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Autoionizing multiply excited states offer unusual challenges to the theory of electronic structure and
spectra because of the presence of strong electron correlations, of their occasional weak binding, of their
proximity to more than one threshold, and of their degeneracy with many continua. Here we discuss a
theory that addresses these difFiculties in conjunction with the computation of their wave functions and
intrinsic properties. Emphasis is given on the justification of the possible presence of self-consistently
obtained open-channel-like (OCL) correlating configurations in the square-integrable representation of
such states and on their effect on the energy E and the width I . Application of the theory has allowed
the prediction of two hitherto unknown He triply excited resonances, the 2s2p P (E=59.71 eV, above
the He ground state, I =79 meV) and the 2p D' (E=59.46 eV, I =282 meV) (1 a.u. =27.2116 eV).
These resonances are above the singly excited states of He and are embedded in its doubly excited spec-
trum. The relatively broad 2p D' state interacts strongly with the He 2s2p P' ed continuum. The
effect of this interaction has been studied in terms of the coupling with fixed core scattering states as well
as with a self-consistently computed OCL bound configuration. The position of the He 2p' D' reso-
nance is below that of the He 2p 'D autoionizing state at 59.91 eV and of the He 2p P bound state at
59.68 eV. The partial decay widths to the three important open channels are y(2s2p P')=252 meV,
y(1s2p 'P')=21 meV, y(1s2p 'P')=9 meV. The final core states are also represented by correlated
(multiconfigurational Hartree-Fock) functions. The 2s2p P state couples to four neighboring He
thresholds, the 2s2p P', 2p P, 'D, and 2s2p 'P'. It is above the He 2s2p P' threshold at 58.31 eV,
with respect to which it is a valence shape resonance, and below the He 2p 'D and 2s2p 'P' autoionizing
states. In the limit of an exact energy calculation, we suggest that its position would also come below
that of the 2p P state, which it overlaps. Its partial widths are y(2s2p P') =60 meV, y(1s2p P') =9
meV, y(1s2p 'P') =10 meV. The present results, considered together with published ones on other n=2
intrashell states, show that the recently measured [R. N. Gosselin and P. Marmet, Phys. Rev. A 41, 1335
(1990)] closely lying structures at 58.415 and 58.48 eV cannot correspond to the He 2p S' and D'
states, as these authors proposed.

PACS number(s): 31.50.+w, 31.20.Tz, 32.80.Dz, 34.80.Dp

I. INTRODUCTION

In a recent publication, Gosselin and Marmet [1]
presented new results from high-resolution measurements
of He triply excited resonances. They observed and ana-
lyzed the well-known He 2s 2p D resonance at
58.283+0.003 eV as well as two "previously unknown
structures" at 58.415+0.005 and 58.48+0.02 eV. By

making the analogy with states of the carbon atom,
Gosselin and Marmet identified these peaks with the He
2p S' and 2p D' states, respectively.

In the present paper we show that this assignment is
incorrect. This conclusion follows from a review of the
existing literature on He n =2 triply excited states
(TES's) and from the results of new calculations. These
calculations —whose theoretical justification is the sub-
ject of Secs. III and IV—incorporate the efT'ects of elec-
tron correlation and have allowed the prediction of the
positions and the partial and total widths of the hitherto
unknown triply excited He resonances, 2s 2p P
(E =59.71 eV, I =79 meV) and 2p D' (E =59.46 eV,
1 =282 meV). [The conversion to eV above the He is 'S
ground state is done using E(He)= —2.90372 a.u. , 1

a.u. =27.2116 eV.]
The above two new He resonances are interesting in

many ways and have given us the opportunity to study
and discuss aspects of the theory and computation of lo-
calized states which belong to the continuous spectrum
and mix with open channels, and which are heavily corre-
lated, polyelectronic (i.e., with more than two electrons),
and quasibound in a weak (negative-ion) potential. Both
constitute prototypical examples of two categories of res-
onances: The He 2p D' state is a closed-channel
(Feshbach) resonance with respect to two thresholds,
mixing heavily with the (He 2s2p P')ed open channel
(due to the strong 2P ~2sed coupling) and lightly with
the (He ls2p 'P')ed channels (due to the relatively weak
2p ~ised coupling). The He 2s2p P state couples to
four neighboring thresholds of He doubly excited states.
It is a shape resonance with respect to He 2s2p P' at
58.31 eV, into which it decays. Its localization and subse-
quent autoionization are essentially the results of the
difference between state-specific self-consistent fields of
the initial (2s2p ) and final (2s2p P ep) states. Finally,
the He 2s2p P resonance is below the He 2p 'D and
2s2p 'P' thresholds. Although our computation placed it
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above the 2p P bound state by 0.025 eV, we predict that
its exact position is just below, i.e., it is a Feshbach reso-
nance with respect to this threshold as well.

