline setting of the disease are eagerly anticipated.

In addition, microsatellite instability has been recognized in approximately 3% of
ovarian cancer patients [101]. Whole exome sequencing analysis has revealed an increased
number of mutations in MSI-high patients related to exceptional clinical responses to
immunotherapeutic agents [107]. Specifically, in recurrent ovarian cancer patients, the
anti-PD-1 agent pembrolizumab has demonstrated 33% overall response rate in a phase
II basket trial [108]. Despite there being no conclusive evidence regarding the role of
mismatch repair genes status in acquired resistance to platinum agents, there are reports
in the literature indicating that the expression of MSH2 and MLH1 may be altered due to
platinum-based chemotherapy [109]. The latter deserves further investigation to examine
potential activity of immunotherapeutic agent combinations in ovarian cancer patients
previously treated with platinum.

5. Discussion

For the last thirty years, the combination of carboplatin and paclitaxel has been the
standard of care for OC patients. Although more than 80% of these patients will initially
have a response to therapy, the majority will ultimately experience disease recurrence and
eventually develop chemotherapy-resistant disease. Most relapses will not be curable as
treatment efficacy decreases with time. Quality of their life is severely impaired due to
various manifestations of the disease, more commonly bowel obstruction, ascites, and
pleural effusion. Therefore, new treatment strategies are of great need for these patients.
Among these, immunotherapy has attracted significant interest due to recent improvements
in the understanding of the molecular basis of immune recognition and immune regulation
of cancer cells [110]. However, despite the high proportion of HRD ovarian cancers with
suspected high tumor mutational burden (TMB), increased infiltration by CD8+ tumor-
infiltrating lymphocytes (TILs), and high expression of tumor antigens capable of eliciting
spontaneous anti-tumor responses, initial attempts using immunotherapy in ovarian cancer
were largely disappointing [111].

Interestingly, due to the fundamental dependence of cancer cells upon DDR path-
ways, DNA repair-targeted agents such as platinum drugs represent an exciting group
of emerging therapeutics. Thus, a better understanding of DDR alterations might have
potential implications in OC treatment. Extensive research has been carried out on the
relationship between DDR changes and response to platinum-based drugs, but results are
contradictory. Methodological differences may account up to a point for these discrepancies.
The complexity of molecular mechanisms underlying resistance to chemotherapy and the
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polyclonality of OC represent significant gaps in our knowledge. For example, although
metastatic ovarian tumors mimic the primary ovarian neoplasm morphologically and
clinically, protein analysis in biopsy of primary tumors has been shown to be different from
that of metastases.

On the other hand, the success of PARP inhibitors in HR-deficient ovarian cancer
highlights the potential of DDR modifiers. An increasing number of studies on DNA
repair pathways including DNA repair gene expression profiling, mutation status of DNA
repair genes, expression levels of DNA repair proteins, and DNA repair capacity have been
demonstrated to have a predictive value for the response to therapies in different types of
cancer. These data suggest that the assessment of the activity of DNA repair pathways in
tumor cells may identify new therapeutic targets and novel biological markers that may
influence clinical decision making. Several DDR inhibitors, including those targeting ATM,
ATR, DNA-PK, Chk1, and Wee1 have already entered into clinical trials [112]. Predictive
biomarkers, which have been extensively validated preclinically, can be utilized in DDR
inhibitor clinical trial design to define the most suitable patient population. Furthermore,
to ensure that clinical studies generate useful mechanistic observations, clinical trials of
DDR inhibitors should incorporate pharmacodynamic biomarkers that can molecularly
investigate whether a drug hits the desired target.

6. Conclusions

Taken together, the results reviewed herein suggest that deregulated DDR network
plays a crucial role in the cisplatin resistance in ovarian cancer. Thus, unravelling these
molecular pathways can be exploited to discover new treatment opportunities in the field.
However, taking into account the complexity of the DDR, we need to fully understand
the interplay between molecular factors that promote either death or survival of ovarian
cancer cells. This new knowledge is essential to design future strategies to circumvent the
complex mechanisms of cisplatin resistance more effectively and to translate them into
improved clinical responses.
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