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Abstract: In this work, the privileged scaffold of 4-hydroxy-2quinolinone is investigated through the
synthesis of carboxamides and hybrid derivatives, as well as through their bioactivity evaluation,
focusing on the ability of the molecules to inhibit the soybean LOX, as an indication of their anti-
inflammatory activity. Twenty-one quinolinone carboxamides, seven novel hybrid compounds
consisting of the quinolinone moiety and selected cinnamic or benzoic acid derivatives, as well as
three reverse amides are synthesized and classified as multi-target agents according to their LOX
inhibitory and antioxidant activity. Among all the synthesized analogues, quinolinone–carboxamide
compounds 3h and 3s, which are introduced for the first time in the literature, exhibited the best
LOX inhibitory activity (IC50 = 10 µM). Furthermore, carboxamide 3g and quinolinone hybrid with
acetylated ferulic acid 11e emerged as multi-target agents, revealing combined antioxidant and LOX
inhibitory activity (3g: IC50 = 27.5 µM for LOX inhibition, 100% inhibition of lipid peroxidation, 67.7%
ability to scavenge hydroxyl radicals and 72.4% in the ABTS radical cation decolorization assay; 11e:
IC50 = 52 µM for LOX inhibition and 97% inhibition of lipid peroxidation). The in silico docking
results revealed that the synthetic carboxamide analogues 3h and 3s and NDGA (the reference
compound) bind at the same alternative binding site in a similar binding mode.

Keywords: 4-hydroxy-2-quinolinone; carboxamides; antioxidant activity; lipoxygenase inhibition;
structure–activity relationships; molecular docking

1. Introduction

Nitrogen heterocycles are the main structural unit of a wide variety of natural prod-
ucts, such as DNA and RNA bases, alkaloids, etc., as well as synthetic molecules with
potential pharmaceutical, cosmetic, and agrochemical applications. Among the heterocyclic
compounds, quinolines and quinolones consist of privileged scaffolds for the development
of new drugs. These nitrogen-containing heterocyclic aromatic analogues are present in
numerous natural and biologically active compounds. Quinoline and quinolone derivatives
possess diverse biological activities and pharmacological properties such as antioxidant,
anti-inflammatory, antimalarial, anti-bacterial, antifungal, anti-tubercular, antiviral, an-
thelmintic, anticonvulsant, and analgesic activity [1–5].

The quinolinone scaffold is one of the most attractive privileged structures for drug
discovery research, exhibiting a wide variety of biological activities, such as antibacterial,
anti-inflammatory, anticancer, and neuroprotective [6–13]. In particular, compounds pos-
sessing 4-hydroxy-2-quinolinone structural features (Figure 1) have gained interest as an
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important class of heterocyclic molecules with well-known reported activity [14–16], while
several synthetic strategies have been developed [17–20].
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Figure 1. 3-Substituted 4-hydroxy-2-quinolinones.

Driven by the trend of developing new pharmaceutical molecules with improved and
multiple properties, research often focuses on combining quinoline, quinolone, or quino-
linone structural moieties with amides to form carboxamides. Heterocyclic compounds
bearing a substitution on the N-1 position, particularly N-substituted carboxamides, have
been extensively examined over the years [21–23]. The quinoline-3-carboxamides and
their analogues have not only shown significant biological activities (such as antimalar-
ial [24] and antibacterial [25] activity, etc.), but they also could be used in the treatment
of auto-immune diseases such as multiple sclerosis, rheumatoid arthritis, systemic lupus
erythematosus, and lupus nephritis [26–28].

Linomide (Figure 2) is a characteristic quinolinone carboxamide, which has been
proven to inhibit the process of angiogenesis, being effective against various types of cancers
and autoimmune disorders, such as multiple sclerosis, rheumatoid arthritis, systemic lupus
erythematosus, and autoimmune encephalomyelitis [29,30]. Rebamipide (Figure 2), a
quinolinone amide derivative, is a gastro-protective agent prescribed for the treatment of
gastric ulcers and gastritis. Furthermore, it presents antioxidant activity protecting the
gastric mucosa against oxygen-derived free radicals [31,32]. Tasquinimod (Figure 2) is a
second-generation quinolinone-3-carboxamide; it has been evaluated as 30–60 times more
potent anti-tumor agent than linomide, and it has shown antiangiogenic, antitumor, and
immune-modulatory properties in preclinical models of prostate cancer and other solid
tumors [33,34].
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The scientific community’s interest in the aforementioned carboxamide derivatives
is not limited and seems to be growing steadily over the years since there is a plethora of
information available in the recent literature.

In 2016, Claudia Mugnaini and her research team worked on the design, synthesis, and
pharmacological evaluation of 4-quinolone-3-carboxamides and 4-hydroxy-2-quinolone-
3-carboxamides as high-affinity cannabinoid receptor 2 (CB2R) ligands. The synthesized
derivatives revealed potent activity leading to a novel class of ligands; however, their
physicochemical profile should be further examined [35]. In same year, Seung-Hwa Kwak
and his group reported a detailed structure–activity relationship analysis of a series of
novel quinolinone–carboxamide derivatives and their immunosuppressive effects on IL-
2 released from activated T cells. After the optimization of the procedure, the results
showed that the synthesized analogues could be used as lead compounds in the design
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and development of new immunosuppressant agents for treating T cell-mediated immune
disorders, while one of them showed significant potency (q1; Figure 3) [36].
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In 2020, Srigouri Huddara and his team introduced 4-hydroxy-2-oxo-1,2-dihydroquinolines
as potential inhibitors of Streptococcus pneumoniae. In vivo experiments showed accept-
able pharmacokinetic profiles for some of the compounds, while the most active one
revealed high plasma protein binding. Furthermore, their results revealed three of the
compounds as potent to overcome antibiotic resistance (q2–q4; Figure 3) [37]. In the same
year and following the same need for novel antibiotics, Wenjie Xue and his team presented
the design, synthesis, biological evaluation, and target identification of N-thiadiazole-4-
hydroxy-2-quinolone-3-carboxamides as potential antibacterial agents against S. aureus.
In vitro and in vivo bioassays demonstrated one of the compounds as the most potent
agent (q5; Figure 3) [38].

More recently, in 2022, the research team of Sweidan and Sabbah reported the de-
sign, synthesis, and biological evaluation of a series of N-phenyl-6-chloro-4-hydroxy-
2-quinolone-3-carboxamides and 4,6-dihydroxy-2-quinolone-3-carboxamides. New ana-
logues were examined as anticancer agents and, more specifically, as inhibitors of the
phosphatidylinositol3-kinase (PI3Kα), which has emerged as a significant target for the
design and development of anticancer drugs. Results demonstrated that two N-phenyl-6-
chloro carboxamide analogues (q6, q7; Figure 3) exerted significant toxicity against human
epithelial colorectal adenocarcinoma (Caco-2) and human colon cancer (HCT-116) cell
lines. Furthermore, two 4,6-dihydroxy-2-quinolone-3-carboxamide derivatives (q8, q9;
Figure 3) exhibited the most potent cytotoxic effect on breast cancer (MCF-7) and colon
cancer (HCT-116) cell lines [39,40].

Compounds with multi-target activity have gained researchers’ interest in medicinal
chemistry and drug design, bringing on a new era of multi-factorial disease treatment. In
particular, the heterocyclic quinoline moiety has been extensively investigated in terms
of its ability to offer a multi-target profile in the final drug. A.S. Reis and her team re-
ported for the first time the multi-target activity of 4-phenylselenyl-7-chloroquinoline (q10;
Figure 4) against anxiety pathology [41]. In 2021, E.M.O.A. Ismail and coworkers pub-
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lished an in silico multi-target approach of several quinoline and quinazoline alkaloids
as inhibitors of COVID-19 [42]. Furthermore, in 2020, Mamdouh F.A. Mohamed and his
research group published a review study reporting several quinoline–chalcone hybrids
(q11–q13; Figure 4) as potential multi-target anticancer agents [43]. However, the majority
of the references in the literature present quinoline derivatives or hybrids as multi-target
compounds for neurodegeneration, particularly against key targets in Alzheimer’s disease
(q14–q16; Figure 4) [44–48].
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Since chronic inflammation and oxidative stress are two commonly associated con-
ditions involved in the pathophysiology of cancer, diabetes, cardiovascular pulmonary
diseases, and others, the development of novel drugs behaving as multi-target compounds
could offer better treatment [49–52].

Lipoxygenases (LOXs) are a heterogeneous family of structurally related non-heme
iron-containing enzymes that catalyze the oxidation of polyunsaturated fatty acids (PUFA)
(such as linoleic or arachidonic acid) to produce hydroperoxides. They are widely spread
in plants, fungi, and animals, while they are classified into several types of LOXs according
to their selectivity to oxygenate fatty acids in a specific position [53,54]. 5-Lipoxygenase
(5-LOX) is directly related to human diseases, and its mechanism of expression has been
extensively studied. 5-LOX catalyzes two steps in the biosynthesis of leukotrienes (LTs), a
group of bioactive lipid mediators of inflammation derived from arachidonic acid. LTs are
involved in many inflammatory and allergic disorders, while novel studies of molecular
and cellular biology showed the implication of 5-lipoxygenase in diseases like cancer,
osteoporosis, and heart attack [55–57].

Oxidative stress caused by the excessive production of reactive oxygen species (ROSs)
highly contributes to the pathophysiology of various diseases. ROSs, like superoxide
radical anion, hydrogen peroxide, and hydroxyl radical, are produced during the inflam-
mation process by phagocytic leukocytes (e.g., neutrophils, monocytes, macrophages, and
eosinophils) that invade the tissue. Since the rate of ROS production is increased in most
pathophysiological conditions, developing novel drugs that combine anti-inflammatory
and antioxidant activity could be beneficial for treating several diseases [58–61].
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Our research group has been previously involved with synthesizing several N-substituted-
4-hydroxy-2-quinolinones and quinolinone–carboxamides to investigate their potential
dual-acting role as antioxidant and anti-inflammatory agents. Derivatives with an appeal-
ing pharmacological profile have been identified from this research [62–66].

In this project, the design, synthesis, and bioactivity evaluation of three classes of
different compounds, which share the structural framework of 4-hydroxy-2-quinolinone
as a common feature, are presented. More specifically, herein we report the synthesis
of twenty-two quinolinone-3-carboxamides (3a–3u, 7), from which, to our knowledge,
derivatives 3a–3e, 3g–3k, 3n–3s, 3u, and 7 are introduced for the first time in the literature;
seven novel quinolinone–carboxamide and cinnamic or benzoic acid hybrids (11a–11g);
and three reverse amides (16a–16c), from which 16b and 16c analogues are new.

2. Results and Discussion
2.1. Chemistry

In the first series of the synthesized compounds, quinolinone–carboxamides 3a–3u
were prepared following the synthetic strategy depicted in Scheme 1. More specifically, the
synthesis of the N-substituted-3-carboxymethyl quinolinone intermediates 2a and 2b was
accomplished using the corresponding commercially available anthranilic acids (1a and
1b) as the starting materials, following our previously reported two-step methodology [26].
In this concept, the carboxylic acid group of compounds 1a and 1b was transformed into
the non-isolated active benzotriazolyl ester using N-hydroxybenzotriazole (HOBt) and
dicyclohexylcarbodiimide (DCC), which was then reacted with dimethymalonate sodium
salt through a C-acylation reaction. The afforded enolate intermediates were then cyclized
to obtain the preferred 3-ethoxycarbonyl-4-hydroxyquinolin-2-ones 2a and 2b. The final
amide formation was furnished by heating the corresponding quinolinone esters with an
equimolar amount of the appropriate amine or aniline, using toluene as solvent.

The second series of compounds consists of hybrid molecules (11a–11g), which
combine the framework of 4-hydroxy-2-quinolinone with selected substituted benzoic
or cinnamic acid motifs connected through a di-amide linker (Scheme 2). More specifi-
cally, the key intermediate nitrogen heterocycle, N-ethyl-3-methoxycarbonyl-4-hydroxy-
2-quinolinone (6) was synthesized through a two-step procedure starting from isatoic
anhydride 4, which was alkylated using ethyl iodide in the presence of sodium hydride
in dimethylformamide (DMF), to yield compound 5. Quinolinone derivative 6 was then
synthesized through a C-acylation reaction of dimethyl malonate, using N-ethyl isatoic an-
hydride 5 as an acylating agent in sodium hydride, resulting in a 35% yield. The reaction of
quinolinone 6 with ethylenediamine formed the amino carboxamide 7. The desired hybrids
(11a–11g) were synthesized via amidation reaction of the carboxamide 7 with either various
acetyloxy benzoic acid chlorides (10a–10c) or acetyloxy- or methoxy substituted cinnamic
acid chlorides (10e–10h), using triethylamine (Et3N) as the base in tetrahydrofuran (THF) at
50 ◦C. These final hybrid diamides were isolated in moderate to high yields (56% to 90%).

Furthermore, three quinolinone-reverse amides (16a–16c) were synthesized (Scheme 3).
More specifically, the commercially available starting material, 4-hydroxy-1-methyl-quinolin-
2(1H)-one (12), was transformed to its 3-nitro analogue 13 through a nitration reaction, using
70% HNO3 and NaNO2 in CH3COOH under heating at 90 ◦C. Reduction of the nitro group
was carried out in an alkaline environment of aqueous solution NaOH 1M using sodium
dithionite as the reducing agent, and after acidification, the hydrochloric salt of 3-amino-
4-hydroxy-2-quinolinone (14) was obtained. The desired reverse carboxamides (16a–16c)
were obtained through an acylation reaction between quinolinone 14 and the corresponding
acid chloride 15a–15c in moderate yields of 30–46%. Butyryl chloride (15a) and 4-methyl-
benzoyl chloride (15b) were commercially available, while 2-hydroxy-benzoyl chloride
(10d) was synthesized according to the protocol described in the Experimental Section.
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Reagents and conditions: (i) HOBt, DCC, THF, 0 ◦C, (ii) NaH, dimethymalonate, and THF, r.t. [26].

The structural characterization of the synthesized compounds was confirmed by
analytical means such as 1H and 13C-NMR and mass spectrometry (MS).

The 1H-NMR spectra of all the synthesized carboxamides 3a–3u and 7, as well as the
ones of the hybrids 11a–11g, are characterized by a signal at a very low field, between 16
and 17 ppm. This signal is attributed to the proton of the 4-OH group of the quinolinone
moiety, which is deshielded as a result of taking part in a strong intramolecular hydrogen
bond with the neighboring carbonyl group of the amide bond. The signal of the 4-OH group
in the 1H NMR spectra of the synthesized reverse amides 16a–16c appears between 12 and
13 ppm, owing to the fact that the intramolecular hydrogen bond with the carbonyl group
is weaker as the carbonyl group is located further than in the case of the carboxamides
3a–3u and 7.
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2.2. Bioactivity Assays

In this work, the carboxamides 3a–3u, the quinolinone–cinnamic or benzoic acid hy-
brids 11a–11g and the reverse amides 16a–16c were tested for their antioxidant activity
via five in vitro techniques; (i) the interaction with the stable free radical 2,2-diphenyl-1-
picrylhydrazyl (DPPH); (ii) the inhibition of lipid peroxidation; (iii) the hydroxyl radical
scavenging ability; (iv) the 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS)
radical cation (ABTS·+) reduction; and (v) the superoxide anion radical scavenging abil-
ity [61,67–70].

Furthermore, all the synthesized compounds were examined as inhibitors of soy-
bean lipoxygenase (LOX), which is a plant enzyme with satisfactory homology to the
human 5-LOX, and the results can be qualitatively considered as an indication of their
anti-inflammatory activity. For this study, the UV absorbance-based soybean LOX assay
was used [67–69,71–73].

2.2.1. DPPH Assay

The results of the DPPH scavenging ability of all the synthesized compounds are pre-
sented in Table 1, while nordihydroguaiaretic acid (NDGA) is used as the reference compound.

Table 1. In vitro antioxidant evaluation of all the synthesized compounds via the DPPH scavenging
ability and the inhibition of linoleic acid assays.

Compound
Interaction with the Free Radical DPPH (%)

Inhibition of Lipid
Peroxidation of
Linoleic Acid

Induced by AAPH
Radical (%) 100 µM

100 µM
20 min

100 µM
60 min

3a 2.4 12.4 100

3b 2.7 11.8 100

3c 3.3 10.7 100

3d 15.9 20.8 32.8

3e 6.6 12.2 no

3f 39.3 48.6 100

3g 40.7 51.7 100

3h 6.0 8.1 31

3i 5.2 3.7 36

3j 32.5 46.5 32.8

3k 1.4 11.8 41.4

3l 2.6 2.6 no

3m 3.1 1.2 11.3

3n 13.9 19.2 100

3o 20.8 8.0 100

3p 19.5 6.6 100

3q 23.8 10.0 100

3r 12.1 1.2 17.1

3s 21.2 8.1 28.9

3t 19.7 9.5 100

3u 19.3 8.3 16.4
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Table 1. Cont.

Compound
Interaction with the Free Radical DPPH (%)

Inhibition of Lipid
Peroxidation of
Linoleic Acid

Induced by AAPH
Radical (%) 100 µM

100 µM
20 min

100 µM
60 min

11a 1.0 4.4 89.0

11b 3.0 no 93.8

11c 2.0 2.0 91.0

11d 3.0 2.0 94.0

11e 3.0 5.0 97.0

11f 2.0 4.0 93.0

11g no 2.0 97.0

16a 24.0 31.0 83.0

16b 27.0 32.0 88.0

16c 25.0 28.0 88.0

NDGA 83.0 94.0

Trolox 88.0
no: no action under the experimental conditions.

The majority of the tested carboxamides 3a–3u showed a weak activity, while this
result was not time-dependent (from 20 to 60 min reaction). Compounds 3f and 3g, which
possess a p-phenolic group at position 3 of the heterocyclic ring, exhibited the best activity
in this assay (48.6% and 51.7%, respectively, in a 60 min interaction), confirming the above
statement. Changing the position of the hydroxyl group from the p- to the o-position of the
aromatic ring led to the derivative 3j with analogous activity (46.5% in a 60 min interaction
with the radical). Replacement of the hydroxyl group with a methyl (analogues 3k, 3l, and
3r) or a fluoro (analogues 3m and 3s) substituent led to inactive compounds, regardless of
the substituent on the heterocyclic nitrogen.

The evaluation of the antioxidant activity of the quinolinone hybrid analogues 11a–11g
via the DPPH in vitro technique showed that they do not possess any activity (0–5.0%).
Furthermore, the synthesized compounds 16a–16c also showed weak activity in this assay,
while it seems that the reverse amide bond does not enhance the antioxidant activity of
the molecules. This can be verified in the case of analogues 3j and 16c: the carboxamide 3j
showed 46.5% DPPH radical inhibitory activity, whereas the reverse amide 16c showed
lower activity (28.0%).

Overall, the results of the DPPH method revealed that the antioxidant activity of the
tested compounds is not depended on the substituent, which is attached to the nitrogen
of the quinolinone moiety, while it is mostly related to the presence or not, of phenolic
hydroxyl groups, which can react directly with the free radical. Although all the tested
compounds possess a hydroxyl group at position 4 of the heterocyclic moiety, this OH
cannot effectively interact with the DPPH radical as it is involved in a strong hydrogen bond
with the adjacent carbonyl oxygen. This observation is in accordance with our previous
studies on analogous structures [64,65].

2.2.2. Lipid Peroxidation of Linoleic Acid Induced by AAPH Radical

As far as the ability of the tested compounds to inhibit lipid peroxidation of linoleic
acid induced by a thermal free radical producer (AAPH) is concerned, the majority of the
analogues were found to be potent inhibitors showing activity equal to or even higher than
the reference compound Trolox (Table 1).

Among all the synthesized carboxamides (3a–3u), derivatives 3a–3c, 3f, 3g, 3n–3q,
and 3t showed the best activity, with a 100% inhibition value. More specifically, N-methyl
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and N-phenyl analogues 3a and 3b, which possess a propyl substituent attached to the
amide group, exhibited the best activity. The elongation of the aliphatic chain of the amide
to seven carbon atoms, in the case of 3a analogue, led to the inactive 3e derivative.

Carboxamide 3c, possessing an N-methyl substituent at the quinolinone framework
and a hydroxyethyl group attached to the amide bond, is one of the most potent inhibitors
(100% inhibition). Replacement of the N-methyl substituent with an N-phenyl one (carbox-
amide 3d) resulted in a weak antioxidant agent (32.8%).

N-methyl and N-phenyl carboxamides 3f and 3g, which are derived by 4-amino-
phenol, exhibited 100% inhibition. The shift of the hydroxyl group to the o-position of
the aromatic ring converted the potent 3f agent to a weak inhibitor (analogue 3j, 32.8%
inhibition). Furthermore, the replacement of the hydroxyl group with a methyl (analogues
3l and 3r) or a fluoro (analogues 3m and 3s) substituent led to inactive or very weak
antioxidant compounds (0% to 28.9% inhibition).

Overall, it seems that the antioxidant activity via the AAPH in vitro assay is equally
affected by the group attached to the amide bond and the N-substituent. However, the
presence of a p-phenolic group at the amide part always results in a potent inhibitor,
regardless of the substituent attached to the heterocyclic nitrogen (carboxamides 3f, 3g, 3n,
and 3o).

As far as the hybrid compounds that share the structural features of quinolinone and
cinnamic or benzoic acid derivatives are concerned, results revealed that all the synthesized
and tested analogues (11a–11g) were strong inhibitors of the lipid peroxidation of linoleic
acid, exhibiting higher activity than the reference compound Trolox (88.0%). However,
it seems that the cinnamic acid derivatives 11d and 11g showed a slightly better activity
(94.0% and 97.0%, respectively) than their benzoic acid analogues 11a and 11c (89.0% and
91.0%, respectively).

The evaluation of the antioxidant activity of the reverse amides 16a–16c via this method
led to satisfactory activity (83.0% inhibition of lipid peroxidation for the 16a analogue and
88.0% for the 16b and 16c analogues). Furthermore, in the case of 3j and 16c analogues, it
seems that the insertion of the reverse amide moiety enhanced the inhibitory activity from
32.8% (carboxamide 3j) to 88.0% (reverse amide 16c).

2.2.3. Competition with DMSO for Hydroxyl Radicals

The results of the antioxidant activity of carboxamide derivatives 3a–3u in terms of
their ability to scavenge hydroxyl radicals are presented in Table 2.

Caboxamides 3a–3u were selected to be tested for the competition with DMSO for
hydroxyl radicals assay (Table 2). Analogue 3j, possessing an N-methyl substituent and
an o-phenolic group at position 3 of the heterocyclic ring, showed the best activity (100%).
Changing the position of the hydroxyl group from the o- to the p- position of the aromatic
ring leads to compounds with lower interaction with the OH radical, regardless of the
substituent on the heterocyclic nitrogen atom (analogues 3f and 3g, 67.7%). The presence
of the hydroxyl group is crucial for the activity, as proven by replacing the hydroxyl
group of carboxamide 3j with a methyl one (carboxamide 3k), which resulted in a totally
inactive compound.

Furthermore, carboxamides 3m and 3s, which are both derived from the p-fluoro-
aniline, exhibited significant antioxidant activity (94.0% and 100%, respectively). Replace-
ment of the fluoro substituent by a hydroxyl group led to compounds 3f and 3g, which
showed a moderate activity (67.7%), while replacement by a methyl substituent led to
carboxamides 3l and 3r with lower activity (53.7% and 50.7%, respectively). Finally, a
pyridine group attached to the amide bond resulted in inactive (compound 3t) or weakly
active (compound 3u) antioxidants.

Overall, it seems that the ability of the tested carboxamide derivatives to scavenge
hydroxyl radicals was mostly related to the amide substitution, while it was less affected by
the N-substituent of the quinolinone moiety. The only case in which this observation was
not verified refers to the 3p and 3q analogues, which carry the same amide part; however,
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they presented an extremely opposite activity. The N-phenyl derivative 3p exhibited
potent activity (98.0%), while the corresponding N-methyl analogue 3q showed very weak
interaction with the hydroxyl radical (16.9%).

Table 2. Antioxidant activity of carboxamide derivatives via their ability to scavenge hydroxyl
radicals and the ABTS radical cation decolorization assay.

Compound OH%
0.1 mM

ABTS%
0.1 mM

PMS%
0.1 mM

3a 39.3 33.8 23.1

3b 40.8 35.5 84.6

3c 39.8 25.6 76.9

3d no no 66.6

3e 86.1 2.6 66.6

3f 67.7 77.3 no

3g 67.7 72.4 no

3h 78.6 no no

3i 78.1 no no

3j 100 49.7 no

3k no 54.5 61.5

3l 53.7 no no

3m 94.0 12.4 no

3n 14.9 no no

3o 44.3 20.6 no

3p 16.9 no no

3q 98.0 no no

3r 50.7 no no

3s 100 no no

3t no no no

3u 10.3 no no

Trolox 82.0 93.0

Caffeic acid 23
no: no action under the experimental conditions.

2.2.4. ABTS Radical Cation Decolorization Assay

In the ABTS radical cation (ABTS+) decolorization assay, carboxamide derivatives
3a–3u were examined, and the results are presented in Table 2. Compounds 3f and 3g,
which are both derived from 4-amino-phenol, showed the best activity with 77.3% and
72.4% values, respectively. Replacement of the aromatic ring by an aliphatic chain of two
carbons led to the corresponding N-methyl and N-phenyl derivatives 3c and 3d, which are
inactive (25.6% and had no activity, respectively).

2.2.5. Superoxide Anion Radical Scavenging Ability

All the synthesized carboxamides 3a–3u were examined in terms of their ability to
scavenge superoxide anion radicals, and the results are presented in Table 2. N-phenyl car-
boxamide derivative 3b, which possesses an aliphatic chain of three carbons attached to the
amide bond, revealed the best antioxidant activity (84.6%), whereas its N-methyl derivative
3a exhibited very weak activity (23.1%). The insertion of a longer aliphatic chain as a sub-
stituent in the case of the N-methyl derivative 3f resulted in an enhanced scavenging ability
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(66.6%). Carboxamides 3c and 3d, which both possess a hydroxyethyl group, exhibited
very satisfactory activity (76.9% and 66.6%, respectively) (Supplementary Materials).

2.2.6. Soybean LOX Inhibitory Activity

Results obtained from the evaluation of the LOX inhibitory activity of the synthesized
and tested compounds are presented in Table 3.

Table 3. In vitro determination of soybean LOX inhibition activity.

Compound
Inhibition of Soybean

Lipoxygenase

% at 0.1 mM IC50 (µM) *

3a 60.0

3b 45.0

3c 52.0

3d no

3e no

3f 49.0

3g 27.5

3h 10.0

3i no

3j 100.0

3k 315.0

3l 45.0

3m 15.0

3n 85.0

3o no

3p no

3q 24.0

3r 37.4

3s 10.0

3t no

3u no

11a 61.0

11b 70.0

11c 57.5

11d 5.0

11e 52.5

11f 70.0

11g 85.5

16a 81.0

16b 100.0

16c 82.5

NDGA 0.45
*: IC50 was calculated for the compounds that exhibited promising inhibition percentage at 0.1 mM; no: no action
under experimental conditions.
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Among all the examined carboxamides, analogues 3h and 3s exhibited the best lipoxy-
genase inhibitory activity, with IC50 = 10 µM. Carboxamide 3h possesses an N-methyl
substituent to the quinolinone moiety and a 2-methyl-cyclohexane group attached to the
amide bond. Replacement of the N-methyl substituent with an N-phenyl one led to the
inactive derivative 3i. Moreover, the replacement of the alicyclic 2-methyl-cyclohexane
substituent by an aliphatic one with the same number of carbon atoms (carboxamide 3e)
was detrimental for the LOX inhibitory activity as 3e showed no activity.

N-phenyl carboxamide 3s possesses a 4-fluoro-phenyl group attached to the amide
bond. Replacement of the N-phenyl substituent by an N-methyl one resulted in the weak
inhibitor 3m (15% at 0.1 mM). Keeping the N-phenyl substituent and replacing the fluoro
group by a hydroxyl one (3g analogue) led to a better inhibitor (IC50 = 27.5 µM), while
replacement by a methyl group led to an inactive agent (3r analogue, 37.5% at 100 µM).

Furthermore, the N-methyl analogue 3f and the N-phenyl analogue 3g, which both
share a phenolic group as a common substituent attached to the amide bond, were also
evaluated as potent LOX inhibitors, with IC50 = 49.0 µM and 27.5 µM, respectively. Re-
placement of the aromatic group with an aliphatic chain of two carbons resulted in the less
potent N-methyl derivative 3c (IC50 = 52.0 µM) and the inactive N-phenyl derivative 3d.

N-Methyl derivatives 3a and 3l were characterized as good inhibitors (IC50 = 60.0 µM
and 45.0 µM, respectively), while their N-phenyl analogues 3b and 3r exhibited very weak in-
hibitory activity (45% at 0.1 mM and 37.4% at 0.1 mM, respectively). N-methyl and N-phenyl
pyridine derivatives 3t and 3u were inactive against the soybean lipoxygenase enzyme.

Among all the synthesized and tested quinolinone–cinnamic or benzoic acid hybrids,
the acetyloxy-ferulic acid derivative 11e exhibited the best LOX inhibitory activity, with
IC50 = 52.5 µM. Moreover, the 4-methoxy-cinnamic acid derivative 11f showed satisfying
activity (IC50 = 70.0 µM), while the cinnamic acid derivative 11g presented a slightly
weaker activity (IC50 = 85.5 µM). The 4-acetyloxy-cinnamic acid derivative was evaluated
as an inactive agent (5.0% at 100 µM). Overall, it seems that the combined presence of the
methoxy and acetyloxy groups (case of 11e hybrid) enhances the LOX inhibitory activity,
while the presence of each group separately is not favorable for the activity (cases of 11d
and 11f analogues).

In addition, comparing the cinnamic acid analogues 11g (IC50 = 85.5 µM) and 11d
(5.0% at 100 µM), with their corresponding benzoic acid derivatives 11c (IC50 = 57.0 µM)
and 11a (IC50 = 61.0 µM), it seems that the absence of the unsaturated system seems to be
favorable for LOX inhibitory activity.

As far as the LOX inhibitory activity of the reverse amides is concerned, analogue
16a emerged as the most potent (IC50 = 81.0 µM) among this subgroup. Comparison of
the reverse analogue 16c with its amide derivative 3j, shows that the reverse bond slightly
enhances the LOX inhibitory activity of the compounds (IC50 = 100 µM for the 3j analogue
and IC50 = 82.5 µM for the 16c analogue).

2.3. Computational Studies–Docking Simulation Soybean Lipoxygenase
Docking Studies of the Synthesized Derivatives in Soybean LOX

All the synthesized derivatives were studied in silico. For the docking studies, soybean
lipoxygenase-1 (PDB: 3PZW) was selected in order to be in accordance with the biological
assay. As already mentioned, lipoxygenases are hyperoxidases catalyzing the oxygenation
of free and esterified polyunsaturated fatty acids to hydroperoxides. Based on recent
findings, apart from the substrate-binding site (iron-binding site), lipoxygenases present
additional potential allosteric binding sites [64,74]. First of all, molecular docking was
carried out for all the synthesized derivatives, setting a catalytic pocket around the iron with
no promising results. Aiming to explore the potential binding mode of the novel derivatives
in a detailed manner, blind docking to the whole protein was accomplished to encompass
all the potential binding sites. Additionally, docking studies were carried out to NDGA
(IC50 = 0.45 µM), a strong LOX inhibitor standard, used herein as a reference compound
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for comparison purposes. The docking studies revealed that compounds interact with the
soybean LOX-1 through allosteric interactions.

The most biologically active derivatives were further investigated, including a vi-
sual examination of intermolecular interactions with soybean LOX (PDB ID: 3PZW) (3h;
Figures 5 and 6 and 3s; Figures 7 and 8, respectively). Compound 3h had an AutoDockVina
score of −8.8 kcal/mol while 3s −8.4 kcal/mol binding to soybean LOX (PDB ID: 3PZW).
It is well known that a one-to-one correlation is difficult to reach between the obtained
results from the in vitro inhibition of soybean lipoxygenase that represents experimental
values and docking scores that are based on algorithms and scoring function calculations.
Docking describes the preferred orientation of the ligand bound to the protein. Compound
3h presents hydrophobic interactions with Phe108, Val126, Asn128, Leu246, and Pro530 and
a hydrogen bond with Asn128, while compound 3s presents hydrophobic interactions with
Val126, Asp243, Val520, Lys526, and Trp772, a hydrogen bond with Tyr525 and π-cation in-
teractions with His515. Moreover, NDGA forms hydrogen bonds between the –OH groups
of ring A with Ser129, Arg141, Arg142, and Glu165 and hydrogen bonds between the –OH
groups of ring B with Arg767 and Asp 768 (Figures 9 and 10). Additionally, it develops
hydrophobic interactions with residues Phe143, Val520, Lys526, and Trp772, resembling the
hydrophobic binding motif of 3s. It is well known that most LOX inhibitors act as antioxi-
dants or by scavenging free radicals, oxidizing the enzyme via a carbon-centered radical on
a lipid chain. It is possible that compounds 3h and 3s extend into the hydrophobic domain
and block the substrates to the binding site, thus preventing oxidation [69].
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Figure 6. Ligand interaction diagram of compound 3h soybean lipoxygenase (ID: 3PZW). The
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in green, the polar ones in cyan, the positively charged in blue, and the negatively charged in red.
The Figure was made with free Maestro (Free Maestro academic license, Version 13.8—Schrödinger
Release 2023-4: Maestro, Schrödinger, LLC, New York, NY, USA, 2023) [75].
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13.8—Schrödinger Release 2023-4: Maestro, Schrödinger, LLC, New York, NY, USA, 2023) [75].
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Figure 9. The 3D preferred docking pose of NDGA (depicted in light blue) bound to soybean
lipoxygenase (ID: 3PZW). Blue colour corresponds to nitrogen and red to oxygen. Hydrogen bonds
are illustrated with dashed grey lines. Iron is depicted as an orange sphere.
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Figure 10. Ligand interaction diagram of NDGA soybean lipoxygenase (ID: 3PZW). The hydrogen
bond interaction with residues is illustrated by a purple dashed arrow. Figure made with free Maestro
(Free Maestro academic license-Version 13.8—Schrödinger Release 2023-4: Maestro, Schrödinger,
LLC, New York, NY, USA, 2023) [75].

3. Materials and Methods

NMR spectroscopy: synthesized compounds were structurally elucidated using Varian
Gemini 300 MHz (Palo Alto, CA, USA) at the School of Chemical Engineering, NTUA and
Varian 600 MHz (Palo Alto, CA, USA) at the National Hellenic Research Foundation, NMR
spectrometers using DMSO-d6 and CDCl3 99.9 atom % D.

Melting points were determined on a Gallenkamp MFB-595 melting point apparatus
(London, UK) and are uncorrected. High-resolution mass spectra were obtained on an ultra-
high-pressure liquid chromatography mass spectrometer mass accuracy and ultra-high
resolution (UHPLC—LTQ Orbitrap Velos, Thermo Scientific, Waltham, MA, USA). Mass
spectra were obtained on an ESI-MS (HPLC-LCQ Fleet/Thermo Scientific). For the in vitro
tests, a Lambda 20 (Perkin–Elmer, Norwalk, CT, USA) UV–Vis double beam spectropho-
tometer was used. Soybean lipoxygenase, sodium linoleate, 2,2-azobis-(2-amidinopropane)
dihydrochloride (AAPH), and DPPH were obtained from Sigma Chemical, Co. (St. Louis,
MO, USA).

All commercially available starting materials were used without further purification.
Commercially available tetrahydrofuran (THF) was dried prior to use by refluxing over Na.
All other solvents (puriss. quality) were used without further purification.

Column chromatography was performed with silica gel 60.

3.1. Synthesis and General Procedures
3.1.1. General Procedure for the Synthesis of Quinolinone–Carboxamides 3a–3x

1. Method A:

Equimolar amounts of 1-methyl-4-hydroxy-2-oxo-1,2-dihydro-quinoline-3-carboxylic
acid methyl ester (2a), or 1-phenyl-4-hydroxy-2-oxo-1,2-dihydro-quinoline-3-carboxylic
acid methyl ester (2b) (1.07 mmol), and the appropriate amine (1.07 mmol) were added
to 5 mL of dry toluene. The reaction mixture was refluxed for 24 h, while the reaction
was monitored by thin-layer chromatography (TLC). After the completion of the reaction,
the mixture was diluted with CH2Cl2 and washed with saturated aqueous NaHCO3.
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The organic layer was collected, dried with anhydrous sodium sulfate (Na2SO4), and
evaporated in vacuo.

2. Method B:

Equimolar amounts of 1-methyl-4-hydroxy-2-oxo-1,2-dihydro-quinoline-3-carboxylic
acid methyl ester (quinolinone 2a) or 1-phenyl-4-hydroxy-2-oxo-1,2-dihydro-quinoline-
3-carboxylic acid methyl ester (quinolinone 2b) (1.07 mmol) and the appropriate amine
(1.07 mmol) were added to 5mL of dry toluene. The reaction mixture was refluxed for 24 h,
while the reaction was monitored by TLC. After the completion of the reaction, the product
precipitated after cooling at ambient temperature, the solid was filtered off and washed
with diethylether (Et2O) or hexane.

4-hydroxy-1-methyl-3-propylquinolin-2(1H)-one (3a); The compound was synthesized accord-
ing to the general procedure (Method A), starting from quinolinone 2a (250 mg, 1.07 mmol)
and propylamine (63 mg, 1.07 mmol). After the work-up procedure, the product was
obtained upon recrystallization from methanol as a colorless powder. Yield: 65%; 1H NMR
(300 MHz, CDCl3) δ 17.29 (s, 1H, -OH), 10.33 (s, 1H, -NH), 8.23 (dd, J = 8.1, 1.8 Hz, 1H,
Ar-H), 7.68 (ddd, J = 8.6, 7.2, 1.5 Hz, 1H, Ar-H), 7.36 (d, J = 8.7 Hz, 1H, Ar-H), 7.30 (ddd,
J = 8.0, 7.2, 1.2 Hz, 1H, Ar-H), 3.69 (s, 3H, N-CH3), 3.42 (m, 2H, -NHCH2-), 1.68 (m, 2H,
-CH2CH3), 1.02 (t, J = 7.2 Hz, 3H, -CH2CH3); 13C NMR (75 MHz, CDCl3) δ 172.2, 171.2,
163.0, 140.0, 133.8, 125.7, 122.5, 116.6, 114.3, 96.9, 41.0, 29.3, 22.8, and 11.7; HR-MS m/z (pos):
260.1161 C14H16O3N2 (calcd. 261.1234).

4-hydroxy-2-oxo-1-phenyl-N-propyl-1,2-dihydroquinoline-3-carboxamide (3b); the compound
was synthesized according to the general procedure (Method A) starting from quinolinone
2b (316 mg, 1.07 mmol) and propylamine (63 mg, 1.07 mmol). After the work-up procedure,
the product was obtained as a colorless powder without any further purification. Yield:
62%; 1H NMR (300 MHz, CDCl3) δ 17.53 (s, 1H, -OH), 10.11 (s, 1H, -NH), 8.23 (dd, J = 7.8,
1.2 Hz, 1H, Ar-H), 7.58 (m, 3H, Ar-H), 7.44 (t, J = 8.0 Hz, 1H, Ar-H), 7.26 (m, 3H, Ar-H), 6.62
(d, J = 8.7 Hz, 1H, Ar-H), 3.37 (m, 2H, -NHCH2-), 1.61 (m, 2H, -CH2CH3), 0.96 (t, J = 7.5 Hz,
3H, -CH2CH3); 13C NMR (75 MHz, CDCl3) δ 173.0, 171.0, 163.1, 140.8, 137.2, 133.1, 130.3,
129.1, 129.0, 125.2, 122.6, 116.2, 116.0, 96.7, 40.9, 22.5, and 11.6; HR-MS m/z (pos): 322.1317
C19H18O3N2 (calcd. 323.1390).

4-hydroxy-N-(2-hydroxyethyl)-1-methyl-2-oxo-1,2-dihydroquinoline-3-carboxamide (3c); the com-
pound was synthesized according to the general procedure (Method A) starting from
quinolinone 2a (250 mg, 1.07 mmol) and ethanolamine (65 mg, 1.07 mmol). After the
work-up procedure, the product was obtained pure after flash column chromatography
(dichloromethane:methanol/98:2) as a colorless powder. Yield: 60%; 1H NMR (300 MHz,
CDCl3) δ 16.75 (s, 1H, -OH), 10.60 (s, 1H, -NH), 8.19 (dd, J = 7.8, 1.5 Hz, 1H, Ar-H), 7.69
(ddd, J = 8.6, 7.2, 1.5 Hz, 1H, Ar-H), 7.35 (d, J = 8.4 Hz, 1H, Ar-H), 7.30 (t, J = 7.8 Hz, 1H,
Ar-H), 5.30 (s, 1H, -CH2OH), 3.86 (m, 2H, -CH2OH), 3.68 (s, 3H, N-CH3), 3.64 (m, 2H,
-NHCH2-); 13C NMR (75 MHz, CDCl3) δ 172.1, 172.0, 162.8, 140.1, 134.0, 125.7, 122.6, 116.3,
114.4, 97.0, 62.4, 42.2, and 29.3; HR-MS m/z (pos): 262.0954 C13H14O4N2 (calcd. 263.1026).

4-hydroxy-N-(2-hydroxyethyl)-2-oxo-1-phenyl-1,2-dihydroquinoline-3-carboxamide (3d); The com-
pound was synthesized according to the general procedure (Method B) starting from quino-
linone 2b (316 mg, 1.07 mmol) and ethylenediamine (64 mg, 1.07 mmol) after 2 h stirring at
110 ◦C. After the work-up procedure, the product was obtained upon recrystallization from
methanol as white transparent crystals. Yield: 73%; 1H NMR (300 MHz, CDCl3) δ 17.00
(s, 1H, -OH), 10.40 (s, 1H, -NH), 8.24 (dd, J = 8.1, 1.5 Hz, 1H, Ar-H), 7.58 (m, 3H, Ar-H),
7.46 (ddd, J = 8.6, 7.2, 1.5 Hz, 1H, Ar-H), 7.27 (m, 3H, Ar-H), 6.65 (d, J = 8.4 Hz, 1H, Ar-H),
3.79 (m, 2H, -CH2OH), 3.59 (m, 2H, -NHCH2-), 2.41 (brs, 1H, -CH2OH); 13C NMR (75 MHz,
CDCl3) δ 172.9, 172.0, 163.2, 141.0, 137.2, 133.5, 130.5, 129.3, 129.1, 125.4 122.9, 116.2, 116.1,
96.9, 62.3, and 42.2; HR-MS m/z (pos): 324.1110 C18H16O4N2 (calcd. 325.1183).
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N-heptyl-4-hydroxy-1-methyl-2-oxo-1,2-dihydroquinoline-3-carboxamide (3e); the compound
was synthesized according to the general procedure (Method A) starting from quinolinone
2a (250 mg, 1.07 mmol) and 1-heptylamine (123 mg, 1.07 mmol). After the work-up
procedure, the product was obtained pure after flash column chromatography (petroleum
ether:ethyl acetate/98:2), as a white powder. Yield: 70%; 1H NMR (300 MHz, CDCl3) δ
17.11 (s, 1H, -OH), 10.12 (s, 1H, -NH), 8.01 (dd, J = 8.1, 1.5 Hz, 1H, Ar-H), 7.49 (ddd, J = 8.4,
7.2, 1.5 Hz, 1H, Ar-H), 7.13 (m, 2H, Ar-H), 3.49 (s, 3H, N-CH3), 3.27 (m, 2H, H-11), 1.49
(quint, J = 6.9 Hz, 2H, H-12), 1.21 (m, 8H, H-13, H-14, H-15, H-16), 0.73 (t, J = 6.3 Hz, 3H,
H-17); 13C NMR (75 MHz, CDCl3) δ 172.2, 171.1, 163.0, 140.0, 133.7, 125.7, 122.5, 116.6, 114.3,
99.4, 39.3, 31.9, 29.5, 29.3, 29.1, 27.2, 22.8, and 14.2; HR-MS m/z (pos): 316.1787 C18H24O3N2
(calcd. 317.1860).

4-hydroxy-N-(4-hydroxyphenyl)-1-methyl-2-oxo-1,2-dihydroquinoline-3-carboxamide (3f); the
compound was synthesized according to the general procedure (Method B) starting from
quinolinone 2a (250 mg, 1.07 mmol) and 4-aminophenol (117 mg, 1.07 mmol). After the
work-up procedure, the product was obtained upon recrystallization from methanol and
dichloromethane as beige crystals. Yield: 49%; 1H NMR (300 MHz, CDCl3) δ 16.66 (s, 1H,
-OH), 12.05 (s, 1H, -NH), 8.64 (s, 1H, Ar-OH), 7.95 (dd, J = 8.1, 1.5 Hz, 1H, Ar-H), 7.47 (ddd,
J = 8.1, 7.5, 1.5 Hz, 1H, Ar-H), 7.19 (m, 3H, Ar-H), 7.07 (t, J = 7.8 Hz, 1H, Ar-H), 6.57 (d,
J = 8.7 Hz, 2H, Ar-H), 3.47 (s, 3H, N-CH3); 13C NMR (75 MHz, CDCl3) δ 171.3, 168.1, 162.0,
154.2, 139.2, 133.4, 128.2, 124.6, 122.1, 122.0, 115.4, 115.1, 113.9, 96.3, and 28.7; HR-MS m/z
(pos): 310.0954 C17H14O4N2 (calcd. 311.1026).

4-hydroxy-N-(4-hydroxyphenyl)-2-oxo-1-phenyl-1,2-dihydroquinoline-3-carboxamide (3g); the
compound was synthesized according to the general procedure (Method B) starting from
quinolinone 2b (316 mg, 1.07 mmol) and 4-aminophenol (117 mg, 1.07 mmol). After the
work-up procedure, the product was obtained upon recrystallization from methanol and
dichloromethane as a purple solid. Yield: 33%; 1H NMR (300 MHz, DMSO-d6/CDCl3) δ
17.08 (s, 1H, -OH), 12.01 (s, 1H, -NH), 8.99 (s, 1H, Ar-OH), 8.14 (d, J = 8.4 Hz, 1H, Ar-H),
7.51 (m, 4H, Ar-H), 7.33 (d, J = 8.7 Hz, 2H, Ar-H), 7.25 (m, 3H, Ar-H), 6.71 (d, J = 8.7 Hz, 2H,
Ar-H), 6.58 (d, J = 8.4 Hz, 1H, Ar-H); 13C NMR (75 MHz, DMSO-d6/CDCl3) δ 172.2, 168.0,
162.3, 154.3, 140.1, 136.4, 134.3, 133.1, 129.7, 128.7, 128.4, 128.0, 124.3, 122.3, 122.0, 115.6,
115.1, and 96.3; HR-MS m/z (pos): 372.1110 C22H16O4N2 (calcd. 373.1183).

4-hydroxy-1-methyl-N-(2-methylcyclohexyl)-2-oxo-1,2-dihydroquinoline-3-carboxamide (3h); the
compound was synthesized according to the general procedure (Method A) starting from
quinolinone 2a (250 mg, 1.07 mmol) and 2-methylcyclohexanamine (120 mg, 1.07 mmol). Af-
ter the work-up procedure, the product was obtained upon recrystallization from methanol
as white crystals. Yield: 54%; 1H NMR (300 MHz, CDCl3) δ 17.44 (s, 1H, -OH), 10.24 (br,
1H, -NH), 8.22 (dd, J = 8.1, 1.2 Hz, 1H, Ar-H), 7.67 (ddd, J = 8.6, 7.2, 1.5 Hz, 1H, Ar-H), 7.35
(d, J = 8.4 Hz, 1H, Ar-H), 7.29 (m, 1H, Ar-H), 3.62 (m, 1H, NH-CH), 3.68 (s, 3H, N-CH3),
2.06 (m, 1H, aliphatic), 1.76 (m, 3H, aliphatic), 1.31 (m, 5H, aliphatic), 0.99 (d, J = 6.6 Hz, 3H,
-CH3); 13C NMR (75 MHz, CDCl3) δ 172.3, 170.6, 163.0, 140.0, 133.7, 125.7, 122.5, 116.7, 114.3,
96.8, 54.3, 38.3, 34.4, 33.4, 29.2, 25.8, 25.5, and 19.5; HR-MS m/z (pos): 314.1630 C18H22O3N2
(calcd. 315.1703).

4-hydroxy-N-(2-methylcyclohexyl)-2-oxo-1-phenyl-1,2-dihydroquinoline-3-carboxamide (3i); the
compound was synthesized according to the general procedure (Method A) starting from
quinolinone 2b (316 mg, 1.07 mmol) and 2-methylcyclohexanamine (120 mg, 1.07 mmol).
After the work-up procedure, the product was obtained as white crystals upon recrystal-
lization from methanol and dichloromethane. Yield: 49%; 1H NMR (300 MHz, CDCl3) δ
17.72 (s, 1H, -OH), 10.01 (d, J = 8.6 Hz, 1H, -NH), 8.24 (m, 1H, Ar-H), 7.45 (m, 4H, Ar-H),
7.44 (m, 1H, Ar-H), 7.30 (m, 2H, Ar-H), 6.62 (d, J = 8.7 Hz, 1H, Ar-H), 3.63 (m, 1H, NH-CH),
2.02 (m, 1H, aliphatic), 1.72 (m, 3H, aliphatic), 1.26 (m, 5H, aliphatic), 0.96 (d, J = 6.6Hz,
3H, -CH3); 13C NMR (75 MHz, CDCl3) δ 173.4, 170.6, 163.3, 141.0, 137.4, 133.3, 130.5, 129.3,
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129.2, 125.3, 122.7, 116.1, 96.7, 54.4, 38.2, 34.4, 34.5, 33.50, 25.9, 25.6, and 19.5; HR-MS m/z
(pos): 376.1787 C23H22O4N3 (calcd. 377.1860).

4-hydroxy-N-(2-hydroxyphenyl)-1-methyl-2-oxo-1,2-dihydroquinoline-3-carboxamide (3j); the
compound was synthesized according to the general procedure (Method B) starting from
quinolinone 2a (250 mg, 1.07 mmol) and aminophenol (117 mg, 1.07 mmol). After the work-
up procedure, the product was obtained as white solid without any further purification.
Yield: 69%; 1H NMR (300 MHz, DMSO-d6) δ 16.88 (s, 1H, OH), 12.70 (s, 1H, OH phenolic),
10.19 (s, 1H, NH), 8.23 (d, J = 7.5 Hz, 1H, aromatic), 7.82 (dt, J = 7.8, 1.5 Hz, 1H, aromatic),
7.65 (d, J = 8.4 Hz, 1H, aromatic), 7.40 (t, J = 7.5 Hz, 1H, aromatic), 6.99 (m, 3H, aromatic),
6.84 (t, J = 7.5 Hz, 1H, aromatic), 3.67 (3H, s, N-CH3); 13C NMR (75 MHz, DMSO-d6) δ
(ppm) 171.3, 168.8, 161.7, 147.5, 139.8, 134.5, 125.5, 125.0, 124.6, 122.7, 121.2, 119.2, 115.5,
115.1, 115.0, 96.8, and 29.3; HR-MS m/z (pos): 310.0954 C17H14O4N2 (calcd. 311.1024).

4-hydroxy-1-methyl-2-oxo-N-(o-tolyl)-1,2,dihydroquinoline-3carboxamide (3k); the compound
was synthesized according to the general procedure (Method B) starting from quinolinone
2a (250 mg, 1.07 mmol) and o-toluidine (115 mg, 1.07 mmol). After the work-up procedure,
the product was obtained as a white solid without any further purification. Yield: 70%;
1H NMR (300 MHz, CDCl3) δ 16.84 (s, 1H, -OH), 12.36 (s, 1H, -NH), 8.26 (d, J = 7.5 Hz,
1H, Ar-H), 8.09 (d, J = 8.1 Hz, 1H, Ar-H), 7.71 (t, J = 8.1 Hz, 1H, Ar-H), 7.32 (m, 4H, Ar-H),
7.11 (t, J = 7.2 Hz, 1H, Ar-H), 3.74 (s, 3H, N-CH3), 2.45 (s, 3H, Ar-CH3); 13C NMR (75 MHz,
CDCl3) δ 172.4, 169.6, 163.1, 140.1, 135.8, 134.1, 130.1, 129.7, 126.7, 125.8, 125.3, 123.0, 122.7,
116.4, 114.4, 97.5, 29.5, and 18.5; HR-MS m/z (pos): 308.1161 C18H16O3N2 (calcd. 309.1234).

4-hydroxy-1-methyl-2-oxo-N-(p-tolyl)-1,2-dihydroquinoline-3-carboxamide (3l); the compound
was synthesized according to the general procedure (Method B) starting from quinolinone
2a (250 mg, 1.07 mmol) and p-toluidine (115 mg, 1.07 mmol). After the work-up procedure,
the product was obtained upon recrystallization from methanol and dichloromethane as
a white solid. Yield: 37%; 1H NMR (300 MHz, CDCl3) δ 16.83 (s, 1H, -OH), 12.42 (s, 1H,
-NH), 8.24 (dd, J = 7.5, 1.5 Hz, 1H, Ar-H), 7.70 (ddd, J = 8.2, 7.5, 1.5 Hz, 1H, Ar-H), 7.57 (d,
J = 8.4 Hz, 2H, H-12, H-16), 7.38 (d, J = 8.7 Hz, 1H, Ar-H), 7.32 (t, J = 8.1 Hz, 1H, Ar-H),
7.18 (d, J = 8.4 Hz, 2H, H-13, H-15), 3.72 (s, 3H, N-CH3), 2.35 (s, 3H, Ar-CH3); 13C NMR
(75 MHz, CDCl3) δ 172.2, 169.2, 162.8, 139.8, 134.6, 134.5, 133.9, 129.5, 125.6, 122.6, 121.2,
116.3, 114.3, 97.2, 29.3, and 20.9; HR-MS m/z (pos): 308.1161 C18H16O3N2 (calcd. 309.1234).

N-(4-fluorophenyl)-4-hydroxy-1-methyl-2-oxo-1,2-dihydroquinoline-3-carboxamide (3m); the com-
pound was synthesized according to the general procedure (Method B) starting from
quinolinone 2a (250 mg, 1.07 mmol) and 4-fluoroaniline (119 mg, 1.07 mmol). After the
work-up procedure, the product was obtained as a white solid without any further purifi-
cation. Yield: 66%; 1H NMR (300 MHz, CDCl3/DMSO-d6) δ 16.18 (s, 1H, -OH), 12.22 (S,
1H, -NH), 7.85 (dd, J = 8.1, 1.5 Hz, 1H, Ar-H), 7.39 (ddd, J = 8.4, 7.2, 1.5 Hz, 1H, Ar-H),
7.31 (m, 2H, Ar-H), 7.09 (d, J = 8.4 Hz, 1H, Ar-H), 6.99 (t, J = 7.8 Hz, 1H, Ar-H), 6.74 (m,
2H, Ar-H), 3.38 (s, 3H, N-CH3); 13C NMR (75 MHz, CDCl3/DMSO-d6) δ 171.3, 168.5, 161.9,
160.4, 139.1, 133.6, 132.7, 124.6, 122.1, 122.0, 115.1, 114.8, 113.9, 96.2, and 28.7; HR-MS m/z
(pos): 312.0910 C17H13O3FN2 (calcd. 313.0983).

4-hydroxy-N-(4-hydroxyphenethyl)-2-oxo-1-phenyl-1,2-dihydroquinoline-3-carboxamide (3n); the
compound was synthesized according to the general procedure (Method B) starting from
quinolinone 2b (316 mg, 1.07 mmol) and 4-(2-aminoethyl)phenol (147 mg, 1.07 mmol). After
the work-up procedure, the product was obtained as a white solid without any further
purification. Yield: 62%; 1H NMR (300 MHz, CDCl3) δ 17.36 (s, 1H, -OH), 10.19 (s, 1H,
-NH), 8.24 (dd, J = 8.1, 1.2 Hz, 1H, Ar-H), 7.56 (m, 3H, Ar-H), 7.45 (ddd, J = 8.4, 7.2, 1.5 Hz,
1H, Ar-H), 7.28 (m, 3H, Ar-H), 7.05 (d, J = 8.4 Hz, 2H, H-15, H-17), 6.69 (d, J = 8.4 Hz, 2H,
H-14, H-18), 6.64 (d, J = 8.4 Hz, 1H, Ar-H), 3.61 (m, 2H, NH-CH2), 2.82 (t, J = 7.8 Hz, 2H,
CH2-Ar); 13C NMR (75 MHz, CDCl3) δ 173.0, 171.0, 163.1, 154.3, 140.8, 137.1, 133.3, 130.6,
130.3, 129.7, 129.2, 129.0, 125.2, 122.7, 116.2, 116.1, 115.4, 96.7, 40.9, and 34.8; HR-MS m/z
(pos): 400.1423 C24H20O4N2 (calcd. 401.1496).
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4-hydroxy-N-(4-hydroxyphenethyl)-1-methyl-2-oxo-1,2-dihydroquinoline-3-carboxamide (3o); the
compound was synthesized according to the general procedure (Method B) starting from
quinolinone 2a (250 mg, 1.07 mmol) and 4-(2-aminoethyl)phenol (147 mg, 1.07 mmol). After
the work-up procedure, the product was obtained as a white solid without any further
purification. Yield: 65%; 1H NMR (300 MHz, CDCl3) δ 16.92 (s, 1H, -OH), 10.09 (s, 1H, -NH),
7.88 (dd, J = 8.2, 1.5 Hz, 1H, Ar-H), 7.42 (t, J = 7.8 Hz, 1H, Ar-H), 7.11 (d, J = 9.0 Hz, 1H,
Ar-H), 7.02 (t, J = 7.8 Hz, 1H, Ar-H), 6.77 (d, J = 8.1 Hz, 2H, H-15, H-17), 6.48 (d, J = 8.7 Hz,
2H, H-14, H-18), 3.38 (s, 3H, N-CH3), 3.32 (m, 2H, NH-CH2), 2.55 (t, J = 7.2 Hz, 2H, CH2-Ar),
2.30 (br, 1H, Ar-OH); 13C NMR (75 MHz, CDCl3) δ 171.1, 170.3, 161.7, 155.2, 153.2, 139.2,
133.1, 128.9, 128.5, 124.5, 121.6, 118.8, 114.9, 113.7, 98.7, 30.0, and 28.4; HR-MS m/z (pos):
338.1267 C19H18O4N2 (calcd. 339.1339).

4-hydroxy-N-(2-hydroxy-1-phenylethyl)-1-methyl-2-oxo-1,2-dihydroquinoline-3-carboxamide (3p);
the compound was synthesized according to the general procedure (Method B) start-
ing from quinolinone 2a (250 mg, 1.07 mmol) and 2-amino-2-phenylethan-1-ol (147 mg,
1.07 mmol). After the work-up procedure, the product was obtained as a white solid with-
out any further purification. Yield: 70%; 1H NMR (300 MHz, CDCl3) δ (ppm) 10.72 (s, 1H,
-NH), 8.23 (d, J = 7.8 Hz, 1H, Ar-H), 7.70 (ddd, J = 8.4, 7.2, 0.9Hz, 1H, Ar-H), 7.37 (m, 7H,
Ar-H), 7.98 (dd, J = 7.8, 2.4 Hz, 1H, NH-CH), 3.82 (br, 1H, H-12a), 3.69 (s, 3H, N-CH3), 3.62
(br, 1H, H-12b), 3.06 (brs, 1H, Ar-OH); 13C NMR (75 MHz, CDCl3) δ (ppm) 172.1, 172.0,
162.8, 141.9, 140.2, 134.0, 128.7, 128.2, 126.0, 125.8, 122.6, 114.4, 74.0, 47.4, and 29.4; HR-MS
m/z (pos): 338.1267 C19H18O4N2 (calcd. 339.1339).

4-hydroxy-N-(2-hydroxy-1-phenylethyl)-2-oxo-1-phenyl-1,2-dihydroquinoline-3-carboxamide (3q);
the compound was synthesized according to the general procedure (Method B) start-
ing from quinolinone 2b (316 mg, 1.07 mmol) and 2-amino-2-phenylethan-1-ol (147 mg,
1.07 mmol). After the work-up procedure, the product was obtained as a white solid with-
out any further purification. Yield: 72%; 1H NMR (300 MHz, CDCl3) δ (ppm) 10.51 (br,
1H, -NH), 8.23 (br, 1H, Ar-H), 7.57 (m, 3H, Ar-H), 7.35 (m, 9H, Ar-H), 6.64 (br, 1H, Ar-H),
4.91 (br, 1H, NH-CH), 3.71 (br, 1H, H-12a), 3.58 (br, 1H, H-12b), 3.00 (brs, 1H, CH2-OH);
13C NMR (75 MHz, CDCl3) δ (ppm) 172.7, 171.9, 162.9, 141.7, 140.9, 137.1, 133.4, 130.3,
130.2, 129.1, 129.0, 128.5, 127.9, 125.8, 125.2, 122.7, 116.1, 73.8, and 47.5; HR-MS m/z (pos):
400.1423 C24H20O4N2 (calcd. 401.1496).

4-hydroxy-2-oxo-1-phenyl-N-(p-tolyl)-1,2-dihydroquinoline-3-carboxamide (3r); the compound
was synthesized according to the general procedure (Method B) starting from quinolinone
2b (316 mg, 1.07 mmol) and p-toluedine (115 mg, 1.07 mmol). After the work-up procedure,
the product was obtained as a white solid without any further purification. Yield: 62%; 1H
NMR (300 MHz, CDCl3) δ (ppm) 12.18 (s, 1H, -NH), 8.28 (d, J = 8.1 Hz, 1H, Ar-H), 7.57 (m,
6H, Ar-H), 7.30 (m, 3H, Ar-H), 7.14 (d, J = 8.1 Hz, 2H, Ar-H), 6.66 (d, J = 8.4 Hz, 1H, Ar-H),
2.33 (s, 3H, N-CH3); 13C NMR (75 MHz, CDCl3) δ (ppm) 173.3, 169.3, 163.3, 140.9, 137.2,
134.7, 134.6, 133.6, 130.6, 129.6, 129.5, 129.1, 125.4, 123.0, 121.4, 116.3, and 21.1; HR-MS m/z
(pos): 370.1317 C23H18O3N2 (calcd. 371.1390).

N-(4-fluorophenyl)-4-hydroxy-2-oxo-1-phenyl-1,2-dihydroquinoline-3-carboxamide (3s); the com-
pound was synthesized according to the general procedure (Method B) starting from
quinolinone 2b (316 mg, 1.07 mmol) and 4-fluoroaniline (119 mg, 1.07 mmol). After the
work-up procedure, t he product was obtained as a white solid without any further purifi-
cation. Yield: 62%; 1H NMR (300 MHz, CDCl3) δ 16.85 (s, 1H, -OH), 12.27 (s, 1H, -NH),
8.27 (d, J = 8.1 Hz, 1H, Ar-H), 7.64 (m, 5H, Ar-H), 7.49 (t, J = 7.5 Hz, 1H, Ar-H), 7.30 (m, 3H,
Ar-H), 7.03 (m, 2H, Ar-H), 6.67 (d, J = 8.4 Hz, 1H, Ar-H); 13C NMR (75 MHz, CDCl3) δ 173.1,
169.1, 163.1, 161.3, 158.1, 140.8, 137.0, 133.6, 130.4, 129.4, 128.9, 125.2, 122.9, 122.7, 116.2,
115.7, 115.5, 97.0, and 67.1; HR-MS m/z (pos): 374.1067 C22H15O3FN2 (calcd. 375.1139).

4-hydroxy-1-methyl-2-oxo-N-(pyridin-4-yl)-1,2-dihydroquinoline-3-carboxamide (3t); the com-
pound was synthesized according to the general procedure (Method B) starting from
quinolinone 2a (250 mg, 1.07 mmol) and 2-aminopyridine (101 mg, 1.07 mmol). After
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the work-up procedure, the product was obtained as a white solid without any further
purification. Yield: 67%; 1H NMR (300 MHz, CDCl3) δ (ppm) 15.98 (s, 1H, -OH), 12.96 (s,
1H, -NH), 8.55 (d, J = 5.4 Hz, 2H, H-13, H-15), 8.25 (d, J = 8.1 Hz, 1H, Ar-H), 7.75 (br, 1H,
Ar-H), 7.68 (d, J = 5.4 Hz, 2H, H-12, H-16), 7.37 (m, 2H, Ar-H), 3.73 (s, 3H, N-CH3); HR-MS
m/z (pos): 295.0957 C16H13O3N3 (calcd. 296.1030).

4-hydroxy-2-oxo-1-phenyl-N-(pyridin-4-yl)-1,2-dihydroquinoline-3-carboxamide (3u); the com-
pound was synthesized according to the general procedure (Method B) starting from
quinolinone 2b (316 mg, 1.07 mmol) and 2-aminopyridine (101 mg, 1.07 mmol). After
the work-up procedure, the product was obtained as a white solid without any further
purification. Yield: 62%; 1H NMR (600 MHz, CDCl3) δ 12.98 (s, 1H, -NH), 8.53 (m, 2H,
H-13, H-15), 8.29 (d, J = 7.8 Hz, 1H, Ar-H), 7.77 (m, 2H, H-12, H-16), 7.67 (m, 2H, Ar-H),
7.62 (d, J = 7.8 Hz, 1H, Ar-H), 7.54 (t, J = 7.8 Hz, 1H, Ar-H), 7.35 (t, J = 7.8 Hz, 1H, Ar-H),
7.31 (m, 2H, Ar-H), 6.69 (d, J = 9.0 Hz, 1H, Ar-H); 13C NMR (150 MHz, CDCl3) δ 173.7,
170.8, 163.2, 148.0, 141.2, 136.7, 134.6, 130.7, 129.8, 128.9, 125.6, 123.5, 116.5, 115.7, 115.4, and
97.2; HR-MS m/z (pos): 357.1113 C21H15O3N3 (calcd. 358.1186).

3.1.2. Synthesis of 1-Ethyl-2,4-dihydro-1H-3,1-benzoxazine-2,4-dione (5)

To a stirred solution of isatoic anhydride (4) (2 g, 12.3 mmol) and sodium hydride
(NaH, 60% w/w in oil, 444 mg, 18.5 mmol) in dimethylformamide (DMF, 50 mL), iodoethane
(1.2 mL, 14.8 mmol) is added under cooling and the reaction mixture is refluxed and stirred
at room temperature for 24 h, under inert atmosphere. The reaction is monitored by TLC.
At the end of the reaction, the mixture is poured into a conical flask containing water
and ice and then extracted three times with Et2O. The organic phase is collected, dried
over anhydrous Na2SO4, and concentrated under reduced pressure. The final product (5)
is obtained as a beige solid after additional rinsing with Et2O and used in the next step
without further purification. Yield: 36%; 1H NMR (300 MHz, CDCl3) δ 8.11 (dd, J = 9.0 Hz,
J = 3.0 Hz, 1H, Ar-H), 7.71 (td, J = 9.0 Hz, J = 3.0 Hz, 1H, Ar-H), 7.22 (d, J = 9.0 Hz, 1H,
Ar-H), 7.14 (d, J = 9.0 Hz, 1H, Ar-H), 4.09 (q, J = 6.0 Hz, 2H, N-CH2), 1.32 (t, J = 9.0 Hz, 3H,
N-CH2-CH3).

3.1.3. Synthesis of Methyl 1-Ethyl-4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxylate (6)

To a stirred solution of NaH (60% dispersion in mineral oil) (235 mg, 5.9 mmol) and
25 mL DMF, 1 eq. of N-substituted isatoic anhydride (5) (560 mg, 2.9 mmol) was added,
followed by the addition of 5 eq. of dimethyl malonate (1.70 mL, 14.8 mmol) at 0 ◦C. The
reaction mixture was refluxed at 80 ◦C under an inert atmosphere for 3 h, and the reaction
was monitored by TLC. After completion of the reaction, the mixture was cooled in an
ice-water bath, acidified with HCl (10% aqueous solution), and then extracted with Et2O
(3 × 25 mL); the combined organic layers were collected, dried over NaSO4, and evaporated
under reduced pressure. The desired quinolinone product 6 was obtained as a beige powder,
and it was further purified by recrystallization from methanol/dichloromethane. Yield:
220 mg (35%); m.p. 138 ◦C; 1HNMR (600 MHz, CDCl3,) δ (ppm) 14.01 (s, 1H, -OH), 8.20
(dd, J = 7.8, 0.6 Hz, 1H, Ar–H), 7.68 (td, J = 7.2, 1.8 Hz, 1H, Ar–H), 7.33 (d, J = 8.4 Hz, 1H,
Ar–H), 7.25 (t, J = 7.8 Hz, 1H, Ar–H), 4.31 (q, J = 7.2 Hz, 2H, N–CH2–CH3), 4.04 (s, 2H,
COOCH3), 1.33 (t, J = 6.6 Hz, 3H, N–CH2–CH3).

3.1.4. Synthesis of the N-(2-Aminoethyl)-1-ethyl-4-hydroxy-2-oxo-1,2-dihydroquinoline-
3-carboxamide (7)

A sample of 1 eq. of 6 (150 mg, 0.61 mmol) and 2 eq. of ethylenediamine (81.1 µL,
1.21 mmol) were added to 10 mL of toluene. The reaction mixture was refluxed under an
inert atmosphere for 2.5 h, and the reaction was monitored by TLC. After completion of
the reaction, the mixture was cooled in an ice-water bath, and the precipitate was formed,
filtered, and washed with Et2O. The desirable amide product (7) was obtained as a white
powder further purified by recrystallization from methanol/dichloromethane. Yield: 93
mg (55%); m.p. 161 ◦C; 1HNMR (300 MHz, DMSO-d6) δ (ppm) 10.44 (s, 1H, NH), 8.09 (d,
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J = 7.2 Hz, 1H, Ar-H), 7.70 (t, J = 7.5 Hz, 1H, Ar-H), 7.55 (d, J = 8.4 Hz, 1H, Ar-H), 7.27
(t, J = 7.2 Hz, 1H, Ar-H), 4.25 (q, J = 4.5 Hz, 2H, N-CH2-CH3), 3.36 (br, 2H, CONH-CH2-
CH2-NH2), 2.77 (br, 2H, CONH-CH2-CH2-NH2), 1.19 (t, J = 6.3 Hz, 3H, N-CH2-CH3); 13C
NMR (75 MHz, DMSO-d6) δ 171.9, 170.5, 161.7, 138.7, 133.2, 125.1, 121.5, 117.7, 114.5, 96.9,
40.4, 40.3, 36.2, and 12.9.

3.1.5. General Procedure for the Synthesis of Acetyl Phenolic Acid Derivatives (9a, 9b, 9e,
and 9f)

A sample of 1 eq. of the appropriate phenolic acid and 2 eq. of acetic anhydride
were added to the pyridine. The mixture was then stirred overnight at 80 ◦C, under an
inert atmosphere and monitored by TLC. After completion of the reaction, pyridine was
evaporated under reduced pressure, resulting in a solid residue, which was then washed
with diethyl ether solvent and filtered. The desirable acetyl derivatives (9a, 9b, 9e, and 9f)
were obtained and used without further purification.

4-acetoxybenzoic acid (9a): the compound was synthesized according to the general proce-
dure, starting from 4-hydroxybenzoic acid (8a) (400 mg, 2.22 mmol) and acetic anhydride
(419.0 µL, 4.44 mmol) in 6 mL pyridine. After the work-up procedure, the product was
obtained as a white solid. Yield: 95%.

4-acetoxy-3,5-dimethoxybenzoic acid (9b): the compound was synthesized according to the
general procedure, starting from 4-hydroxy-3,5-dimethoxybenzoic acid (8b) (400 mg,
1.67 mmol) and acetic anhydride (314.2 µL, 3.33 mmol) in 5 mL pyridine. After the work-up
procedure, the product was obtained as a white solid. Yield: 70%.

(E)-3-(4-acetoxyphenyl)acrylic acid (9e): the compound was synthesized according to the gen-
eral procedure, starting from (E)-3-(4-hydroxyphenyl)acrylic acid (8e) (400 mg, 1.94 mmol)
and acetic anhydride (366.1 µL, 3.88 mmol) in 5 mL pyridine. After the work-up procedure,
the product was obtained as a white solid. Yield: 76%; 1HNMR (600 MHz, DMSO-d6) δ
(ppm) 12.40 (s, 1H, COOH), 7.74 (d, J = 8.4 Hz, 2H, Ar-H), 7.59 (d, J = 16.2 Hz, 1H, H-a),
7.18 (d, J = 8.4 Hz, 2H, Ar-H), 6.51 (d, J = 15.9 Hz, H-b), 2.28 (s, 3H, Ar-OCOCH3).

(E)-3-(4-acetoxy-3-methoxyphenyl)acrylic acid (9f): the compound was synthesized according
to the general procedure, starting from (E)-3-(4-hydroxy-3-methoxyphenyl)acrylic acid (8f)
(400 mg, 1.69 mmol) and acetic anhydride (319.5 µL, 3.38 mmol) in 5 mL pyridine. After
the work-up procedure, the product was obtained as a white solid. Yield: 95%.

3.1.6. General Procedure for the Synthesis of the Acetyl Chlorides 10a–10g

A sample of 1 eq. of the appropriate carboxylic acid and 4 eq. of thionyl chloride
(SOCl2) were added to toluene. The mixture was stirred at 90 ◦C for 45 min under an
inert atmosphere. After completion of the reaction, toluene was evaporated under reduced
pressure, and the residue was dried in a high vacuum pump. The desirable acyl chlorides
10a–10g were obtained and used without purification directly in the next reaction, assuming
a 100% yield.

4-(chlorocarbonyl)phenyl acetate (10a): the compound was synthesized according to the
general procedure, starting from 4-acetoxybenzoic acid (9a) (264 mg, 1.47 mmol) and SOCl2
(425.2 µL, 5.86 mmol) in 4.0 mL toluene.

4-(chlorocarbonyl)-2,6-dimethoxyphenyl acetate (10b): the compound was synthesized ac-
cording to the general procedure, starting from 4-acetoxy-3,5-dimethoxybenzoic acid (9a)
(280 mg, 1.17 mmol) and SOCl2 (338.2 µL, 4.66 mmol) in 3.5 mL toluene.

Benzoyl chloride (10c): the compound was synthesized according to the general procedure,
starting from benzoic acid (8c) (300 mg, 2.46 mmol) and SOCl2 (712.8 µL, 9.83 mmol) in
5.5 mL toluene.
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2-hydroxybenzoyl chloride (10d): the compound was synthesized according to the general
procedure, starting from 2-hydroxybenzoic acid (8d) (300 mg, 2.17 mmol) and SOCl2
(630.3 µL, 8.69 mmol) in 6.0 mL toluene.

(E)-4-(3-chloro-3-oxoprop-1-en-1-yl)phenyl acetate (10e): the compound was synthesized ac-
cording to the general procedure, starting from (E)-3-(4-acetoxyphenyl)acrylic acid (9e)
(300 mg, 1.45 mmol) and SOCl2 (422.2 µL, 5.82 mmol) in 3.5 mL toluene.

(E)-4-(3-chloro-3-oxoprop-1-en-1-yl)-2-methoxyphenyl acetate (10f): the compound was synthe-
sized according to the general procedure, starting from (E)-3-(4-acetoxy-3-methoxyphenyl)
acrylic acid (9f) (300 mg, 1.27 mmol) and SOCl2 (368.5 µL, 5.08 mmol) in 3.0 mL toluene.

(E)-3-(4-methoxyphenyl)acryloyl chloride (10g): the compound was synthesized according
to the general procedure, starting from (E)-3-(4-methoxyphenyl)acrylic acid (8g) (200 mg,
1.12 mmol) and SOCl2 (325.7 µL, 4.49 mmol) in 3.0 mL toluene.

3.1.7. General Procedure for the Synthesis of Hybrid Compounds 11a–11g

The appropriate chloride (1.5 eq.) 10a–10c, 10e–10h, and carboxamide 7 (1 eq.) were
diluted in THF, and Et3N was added. The mixture was then stirred overnight at 50 ◦C under
an inert atmosphere and monitored by TLC. After completion of the reaction, the mixture
was cooled to room temperature and then extracted three times with ethyl acetate; the
organic layer was collected, dried over Na2SO4, and evaporated under reduced pressure.
The desirable final hybrid compounds (11a–11g) were obtained in a solid form after the
suitable purification process.

4-((2-(1-ethyl-4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxamido)ethyl)carbamoyl)phenyl ac-
etate (11a): the compound was synthesized according to the general procedure, starting
from 4-(chlorocarbonyl)-phenyl acetate (10a) (290.6 mg, 1.46 mmol) and carboxamide 7
(268.5 mg, 0.97 mmol), in 5 mL of THF and 0.44 mL of Et3N. After the work-up proce-
dure, the product was obtained upon recrystallization from ethyl acetate, as a white solid.
Yield: 95%; m.p. 137–145 ◦C; 1HNMR (600 MHz, DMSO-d6) δ (ppm) 17.35 (s, 1H, OH),
10.48 (s, 1H, CONHCH2), 8.68 (s, 1H, CH2NHCO), 8.11 (d, J = 7.8 Hz, 1H, Ar-H), 7.88 (d,
J = 8.4 Hz, 2H, H-3′ & H-5′), 7.80 (t, J = 7.8 Hz, 1H, Ar-H), 7.66 (d, J = 8.4 Hz, 1H, Ar-H),
7.37 (t, J = 7.8 Hz, 1H, Ar-H), 7.22 (d, J = 8.4 Hz, 2H, H-2′ & H-6′), 4.29 (q, J = 7.2 Hz, 2H,
NCH2CH3), 3.59 (br, 2H, H-11), 3.49 (br, 2H, H-12), 2.29 (s, 3H, CH3COOAr), 1.21 (t, J = 7.2
Hz, 3H, NCH2CH3);13C NMR (150 MHz, DMSO-d6) δ ppm 171.06, 168.95, 165.94, 161.14,
152.60, 138.65, 134.31, 132.06, 128.66, 124.75, 122.32, 121.68, 115.33, 115.00, 95.97, 38.89, 38.19,
36.64, 20.85, and 12.72; HR-MS m/z (neg): 437.1587 C23H22O6N3 (calcd. 436.15055).

4-((2-(1-ethyl-4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxamido)ethyl)carbamoyl)-2,6-dimethoxyphenyl
acetate (11b): the compound was synthesized according to the general procedure, starting
from 4-(chlorocarbonyl)-2,6-dimethoxyphenyl acetate (10b) (305.3 mg, 1.18 mmol) and car-
boxamide 7 (216.6 mg, 2.79 mmol), in 4 mL of THF and 0.36 mL of Et3N. After the work-up
procedure, the product was obtained as a white solid upon flash column chromatography.
Yield: 80%; m.p. 192–194 ◦C; 1H NMR (600 MHz, DMSO-d6) δ (ppm) 17.36 (s, 1H, OH),
10.49 (s, 1H, CONHCH2), 8.70 (s, 1H, CH2NHCO), 8.11 (d, J = 7.8 Hz, 1H, Ar-H), 7.81 (t,
J = 8.4 Hz, 1H, Ar-H), 7.67 (d, J = 8.4 Hz, 1H, Ar-H), 7.37 (t, J = 7.2 Hz, 1H, Ar-H), 7.21 (s,
2H, H-3′ & H-5′), 4.29 (q, J = 7.2 Hz, 2H, NCH2CH3), 3.80 (s, 6H, 2 x Ar-OCH3), 3.61 (br,
2H, H-11), 3.50 (br, 2H, H-12), 2.26 (s, 3H, CH3COOAr), 1.21 (t, J = 7.2 Hz, 3H, NCH2CH3);
13C NMR (150 MHz, DMSO-d6) δ ppm 171.08, 171.02, 167.85, 166.02, 161.17, 151.49, 138.67,
134.36, 132.74, 130.12, 124.75, 122.37, 115.32, 115.04, 104.18, 95.98, 56.06, 38.95, 38.14, 36.64,
20.14, and 12.71; HR-MS m/z (neg): 497.1798 C25H26O8N3 (calcd. 496.17166).

N-(2-benzamidoethyl)-1-ethyl-4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxamide (11c): the
compound was synthesized according to the general procedure, starting from benzoyl
chloride (10c) (275.0 mg, 1.95 mmol) and carboxamide 7 (359.1 mg, 1.30 mmol), in 6.5 mL
of THF and 0.59 mL of Et3N. After the work-up procedure, the product was obtained as a
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white solid upon flash column chromatography. Yield: 56%; m.p. 145–150 ◦C; 1H NMR
(300 MHz, DMSO-d6) δ (ppm) 17.28 (s, 1H, OH), 10.44 (br, 1H, CONHCH2), 8.63 (br, 1H,
CH2NHCO), 8.08 (dd, J = 8.1, 1.2 Hz, 1H, Ar-H), 7.82 (m, 2H, Ar-H), 7.77 (d, J = 7.2 Hz, 1H,
Ar-H), 7.64 (d, J = 8.7 Hz, 1H, Ar-H), 7.48 (m, 3H, Ar-H), 7.35 (t, J = 7.5 Hz, 1H, Ar-H), 4.28
(q, J = 7.2 Hz, 2H, NCH2CH3), 3.61 (br, 2H, H-11), 3.50 (br, 2H, H-12), 1.21 (t, J = 6.9 Hz,
3H, NCH2CH3); 13C NMR (75 MHz, DMSO-d6) δ ppm 171.07, 171.01, 166.68, 161.14, 138.65,
134.52, 134.34, 131.16, 128.26, 127.21, 124.76, 122.35, 115.33, 115.02, 95.97, 38.878, 38.212,
36.64, and 12.74; HR-MS m/z (neg): 379.1532 C21H20O4N3 (calcd. 378.14505).

(E)-4-(3-((2-(1-ethyl-4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxamido)ethyl)amino)-3-oxoprop-
1-en-1-yl)phenyl acetate (11d): the compound was synthesized according to the general pro-
cedure, starting from (E)-4-(3-chloro-3-oxoprop-1-en-1-yl)-phenyl acetate (10e) (334.1 mg,
1.48 mmol) and carboxamide 7 (272.9 mg, 0.99 mmol), in 5 mL of THF and 0.45 mL of Et3N.
After the work-up procedure, the product was obtained upon recrystallization from hexane
as a white solid. Yield: 57%; m.p. 147–150 ◦C; 1H NMR (600 MHz, DMSO-d6) δ (ppm) 17.33
(s, 1H, OH), 10.43 (br, 1H, CONHCH2), 8.34 (br, 1H, CH2NHCO), 8.10 (d, J = 7.8 Hz, 1H,
Ar-H), 7.80 (t, J = 7.2 Hz, 1H, Ar-H), 7.66 (d, J = 8.4 Hz, 1H, Ar-H), 7.61 (d, J = 8.4 Hz, 2H,
H-2′ & H-6′), 7.44 (d, J = 15.6 Hz, 1H, H-16), 7.36 (t, J = 7.2 Hz, 1H, Ar-H), 7.17 (d, J = 8.4 Hz,
1H, Ar-H), 6.60 (d, J = 15.6 Hz, 1H, H-15), 4.29 (q, J = 7.2 Hz, 2H, NCH2CH3), 3.54 (br, 2H,
H-11), 3.42 (br, 2H, H-12), 2.27 (s, 3H, CH3COOAr), 1.21 (t, J = 7.2 Hz, 3H, NCH2CH3);
13C NMR (150 MHz, DMSO-d6) δ ppm 171.07, 170.97, 169.04, 165.26, 161.14, 151.14, 138.66,
137.86, 134.33, 132.51, 128.66, 124.76, 122.35, 122.07, 115.32, 115.01, 95.94, 38.38, 36.64, 20.85,
and 12.73; HR-MS m/z (neg): 463.1743 C25H24O6N3 (calcd. 462.16611).

(E)-4-(3-((2-(1-ethyl-4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxamido)ethyl)amino)-3-
oxoprop-1-en-1-yl)-2-methoxyphenyl acetate (11e): the compound was synthesized ac-
cording to the general procedure, starting from (E)-4-(3-chloro-3-oxoprop-1-en-1-yl)-2-
methoxyphenyl acetate (10f) (320.9 mg, 1.26 mmol) and carboxamide 7 (231.3 mg, 0.84
mmol), in 4.5 mL of THF and 0.38 mL of Et3N. After the work-up procedure, the prod-
uct was obtained upon recrystallization from ethyl acetate as a white solid. Yield: 59%;
m.p. 115–121 ◦C; 1H NMR (600 MHz, DMSO-d6) δ (ppm) 17.33 (s, 1H, OH), 10.43 (br, 1H,
CONHCH2), 8.32 (br, 1H, CH2NHCO), 8.11 (d, J = 7.8 Hz, 1H, Ar-H), 7.80 (t, J = 7.8 Hz, 1H,
Ar-H), 7.66 (d, J = 8.7 Hz, 1H, Ar-H), 7.43 (d, J = 15.6 Hz, 1H, H-16), 7.36 (t, J = 7.2 Hz, 1H,
Ar-H), 7.32 (d, J = 1.2 Hz, 1H, H-3′), 7.16 (dd, J = 8.4, 1.8 Hz, 1H, H-5′), 7.11 (d, J = 8.4 Hz, 1H,
H-6′), 6.23 (d, J = 15.6 Hz, 1H, H-15), 4.29 (q, J = 7.2 Hz, 2H, NCH2CH3), 3.81 (s, 3H, OCH3),
3.54 (br, 2H, H-11), 3.42 (br, 2H, H-12), 2.26 (s, 3H, CH3COOAr), 1.21 (t, J = 7.2 Hz, 3H,
NCH2CH3); 13C NMR (150 MHz, DMSO-d6) δ ppm 171.14, 171.04, 168.54, 165.34, 161.19,
151.09, 140.19, 138.71, 138.32, 134.44, 133.90, 124.84, 123.32, 122.45, 122.29, 120.20, 115.13,
111.53, 95.99, 55.81, 38.45, 36.71, 20.48, and 12.83; HR-MS m/z (neg): 493.1849 C25H26O7N3
(calcd. 492.17709).

(E)-1-ethyl-4-hydroxy-N-(2-(3-(4-methoxyphenyl)acrylamido)ethyl)-2-oxo-1,2-dihydroquinoline-3-
carboxamide (11f): the compound was synthesized according to the general procedure,
starting from (E)-3-(4-methoxyphenyl)acryloyl chloride (10g) (136.2 mg, 0.69 mmol) and
carboxamide 7 (126.6 mg, 0.46 mmol), in 2.5 mL of THF and 0.21 mL of Et3N. After the
work-up procedure, the product was obtained upon recrystallization from methanol as a
white solid. Yield: 55%; m.p. 153–155 ◦C; 1H NMR (600 MHz, DMSO-d6) δ (ppm) 17.30 (s,
1H, OH), 10.42 (br, 1H, CONHCH2), 8.24 (br, 1H, CH2NHCO), 8.10 (d, J = 7.8 Hz, 1H, Ar-H),
7.79 (t, J = 7.8 Hz, 1H, Ar-H), 7.65 (d, J = 8.7 Hz, 1H, Ar-H), 7.50 (d, J = 8.4 Hz, 2H, H-2′ &
H-6′), 7.35 (m, 2H, H-16 & Ar-H), 6.96 (d, J = 8.4 Hz, 2H, H-3′ & H-5′), 6.48 (d, J = 15.6 Hz,
1H, H-15), 4.28 (q, J = 7.2 Hz, 2H, NCH2CH3), 3.78 (s, 3H, ArOCH3), 3.53 (br, 2H, H-11),
3.41 (br, 2H, H-12), 1.21 (t, J = 7.2 Hz, 3H, NCH2CH3); 13C NMR (150 MHz, DMSO-d6)
δ ppm 171.06, 170.95, 165.62, 161.13, 160.29, 138.64, 138.49, 134.30, 129.08, 127.39, 124.74,
122.32, 119.49, 115.32, 114.99, 114.33, 95.93, 55.22, 38.43, 38.33, 36.63, and 12.73; HR-MS m/z
(neg): 435.1794 C24H24O5N3 (calcd. 434.17123).
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(E)-N-(2-cinnamamidoethyl)-1-ethyl-4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxamide (11g):
the compound was synthesized according to the general procedure, starting from cinnamoyl
chloride (10h) (181.5 mg, 1.09 mmol) and carboxamide 7 (200.0 mg, 0.73 mmol), in 1.5 mL
of THF and 0.1 mL of Et3N. After the work-up procedure, the product was obtained upon
recrystallization from methanol as a white solid. Yield: 90%; m.p. 157-162 oC; 1H NMR
(600 MHz, DMSO-d6) δ (ppm) 17.33 (s, 1H, OH), 10.43 (br, 1H, CONHCH2), 8.34 (br, 1H,
CH2NHCO), 8.10 (d, J = 8.4 Hz, 1H, Ar-H), 7.80 (t, J = 7.8 Hz, 1H, Ar-H), 7.66 (d, J = 8.4 Hz,
1H, Ar-H), 7.56 (d, J = 7.2 Hz, 2H, Ar-H), 7.44 (d, J = 15.6 Hz, 1H, H-16), 7.38 (m, 3H, Ar-H),
6.63 (d, J = 15.6 Hz, 1H, H-15), 4.29 (q, J = 7.2 Hz, 2H, NCH2CH3), 3.54 (br, 2H, H-11), 3.42
(br, 2H, H-12), 1.21 (t, J = 7.2 Hz, 3H, NCH2CH3); 13C NMR (150 MHz, DMSO-d6) δ ppm
171.09, 170.99, 165.34, 161.16, 138.82, 138.66, 134.85, 134.33, 129.47, 128.93, 127.54, 124.78,
122.36, 122.00, 115.34, 115.03, 95.95, 38.39, 36.66, and 12.76; HR-MS m/z (neg): 405.1689
C23H22O4N3 (calcd. 404.16068).

3.1.8. Synthesis of 4-Hydroxy-1-methyl-3-nitroquinolin-2(1H)-one (13)

HNO3 (70%, 9 mmol) is added dropwise to a suspension of 4-hydroxyquinolin-2(1H)-
one (12) (6 mmol) in glacial acetic acid (10 mL). The mixture was heated at 90 ◦C for 1–2 h
and then cooled to r.t. The solid was collected through vacuum filtration and washed with
Et2O (3 × 15 mL). Characterization data of the compound were identical to those reported
in the literature [76]; Yield: 87%; m.p. 159–161 ◦C; 1H NMR (300 MHz, CDCl3) δ (ppm)
13.69 (s, 1H, -OH), 8.28 (d, J = 7.0 Hz, 1H, H-5), 7.81 (t, J = 7.2 Hz, 1H, H-7), 7.36 (m, 2H,
J = 7.0 Hz, H-6/8), 3.70 (s, 3H, N-CH3); 13C NMR (CDCl3, 75 MHz) δ (ppm) 165.2, 154.8,
140.8, 136.4, 126.8, 123.1, 114.6, 113.1, 99.2, and 29.6.

3.1.9. Synthesis of the 3-Amino-4-hydroxy-1-methylquinolin-2(1H)-one Hydrochloride (14)

4-hydroxy-1-methyl-3-nitroquinolinone (13) is added in equimolar amount of aqueous NaOH
1M, and the mixture was stirred until homogeneous. An equimolar amount of sodium
dithionite (Na2S2O4) was then added, and the reaction mixture was stirred for 30 min in
r.t., while the reaction was monitored by a thin-layer chromatography. After the reaction’s
completion, the mixture was acidified with an aqueous HCl 10% in an ice-water bath, and
the precipitated solid was collected through vacuum filtration. The product was used
in the next step without any further purification. Yield: 96%; m.p. > 250 ◦C; 1H NMR
(CDCl3/DMSO-d6, 300 MHz) δ (ppm) 7.71 (d, J = 7.0 Hz, 1H, Ar-H), 7.19 (t, J = 7.8 Hz, 1H,
Ar-H), 7.96 (d, J = 7.0 Hz, 1H, Ar-H), 6.86 (t, J = 7.8 Hz 1H, Ar-H), 3.25 (s, 3H, N-CH3 ), 4.70
(s, 2H, NH2.HCl).

3.1.10. General Procedure for the Preparation of Reverse Amides 16a–16d

The synthesized hydrochloric salt (14) was added to a round bottom flask containing
THF solvent, and the mixture was stirred for 15 min. An appropriate amount of anhydrous
Et3N and the corresponding chloride were then added, and the reaction mixture was
refluxed at 52 ◦C for 2–3 h under an inert atmosphere. The reaction is monitored by TLC.
After the reaction was complete, a small amount of water was added to the mixture and
then acidified with aqueous HCl 10% in an ice-water bath, and the solid precipitated was
collected through vacuum filtration. Product 16 was obtained as a solid, and if required, it
was further purified by recrystallization from methanol.

N-(4-hydroxy-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)butyramide (16a): the compound was
synthesized according to the general procedure, starting from 3-amino-4-hydroxy-1-
methylquinolin-2(1H)-one hydrochloride (14) (200 mg, 1.7 mmol) in 5 mL THF and pro-
ceeding with anhydrous Et3N (0.3 mL, 4.25 mmol) and butyryl chloride (15a) (266.4 mg,
2.50 mmol). The reaction mixture was refluxed for 2.5 h. After the work-up procedure,
the product was obtained without any further purification. Yield: 46%; m.p. 122–123 ◦C;
1H NMR (CDCl3, 600 MHz) δ (ppm) 12.90 (s,1H, OH), 8.72 (s, 1H, NH), 8.15 (dd, J = 7.8,
1.2 Hz, 1H, Ar-H), 7.57 (ddd, J = 8.5, 7.3, 1.4 Hz, 1H, Ar-H), 7.32 (m, 2H, Ar-H), 3.75 (s,
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3H, N-CH3), 2.51 (t, J = 7.2 Hz, 2H, COCH2), 1.81 (sextep, J = 7.2 Hz, 2H, CH2CH2CH3),
1.04 (t, J = 7.2 Hz, 3H, CH2CH3); 13C NMR (CDCl3, 150 MHz) δ (ppm) 173.7, 159.5, 148.8,
136.5, 130.3, 124.6, 122.5, 117.2, 113.6, 109.2, 38.7, 29.9, 19.2, and 13.5; ESI-MS (m/z): 261.1
[M + H]+, 283 [M + 23]+, 191 [M − 69]+.

N-(4-hydroxy-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)-4-methylbenzamide (16b): the compound
was synthesized according to the general procedure, starting from 3-amino-4-hydroxy-
1-methylquinolin-2(1H)-one hydrochloride (14) (490 mg, 2.16 mmol) in 12 mL THF and
proceeding with anhydrous Et3N (0.73 mL, 5.4 mmol) and 4-methyl-benzoyl chloride
(15b) (400.4 mg, 2.59 mmol). The reaction mixture was refluxed for 2 h. After the work-
up procedure, the product was obtained without further purification. Yield: 30%; m.p.
188–190 ◦C; 1H NMR (CDCl3, 300 MHz) δ (ppm) 12.83 (s, 1H, OH), 9.27 (s, 1H, NH), 7.85
(dd, J = 6.0, 3.0 Hz, 1H, Ar-H), 7.59 (d, J = 6.0 Hz, 2H, H-12 & H-16), 7.31 (t, J = 9.0 Hz, 1H,
Ar-H), 7.11 (d, J = 9.0 Hz, 1H, Ar-H), 7.14 (d, J = 9.0 Hz, 1H, Ar-H), 7.04 (br, 1H, Ar-H),
7.05 (d, J = 6.0 Hz, 2H, H-13 & H-15), 3.51 (s, 3H, N-CH3), 2.19 (s, 3H, Ar-CH3); 13C NMR
(CDCl3, 75 MHz) δ (ppm) 166.8, 159.5, 152.3, 142.8, 137.9, 131.4, 130.5, 129.6, 128.4, 123.9,
122.5, 116.5, 115.1, 109.3, 29.9, and 21.5; ESI-MS (m/z): 309.1 [M + H]+, 219 [M − 90]+.

2-hydroxy-N-(4-hydroxy-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)benzamide (16c): the com-
pound was synthesized according to the general procedure, starting from 3-amino-4-
hydroxy-1-methylquinolin-2(1H)-one hydrochloride (14) (490 mg, 2.16 mmol) in 12 mL
THF and proceeding with anhydrous Et3N (0.73 mL, 5.4 mmol) and 2-hydroxy-benzoyl
chloride (10d) (405.5 mg, 2.59 mmol). The reaction mixture was refluxed for 3 h. After the
work-up procedure, the product was obtained upon recrystallization from methanol. Yield:
42%; m.p. > 250 ◦C; 1H NMR (DMSO, 300 MHz) δ (ppm) 13.28 (s, 1H, Ar-OH), 11.58 (s, 1H,
OH), 9.74 (s, 1H, NH), 8.03 (m, 2H, Ar-H), 7.63 (br, 1H, Ar-H), 7.50 (m, 2H, Ar-H), 7.33 (br,
1H, Ar-H), 7.03 (m, 2H, Ar-H), 3.69 (s, 3H, N-CH3); 13C NMR (DMSO, 75 MHz) δ (ppm):
165.2, 159.0, 157.2, 148.9, 136.9, 134.6, 134.5, 131.0, 130.7, 123.7, 122.3, 119.7, 117.0, 116.4,
114.7, 109.6, and 29.7; ESI-MS (m/z): 309.1 [M + H]+, 291.3 [M − 17]+, 215 [M − 93]+.

3.2. Biological In Vitro Assays
3.2.1. Determination of the Reducing Activity of DPPH Radical

The assay for the determination of the reducing activity of DPPH radical was per-
formed according to the methods of Hadjipavlou-Litina et al., which we have also used
in our previous works [65,67,77]. The results presented in Table 1 were averaged and
compared with the appropriate standard nordihydroguaiaretic acid (NDGA).

3.2.2. Inhibition of Linoleic Acid Lipid Peroxidation

The assay for the determination of the inhibition of linoleic acid peroxidation induced
by the free radical initiator 2,20-Azobis(2-amidinopropane) dihydrochloride (AAPH) was
performed according to the methods of Hadjipavlou-Litina et al., which we have also used
in our previous works [65,67,77].

3.2.3. Competition of the Tested Compounds with DMSO for Hydroxyl Radicals

The assay was performed according to the methods of Pontiki et al. Trolox was used
as a reference compound [78].

3.2.4. ABTS+—Decolorization Assay for Antioxidant Activity

The experimental technique used in this section was performed according to the
methods of Pontiki et al. [78]. The results were compared to the appropriate standard
inhibitor Trolox.
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3.2.5. Non-Enzymatic Assay of Superoxide Radicals Measurement of Superoxide Radical
Scavenging Activity

The experimental technique used for this assay was performed according to our
previous works. Caffeic acid was used as an appropriate standard [61,70].

3.2.6. Soybean LOX Inhibition Study In Vitro

The assay for the determination of the inhibition of soybean LOX was performed
according to the methods of Hadjipavlou-Litina et al., which we have also used in our
previous works [65,67,77].

3.2.7. Computational Methods–Molecular Docking Studies on Soybean Lipoxygenase

For the docking studies, soybean lipoxygenase (PDB ID: 3PZW) was used, and the
visualization was accomplished through UCSF Chimera (resource for Biocomputing, Vi-
sualization, and Informatics at the University of California, San Francisco, CA, USA) [79]
and Free Maestro [75]. The protein was prepared: water molecules were removed, missing
residues were added with Modeller (10.3) (Departments of Biopharmaceutical Sciences
and Pharmaceutical Chemistry, and California Institute for Quantitative Biomedical Re-
search, Mission Bay Byers Hall, University of California San Francisco, San Francisco, CA
94143, USA), hydrogen atoms and AMBER99SB-ILDN charges were added, and the charge
on iron was set to +2.0, with no restraint applied to the iron atom and the ligands [80].
Open-Babel (3.1.1) was used to generate and minimize ligand 3D coordinates using the
MMFF94 force field [81]. Ligand topologies and parameters were generated by ACPYPE
(Ante-ChamberPYthon Parser interfacE) (24 December 2021) [82] using Antechamber (Am-
berTools 22.10) [83]. Energy minimizations were carried out using the AMBER99SB-ILDN
force field [84] with GROMACS (4.6.5). Docking was performed with AutoDockVina (1.2.3)
applying a grid box of size 100 Å, 70 Å, 70 Å in the x, y, z dimensions [85]. The generation
of docking input files and the analysis of the docking results was accomplished by UCSF-
Chimera. Docking was carried out with an exhaustiveness value of 10 and a maximum
output of 20 docking modes.

4. Conclusions

In conclusion, this work reports the synthesis of three sets of compounds, which share
the privileged structural framework of 4-hydroxy-2-quinolinone as a common feature.
Among the synthesized analogues, eighteen quinolinone–carboxamide derivatives (3a–3e,
3g–3k, 3n–3s, 3u, and 7), all the seven hybrid compounds (11a–11g) and two of the reverse
amides (16b and 16c), to our knowledge have not been reported in the literature. In order
to investigate the multi-target character of the compounds, we evaluated their antioxidant
profile via five in vitro tests, as well as their ability to inhibit soybean LOX, as an indication
of their anti-inflammatory activity. In this way, we tried to build a structure–activity
relationship and determine how the final biological effects are influenced in relation to the
different substituents attached to the nitrogen of quinolinone moiety and to the amide bond.
Results revealed carboxamides 3h and 3s as the most potent LOX inhibitors (IC50 = 10 µM).
Both could be used as lead compounds for further rational design. The 3g analogue
is the compound with the best-combined activity, exhibiting good antioxidant and anti-
inflammatory activity (LOX inhibition IC50 = 27.5 µM, 100% inhibition of lipid peroxidation,
67.7% ability to scavenge hydroxyl radicals and 72.4% in ABTS radical cation decolorization
assay). The in vitro results were supported by the in silico studies on soybean LOX for the
most potent synthesized quinolinone–carboxamides (3h and 3s), indicating interactions in
an alternative binding site than the catalytic site already validated by the binding mode of
NDGA, a potent well known LOX inhibitor.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules29010190/s1: The 1H-NMR spectra of all the synthesized
compounds and 13C-NMR and HRMS spectra of the novel synthesized compounds.

https://www.mdpi.com/article/10.3390/molecules29010190/s1
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