II. KNOWN n =2 TRIPLY EXCITED STATES OF He

Since the early 1960s, the He spectrum has served as
a testing ground for theoretical as well as experimental
methods for the study of resonances. In this section, we
review brieAy some of the existing information on the en-
ergies and widths of the n =2 TES's of He as this re-
lates to the identifications of Ref. [1].

The He 2p S' state is a bound (discrete) state and
not a resonance [2—4]. Its energy is known from theory
as being around 59.33 eV above the ground state [3,4]
and, in fact, it was recently identified experimentally [5]
from the predicted characteristic property of its radiative
decay to the He 1s 2p P '+ e continuum [3,4].

As regards the 2s 2p D resonance, a very timely
finding of the new measurements [1] is that they placed it
29 meV below the position of the He 2s2p P' resonance,
(E =58.309+0.003 eV). In other words, it is a closed-
channel (Feshbach) resonance with respect to this thresh-
old. This finding should be added as an element to the re-
cent debate [6,7] on the theory and understanding of res-
onances and on appropriate methods for their computa-
tion. In an earlier paper [8], Chung and Davis had
disputed the original Fano and Cooper resonance assign-
ment and had concluded that "what has been seen in the
experiment could be the result of a postcollision interac-
tion effect." In his latest comment on the observed struc-
ture at 58.3 eV, Chung states (see Ref. [7], p. 695) that his
calculation "ruled out the possibility that this D struc-
ture is a Feshbach resonance lying below the 2s2p P'
threshold. " This statement is now in contradiction with
the recent experiment [1]. On the other hand, our posi-
tion has been that the fundamental criterion for under-
standing and for determining the existence of an N-
electron resonance is the direct or indirect manifestation
of its localization. In the case of the He D structure, it
represents a resonance regardless of whether it is above
or below the 2s2p P' threshold, and this is because there
exist appropriate multiconfigurational Hartree-Fock
(MCHF) solutions representing its localized part in
zeroth order. Knowledge of the energy of the He
2s2p D state relative to the He 2s2p P' threshold is
necessary not because one has to call it a "Feshbach" res-
onance or not (anyway, it is already below another
threshold, the He 2p 'D resonance at 59.91 eV), but be-
cause one has to know which channels are open and
which are closed when studying the decay dynamics or
when computing the total and the partial widths (see,
e.g. , [9]).

Let us now turn to four more states, 2s 2p P',
2s 2p P, 2S 2p S, and 2p P'. The established
2s 2p P' resonance at 57.22 eV [10] is outside the
present range of interest. For the 2s2p "P resonance,
large-scale computations [8], which, however, did not ac-
count for the energy shift due to explicit coupling with
the continuum, have produced an energy of 57.42 eV. A
recent computation of the complex energy of this state [6]

has obtained an energy shift 6=0.027 eV and a width
I =0.015 eV.

The information on the 2s2p S resonance is less
definitive. It has been assigned to experimental peaks
from scattering experiments, by Grissom, Compton, and
Garrett [11]at 58.8 or 59.4 eV, by Spence [12] at 59.0 eV,
and by van der Burgt, van Eck, and Heidemann [13] at
59.90 eV with a width of 400+100 meV. On the theoreti-
cal side, the early close-coupling calculations of Or-
monde, Kets, and Heidemann [14] predicted it to be at
59.4 eV with a width of I =300 meV, while Nesbet [15],
using the stabilization method, computed an energy of
59.32 eV after he shifted it downward by 0.2 eV, which
was the difference between his computed energy for the
2s 2p P' state and the exact one (E =57.22 eV). On the
other hand, Ahmed and Lipsky [16] used the model of
truncated diagonalization with hydrogenic basis sets and
obtained four roots of S symmetry in the range
58.07—59.61 eV. However, such a fixed basis calculation
of energies cannot resolve the question of the existence of
corresponding resonances.

Finally, the He 2p P' resonance has been placed at
about 60.5 eV by Nicolaides and Beck [17] and at 60.43
eV by Nesbet [15] (after the downward shift of 0.2 eV).
Both computations used only bound wave functions. In
our case [17], by including the strongly mixing open-
channel-like (OCL) configurations 2s2p3d in the Hamil-
tonian matrix (see later sections), it was possible to pre-
dict the approximate positions of two higher-lying reso-
nances as well.

The facts given above do not allow the identification of
the new peaks [1] with any of the known n =2 triply ex-
cited He resonances. Therefore we decided to complete
the picture of the He n =2 resonances by computing
the energies and widths corresponding to the two as yet
unexamined configurations, the 2s2p P and the 2p ~D'.

III. THEORY

The present analysis and calculations have been carried
out in the framework of a theoretical approach to au-
toionizing states which combines electronic structure
theory with the properties of decay states [6,9,18—26].
For the intrinsic properties of energy and width which
are studied here, a two-step methodology is followed.
The first step aims at the computation of the localized
part of the resonance, in a justified manner which incor-
porates highly developed methods for the computation of
arbitrary electronic structures. The second step aims at
the subsequent incorporation of the remaining effects of
the multichannel continuum. The salient features of the
theory are as follows.

Rather than looking for definitions and rigorous repre-
sentations of projection operators as required by the
well-known Feshbach resonance-scattering theory (see,
e.g. , [27]), the foundations of the present approach use
the fact of the dependence of the solutions of the
Schrodinger equation on the asymptotic boundary condi-
tions. From this point of view, autoionizing states are
represented by nonsquare-integrable wave functions satis-
fying a complex eigenvalue Schrodinger equation. Impo-
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sition of square-integrability boundary conditions results
in a real eigenvalue problem of an effective Hamiltonian
Ho =QHQ, Q = l%'o ) & 'Po l, Ho%'0 =EO%'0, where H is the
exact Hamiltonian, %'o is square integrab1e, and Eo is
real. The consequence of this change in boundary condi-
tions is the appearance of a small energy shift A.

When requiring the solution of the multielectron
Schrodinger equation to be square integrable with a real
eigenvalue embedded in the continuous spectrum, con-
cern as to the computational method and the choice of
function spaces ought to arise, as we11 as considerations
of the theory's general applicability regarding electronic
structure and number of electrons. Starting with the
work of [18], this problem has been tackled by recogniz-
ing the advantages of the state-specific HF or MCHF
wave function as regards the possibility of representing
efficiently and reliably the results of the dynamically self-
adjusting major correlations contribution to localization.
Thus the localized part of the autoionizing state of any
type of electronic structure is represented by

+0 @MCHF++1o & @MCHFl+loc )

l
z Eo —b,(z)+ —I (—z) =0, z complex . (2)

In this case, the problem is how to choose and manipu-
late bound as well as ¹ lectron, term-dependent,
energy-normalized scattering functions U( 6').

In this work, it is the second method that we have ap-
plied. Thus, given the smallness of b, (z) and I (z) for au-
toionizing states, first the real part of Eq. (2) is evaluated
for Rez =8 for each open channel i separately. This in-
dependent channel approximation (ICA) is justified by
the structure of the thresholds of the present problem.

where X&„represents the remaining localized correla-
tions contributing to the stability of the state. When
necessary, by construction and/or by core orbital orthog-
onalization, X&„excludes selectively lower-lying states of
the same symmetry. On the other hand, this is not al-
ways done for the MCHF solution, since it is sometimes
the very structure of the MCHF equations that requires
the presence of specific lower-lying configurations in or-
der for convergence to occur. [E.g., in Ref. [19],in order
to obtain the He 1s2s2p P' solution, the coupling
ls (2s2p) 'P' rather than ( ls2s) 'S2p was adopted and
the ls 2p P' configuration was included. ] Furthermore,
as it is explained in the following sections, the correlating
bound configurations which are chosen to enter @McH„
or 4'o may or may not correspond to the structure of the
open channels, depending on the possibility or reliability
of convergence of the 4MCH& solution and on the proper-
ties that must be computed.

Having obtained %o and Eo, the partial and the total
energy shifts and widths are computed either from the
solution of complex eigenvalue equations of appropriate
non-Hermitian matrices constructed from bound func-
tions only [6,9,24], or from the solution of the defining
equation for resonances in the complex energy plane,
which emerges when they are treated as decaying states
[18]:

(For all-order interchannel coupling calculations, see
Refs. [9,19,20,24].) The resulting expression that must be
solved for an isolated resonance is

E—
o
—5;(8)=0,

(3b)

(P denotes principal value, e the energy variable, and E;
the threshold energy). The operator (H —8), rather than
0, is necessary in practice due to the nonorthonormality
between the separately computed function spaces
representing Vo and U;(c, ). Having obtained all the 5;,
the total energy shift and total energy E are given by

b.=+5;, E =Eo+5 . (4)

2~1 & BOIH —EI U;«) & I'
y;(E)=

1 —5,'(E)

is evaluated at E [Eq. (4)], while its denominator contains
the derivative of the energy shift at E. This denominator
is the well-known correction for the energy dependence
of the width [27]. Equation (6a) is also derived and dis-
cussed in Sec. V, in connection with the question of
choice of +o and in particular of the inclusion of OCL
correlating configurations in the +McHz of 0'o. The total
width is given by

(6b)

In the above expressions, U; (E) is a symmetry-adapted
product of a term-dependent correlated core wave func-
tion 4, and a scattering orbital y, (E —E, ), where E, is
the threshold energy for channel i and E —E,. is the ener-

gy of the free electron. y, (E E, ) is computed in. th—e
fixed core HF approximation.

IV. LOCALIZATION, INTERPRETATION OF
THE MCHF SOLUTIONS, AND BOUND

WAVE FUNCTIONS OF STATES
EMBEDDED IN THE CONTINUUM

The strategy of initializing the calculation of autoioniz-
ing states with a state-specific MCHF wave function al-

We note that finding the root of Eq. (3a) rather than the
direct evaluation of Eq. (3b) for a fixed 6 =ED is more ap-
propriate for any strongly interacting channel since, in
this case, the shift and width are in principle energy
dependent.

Finally, given that for the challenging TES's of nega-
tive ions very little is known about their decay dynamics,
we have used two expressions for the computation of the
partial widths. The first,

y;(E, ) =2~1 & +,IH —E, I U;(E, ) ) l',
is evaluated at Eo and represents the golden rule for the
autoionization probability. The second,
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lows the major configurational features of a multiply ex-
cited state (MES) to emerge clearly and quantitatively
while the MCHF energy is reasonably close to Eo. This
implies that, for many problems, physically significant re-
sults can be obtained without computing X&„, which is
indeed considered only when high accuracy is required.
For example, consider the triply excited He 2s2p P
resonance [6]. A three-term MCHF calculation with the
He+ 1s orthogonality imposed on it yields

NMcH„( P)=0.990(2s2p )+0.105(2p 3d)
—0.092(2s3d ), (7)

@McHF( P') =0.992(2s2p) —0. 118(2p3d)

—0.049(3s3p),

EMCHF ( P ) = 0.760 93 a. u.

=58.309 eV above He 'S .

(8)

The remaining localized and asymptotic correlation add
to a very small shift. The recent experiment [1] has mea-
sured E =58.309+0.003 eV.

Having mentioned the good accuracy exhibited by cal-
culations of MES's using compact MCHF wave func-
tions, it is appropriate to point out that, not surprisingly,
straightforward and physically meaningful convergence is
sometimes difficult —if not impossible —to achieve. This
difficulty is due to the open-shell character of the contrib-
uting configurations to near-degeneracies, or to weak
binding potentials, and may lead to positive energy orbit-
als, or to oscillatory solutions or to "solutions" for which
the average radius of an orbital is unphysically large. A
practical remedy for such cases that is often successful is
to use nonorthonormal configurations or suitable orbital
rotations which eliminate troublesome single orbital exci-
tations.

whose energy EMCH„= —0.785 21 a.u. ( =57.648 eV
above He ls 'S) is only about 0.25 eV above the values
obtained from large-scale computations [8]. Going
beyond @McHF( P) in terms of only seven additional,
variationally optimized virtual orbitals yields a compact
%'o with Eo =57.414 eV, in agreement with the results of
[8]. Such a rapid convergence of suitably chosen MCHF
solutions for MES's has been observed in a number of ap-
plications, such as the analysis of wave functions and of
geometric properties [20,22,23] and the computation of
positions and widths of broad resonances such as the
He ls2s2p P' [19],of valence shape resonances such as
the He ls2p P and P [3], of multichannel resonances
[9], of doubly excited states [21], and of inner hole states
[24], or of the effect of coupling to an external ac or dc
field [26].

For the present work, similar efficiencies in accounting
for the major electron correlation effects when optimizing
the Fermi-Sea configurations self-consistently have been
observed. For example, for the He 2s2p P' state, which
is one of the final core states into which the herein stud-
ied He resonances decay, a three-term MCHF solution,
with He+ 1s orthogonality constraint, produces the fol-
lowing:

Finally, we elaborate on the question of the presence in

4McHF of correlating configurations whose structure is
the same as that of open channels. This question was
part of the recent debate [6,7] on the computation of res-
onances, using as a test case the triply excited 2s2p D
resonance of He

Let us take again the He 2s2p D resonance. This
state, whose width is abut 60 meV, is located 0.45 eV
above the He 2s 'S threshold and overlaps the He
2s2p P' resonance, whose width is about 8 meV [1,10].

If we consider, beyond the single configuration, the
correlation of the 2p electrons, then this gives rise to the
important orbital rearrangement (among other virtual ex-
citations)

2p ~2$d, (9)

where d is a one-electron function of l =2 symmetry,
which can be written formally as a sum over a complete
set of orbitals [see Eq. (46) of Ref. [18]]. In the case of
He 2s2p D, what emerges from (9) is a correlating
configuration, 2s d, which has the same structure as that
of the open channel 2s 'Sad, into which the 2s2p D
configuration (and state) is embedded. The same situa-
tion arises in the case of the 2p D' He resonance stud-
ied here, where the open channel is the 2s2p P'ed (the
2s2p 'P'ed channel is closed). Thus the d function of (9)
represents the integral over the scattering orbitals ed.
The question then is, if convergence of MCHF or varia-
tional calculations is achieved for the 2s2p D or 2p D'
states (and many similar ones) with a 2s 3d configuration
(or a 2s2p3d for the D' state) present, how is the result
to be interpreted? Our answer is that the "3d" function
has incorporated the contribution from that part of the
continuous spectrum which contributes to dynamical lo-
calization, i.e., to a square-integrable %0 whose important
zeroth-order orbitals account to a good approximation
for the interaction with the continuum. Thus, for such a

a large part of the energy shift due to discrete
continuum interaction is already in Eo. Let us elaborate
by analyzing a hierarchy of wave functions for the He
2s2p D resonance, starting from the hydrogenic (in-
teractionless) zeroth-order model.

Consider the single configuration HF solution for He
2s2p D. Its energy (EH„=—0.70772 a.u. ) is in the con-
tinuous spectrum He 2s2p P'+e . (The experimental
energy of He 2s2p P' is —0.761 a.u. ) Yet, it exists as a
square-integrable function which has been obtained
rigorously by solving shell-dependent integrodi6erential
equations and did not collapse to the He 2s2p P' thresh-
old. What is happening?

Assume the hydrogenic interactionless model. Call
~m ) the multiply excited ¹lectron hydrogenic state of
interest which is embedded as a discrete state in the N-
electron hydrogenic continuous spectrum ~s). Let ~n).
be the set of the discrete, X-electron hydrogenic solu-
tions. Now introduce the interelectronic interaction
operator. Then, to lowest order, the perturbed wave
function is given by
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/n &&m[H/n)

n, m m n
num

c mHc.
~m

(10)

It is the singularity in the integral for c =c. that con-
verts the hydrogenic bound function m ) into a correlat-
ed unbound function. However, if we exclude a small
part of the continuous spectrum around c. +5 as a
principal-value integral, '0 becomes square-integrable
because the terms

m ping H g + oo ping

are finite.
Given a configuration, the HF model goes beyond the

interactionless hydrogenic one in that it includes the in-
teraction self-consistently. In the present context,
achieving the HF solution of the He 2z 2p D
configuration means that, for this state, the HF valence
structure essentially determines intrinsically a cutoff 6
such that the hydrogenic ep contributions to the D HF
2p orbital come from the finite integrals (11).As the (for-
mally introduced) cutoff parameter 5 decreases and the
singularity is approached, one of the orbitals becomes in-
creasingly diffuse.

If now we replace the hydrogenic ~m ) in Eq. (10) by
the HF function, which we know is bound, and the
remaining vectors n ) by correlating configurations, a
similar analysis regarding the breakdown of the square-
integrability of 4 applies. Thus, as regards the MCHF
solution, if the computation is successful it leads to a rel-
atively confined function and to satisfaction of the virial
theorem. In fact, convergence becomes generally easier
as the nuclear charge is increased even though a number
of channels may remain open. When a solution is
achieved, the correlating virtual orbital has picked up
just a part of the continuous spectrum which does not
destroy the square-integrability of the zeroth-order func-
tion. In other words, even though the MCHF "3d" orbit-
al of the 2s 3d configuration represents contributions
form the ed continuous spectrum, it is bound. [This is
the common fact for the correlating orbitals in, say,
ground-state calculations, for which the singularity of Eq.
(10) does not exist. ] Of course, the remaining small part
of the continuum contributions to the energy from this
open channel can be incorporated through the use of Eqs.
(3a) and (4), where a complete set of Hartree-Fock
scattering orbitals is used.

As an example of such a localization even in a negative
ion, consider the three He resonances, 2s2p P,
2s2p22D, and 2p D'. For the He 2s2p P [see Eq. (7)],
the average HF radii are (r )2, =3.96 a.u. , (r )2~ =3.84
a.u. , while for the correlating 3d orbital of 2p 3d,
(r) 3d4. 22 a.u. For He 2s2p D, (r)z, =4.03 a.u. ,
(r) ~2=4. 1 Oa.u. , and (r )3d =5.28 a.u. For 2p ~D', the
average radii corresponding to the main and to the
(2s2p) P'3d correlating configuration are ( r )2, =3.54

a.u. , ( r )2z
=4.31 a.u. , and ( r ) 3d

=6.79 a.u. (and similar
magnitudes for n =3 orbitals), in accordance with the ex-
pected compactness of these state-specific, self-consistent
orbitals.

On the other hand, if for some type of electronic struc-
ture it is impossible to obtain valid convergence of the
state-specific MCHF equations because of the presence of
correlating configurations whose structure corresponds to
open channels, then the calculation of Vo excludes them.
For example, this is the case of He 2s2p S, which in-
teracts with the 2s es continuum. Their effect is then in-
corporated from principal value integrals over purely
scattering function spaces or in terms of suitable X rep-
resentations of the full continuum. In any case, in the
next section we show that at the end of the overall calcu-
lation of E and I of Eqs. (5) and (6b), the results are the
same, whether +o(C&McHF) includes the OCL correlating
configurations or not.

V. CHOICE OF N-ELECTRON FUNCTION SPACES
FOR 4 AND THE CALCUI. ATION OF E AND I .

APPLICATION TO THE He 2p D ' RESONANCE

Arguments [7,8] about the rigorous computation of
resonances which are influenced by Feshbach's formalism
of resonance formation [27] have pointed to apparent
difhculties associated with the presence in our +0 of
strongly mixing OCL correlating configurations [28].
For example, in the case of He 2p D ', such a
configuration is the MCHF (2s2p) P'3d. We have al-
ready discussed the physical relevance of such terms in
Sec. IV. In this section we study the inhuence that their
presence or absence has on the computation of the ob-
servables E and I . We shall show formally and numeri-
cally that both E and I are invariant to the correspond-
ing form of +0, provided the same zeroth-order and virtu-
al orbitals are used. On the other hand, since the OCL
configurations contribute dynamically to the radial read-
justment of the remaining configurations, a slightly better
energy is achieved when the computation includes the
OCL configurations in NMCHF.

A. Case I: Open-channel-like correlating
configuration is excluded

x e,+P fdE'U. . v„.1
(12)

satisfying

Let +0 be a square-integrable configuration-
interaction-type wave function representing an X-
electron resonance, and assume that it excludes the OCL
correlating configuration, which we call g„,. Let U,
represent the complete set of scattering states for the
open channel. Assume ( @o~ U, ) =0 and let

VOE
= ( NO ~H~ U, ) . Then, according to Fano's

configuration-interaction theory [29], the exact wave
function can be written as

0', =(cos5, ) U, — (sin5, )
1

m VoE
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From the condition

(13a) (cos5, ) Wo, (E)— (sin5, )[c.—Eo —b (e)]=0,1

TWO, E

it follows that

(13b)
i.e.,

~W,', (E)
tan6, =—

E —Eo —A(E)
(25)

i.e.,

(cos5, ) Vo, — [E E—o
—b, (E)] sin5, =0,1

7T o~

Vo
2

tan6, =—
E Eo ——b, (E )

('4) w~ere

Wo, (E)
b, (E)=PJ dE'

C E,

(15) Now, because of (22) we have

(26)

where

5(E)=PI (16)

P d E U W'o c = d c U Vo
1+b E, E,

(27)

( 1 7) Consider that on the energy shell

and E =Eo+A. Now let us see what happens when the
square-integrable representation of the open channel,

y&„, is added to No.

B. Case II: y&, is included

1
Wo, (E)= Vo,

1+b
and referring to the definition of No, we see that the wave
function (23) is identical to the wave function (12). Simi-
larly, it can be shown that

Let E Eo ——A(s) = [E Eo ——b, (E)] .1+b' (28)

where

(18) Since b is a constant, the two quantities produce the same
E, the energy of the resonance. Finally, from (26) it can
be shown that

dE'U S, , S,= U, y (19) 1 —b, '(E) [1—b, '(c, )] .
1

1+6
Thus

(29)

b': &y y&= fdE'S,—

Using the same basis set U„we have

(20)

dE

vr Wo, (E)
1 b,(E)— (30)

m VoE
2

1 6'(E)—
S,

&4,iU, &=
1+b

(21)

Then

[ Vo, + c,'S,.—cS, ] .1

1+b

4,= (cos5, ) U, — (sin5, )
1

TWO, s

X 40+P J dE U, ', Wo, (c)1

(23)

(24)

gives

by construction, while the condition

The above analysis shows that the addition of yi„does
not change the exact wave function, nor the intrinsic
properties E and I of the corresponding resonance state.
The question then is when to include it in %o. We suggest
that if a rapid convergence to a reasonably accurate value
of the energy is desired without going into the work of
computing the interaction with the continuum, then the
inclusion in the NMcH„of OCL bound configurations is

advantageous, especially in studies of polyelectronic
states. The advantage lies with the physics as well as with
efficiency. Thus only a few suitably chosen configurations
provide a very good description of the localized part of
the resonance, where the interaction with a square-
integrable representation of the important open channels
is incorporated self-consistently. Contrary to all other
methods which use fixed basis sets, this way of including
in the overall calculation the effect of bound-continuum
interactions allows for the adjustment to the presence of
the open channels of the orbitals of the zeroth-order and
the major closed-channel configurations.

On the other hand, for multichannel problems, whose
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rigorous treatment requires the computation of inter-
channel coupling, if the ICA is to be applied for the cal-
culation of y; [Eq. (6)], then for reasons of consistency Vo
should not include y&„because this would produce a
small but unbalanced contribution of interchannel cou-
pling. For example, if the He 2p D' 'IIO contains the
(2s2p) P'3d configuration when computing the partial
width to the (He ls2p P')Ed channel, the interaction of
the two terms would slightly distort the assumption of
the ICA.

C. Application to the He 2p D' resonance

According to the theory in the previous sections, we
carried out computations of two types of @McH„and then
of the corresponding 0'o. Both types of NMcH„ included
configurations with n =2 and n =3 orbitals. However, in
the first type, called here 4&McHF(l), the (2s2p) P'3d
configuration is included whereas in the second type, ,
@McHF(2), it is not. The corresponding eight-term and
seven-term MCHF functions and energies, obtained using
Froese Fischer's code [30], are given in Table I. Their en-
ergies differ considerably: EMCH„(1)= —0.714897 au,
EMcHF(2)= —0.695 861 a.u. , i.e., a difference of 0.518
eV, a number suggesting that the width of this state will
also be large, regardless of the size of contributions of
other channels. It is noteworthy that the HF energy for
He 2p D' is —0.660 813 a.u. , i.e., 61.033 eV above the
He ground state. The EMCH„(1) energy is lower by 1.47
eV, corresponding to a position of 59.562 eV above the
He ground state.

As regards the scattering states, we computed three
sets of l =2 scattering orbitals for a large number of ener-
gies differing by 0.001 a.u. in the term-dependent HF po-
tentials of the He 2s2p P', 1s2p P', and 1s2p 'P' states.
Such orbitals are expected to be suitable for the reliable
calculation of off-diagonal matrix elements [Eqs. (3b) and
(6a)], even though their phase shift does not include a
small correction due to core polarization.

The choice of the He 1s2p 'P' singly excited states as
the only other significant thresholds is justified from the
following. First of all, consider the case of two-electron
emission. The He 2p D' state, being a MES with
empty lower orbitals and high excitation, can also au-
toionize into the He+ 1s continuum, as does the
2s 2p P' state [31,32]. However, given the results of
Simons and Kelly [32] on the Li 2s 2p P' state, where
the double-electron emission was computed (approxi-
mately) to contribute only 7%%uo of the total autoionization
rate, we expect that in He TES's as well, this decay
mode will have a much smaller probability due to near
orthogonalities of the orbitals of the main configurations,
and therefore we have not considered it.

As regards the He 1snl 'L channels, their significance
or lack of it can be understood from the examination of
the coupling matrix elements, (2p ~H~ lsnl 'Lel'). Be-
cause of symmetry and near-orthogonalities, only the
1s2p 'P'terms survive. The very weak coupling of oth-
er states, such as He 1s3d 'D, is allowed only via corre-
lating configurations, thereby showing that these states
do not constitute important channels for the decay of the

TABLE I. Configurations, their coeiticients, and energies of
the two MCHF solutions for the compact, zeroth-order repre-
sentation of the He 2p D ' closed-channel resonance.
4MeHF( 1) contains the open-channel-like configuration
(2s2p) P'3d, whereas NMeHF(2) does not. Its large mixing
coeKcient and the type of interaction matrix element suggest
that, by inspection of this compact wave function, it is possible
to deduce that the partial width of this state due to the
(2s2p) P'ed channel will be relatively large.

2p
(2s 2p) 'P'3d
(2s2p) P'3d
2p (3d')'P
2p(3d ) D
2p (3d')'r
2p(3p )'P
2p(3p )'D

+MeHF( 1 )

0.859 34
—0.101 15
—0.462 66
—0.075 67

0.036 28
—0.047 07
—0.099 87

0.13420

+MeHF(2)

0.950 85
—0.155 89

—0.084 67
0.104 70

—0.031 28
—0.124 31

0.192 44

E(1)= —0.714895 a.u. E(2)= —0.695 861 a.u.

@McHF( P') =0.9996(ls2p) —0.0207(2s3p)

+0.0166(2p'3d),

EM( HF(
(31)

(20.972 eV above the He ground state),

QMcHF('P') =0.9998( ls2p)+0. 0075(2s3p)

+0.0206(2p'3d ),
EMCHF ( 'P ') = —2. 1236 a. u.

(32)

(21.228 eV above He 'S) .

This type of computation yields energies which are in
very good agreement with the exact energies,
E,„( P') = —2. 133 164 a.u. and E,„(iP') = —2. 123 843
a.u.

Using the above wave functions, the solution of Eqs.
(3)—(6) was carried out. The results for the interesting
case of the strongly coupled 2s2p P'ed channel are given
in Table II. We see that even though the MCHF wave
functions of Table I and their energies are very different,
the corresponding energy results of Table II after the in-
clusion of the continuum are almost the same, the small
difference of 0.075 eV being due to the different orbitals
of the separately optimized MCHF functions. For
@McHF(1), the energy shift is small and positive whereas
for @McHF(1) it is large and negative. As regards the re-
sults on the widths from expressions (5) and (6), the fol-
lowing facts should be noted. The final state did not in-
clude core correlation. (This is done for the complete cal-
culation. ) There is a small difference between the results

He 2p D ' state.
The self-consistently correlated core wave function for

the He 2s2p P' state is that of Eq. (8). Those of the He
1s2p 'P' states were obtained from a nonorthonormal
MCHF calculation which allowed for the 2p orbitals of
the ls2p and (2p'3d) configurations to be different.
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TABLE II. