Detection of the Epstein-Barr virus by the polymerase chain reaction in immunosuppressed and immunocompromised patients

T. LILOGLOU1,2, A. GIANNOUNDIS1, M. ERGAZAKI1,2, M. KOFFA1,2 and D.A. SPANDIDOS1,2

1Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, Athens; 2University of Crete, Medical School, Laboratory of Clinical Virology, Heraklion, Greece

Received March 15, 1994; Accepted April 14, 1994

Abstract. DNA extracted from the blood of immunosuppressed and immunocompromised individuals and from patients with infectious mononucleosis, leukaemias and lymphomas were studied using the Polymerase Chain Reaction (PCR) technique. The oligonucleotide primers used for the detection of the Epstein-Barr virus (EBV) amplify a 375bp sequence from the EcoRI B fragment of the viral genome. EBV specific sequences were amplified from the blood samples of 18 out of 65 patients, most of which were transplant patients (9 out of 31). The results confirmed the association of EBV with clinical disorders in immunodeficient and immunocompromised patients and the importance of PCR method in routine diagnosis.

Introduction

Epstein-Barr Virus (EBV) is a member of the human herpes virus family and the causative agent of infectious mononucleosis (1). EBV has a B-lymphocyte tropism and is strongly associated with post-transplanted lymphoproliferative disorders, Hodgkin's disease, nasopharyngeal carcinoma, Burkitt's lymphoma and lymphoproliferative disorders of primary and secondary immunodeficiency (2,3).

The virus, which has been detected worldwide, invades B-lymphocytes that have EBV receptors in common with receptors for the complement components. Selected epithelial cells of different organs bearing the same receptors may also become infected. Primary infection occurring in childhood is mostly asymptomatic but in later childhood and adolescence may result in lymphoproliferative diseases. In immunosuppressed transplant patients and in individuals with the acquired immunodeficiency virus, in whom there is a loss in T-lymphocyte mediated control of stimulated B lymphocytes, malignant lymphomas may arise from activation of latently EBV-infected B lymphocytes (4).

The detection of EBV infections is limited by the lack of routine laboratory techniques and diagnosis of primary or reactivated EBV infection is often based on serological tests (1,5). Recently, in vitro amplification of specific nucleic acid sequences by the PCR technique has been applied for the identification of EBV DNA in immunosuppressed patients (6,7).

PCR provides a specific, rapid and sensitive means for the detection of viral genomes and may be used in routine diagnosis (3,5,6,8,9).

We have employed the PCR technique for the detection of EBV in blood samples from various groups such as kidney and heart transplanted patients, AIDS patients and patients with infectious mononucleosis, Hodgkin's disease, and different lymphomas.

Materials and methods

DNA extraction. DNA was extracted from leukocytes from the blood of 65 immunosuppressed patients. 3-5 ml of each blood sample were diluted with equal volume of 0.9% NaCl. The mixture was overlaid onto an equal volume of Lymphoprep (Nyomed AS). Samples were then centrifuged at 1,800 rpm for 35 min and the white cell layer was collected. Cells were washed twice with 0.9% NaCl. 400 μl of TES (10 mM Tris HCl, pH 8.0, 1 mM EDTA, 0.1% SDS) containing 100 μg/ml Proteinase Κ was added to the resulting pellet. After one hour of incubation at 60°C, fresh Proteinase Κ was added at concentration 100 μg/ml and incubation was continued for another hour. Samples were then extracted with equal volume of phenol, phenol/chloroform and chloroform. DNA was precipitated with the addition of 20 μl 5 M NaCl and 1 ml ethanol. The samples were stored at -20°C overnight. DNA was recovered by centrifugation at 13,000 rpm for 15 min at 4°C, washed with 70% ethanol and the pellet was resuspended in 50-100 μl distilled water.

Oligonucleotide primers and PCR. One set of primers was used for the amplification of a 375bp region of the EBV EcoRI B fragment of the virus genome (10,11) (Table I).

PCR was performed with 1-3 μg genomic DNA in 100 μl of the reaction containing buffer (Perkin-Elmer Cetus),10X

Correspondence to: Professor D.A. Spandidos, National Hellenic Research Foundation, Institute of Biological Research and Biotechnology, 48 Vas. Constantinou Avenue, Athens 116 35, Greece

Key words: Epstein-Barr virus, polymerase chain reaction, immunosuppressed patient, immunocompromised patient
Table I. Primers used for the amplification of a 375bp fragment from the EBV genome.

<table>
<thead>
<tr>
<th>Primers</th>
<th>Sequences</th>
<th>Location on EBV genome</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBV 1</td>
<td>5' GTGTGCGTCGTGCCGGGGCACCCAC 3'</td>
<td>102669-102694</td>
</tr>
<tr>
<td>EBV 2</td>
<td>5' ACCTGGGAGGGCCATCGCAAGCTCC 3'</td>
<td>103019-103044</td>
</tr>
</tbody>
</table>

Restriction endonuclease cleavage. 10 µl aliquots of the PCR product were separately digested with 20U of HindIII, BstNI and PvuII (New England Biolabs), following the conditions recommended by the suppliers.

Results

Sixty-five blood specimens, including samples of infectious mononucleosis, Hodgkin's disease, AIDS, different leukemias and lymphomas and samples from heart and kidney transplant patients were examined. Positivity of the samples were judged by the presence of a 375bp following the electrophoretic analysis of the PCR products (Fig. 1).

EBV-specific sequences were amplified in the blood of 7 out of 21 kidney transplant patients, 2 out of 10 heart transplant patients and all individuals with infectious mononucleosis and angioablatic lymphathenopathy. EBV was not detected in 4 patients with Hodgkin's disease. Additionally, EBV was detected in 1 out of 6 leukemias and lymphomas, 3 out of 17 patients with high titres of IgG and IgM and 1 out of 4 AIDS patients. The results of EBV detection by PCR are summarised in Table III.

Discussion

EBV infects B lymphocytes leading to their cellular proliferation that is controlled by a T lymphocyte response. Thereby, infection with EBV has been described as a viral process that generates a prominent immune response. A prominent T-lymphocyte proliferation occurring in response to EBV-carrying B lymphocytes results in infectious...
mononucleosis. Lymphoproliferative disorders following organ transplantation or AIDS represent an unchecked proliferation of EBV infected B-lymphocytes (7).

The diagnosis of EBV infections has generally been based on clinical features, a Monospot test or on serological evidence.

The PCR technique, because of its ability to detect reduced numbers of viral copies, is an important diagnostic tool in diseases caused by EBV to immunosuppressed and immunocompromised individuals. It is a rapid, specific and sensitive method and is independent of the humoral immune status of the patients. The absence of increasing levels of antibody to EBV in some patients may reflect impaired humoral immunity rather than lack of active infection.

In transplant recipients taking immunosuppressive agents post-transplant lymphoproliferative disorders have emerged as potentially life-threatening complications. Early recognition of these disorders is important because many patients would recover with modulation of their immunosuppressive therapy.

Finally, establishing the presence of EBV has prognostic importance because EBV-associated tumor progression can be reversible upon reduction or discontinuation of immunosuppression.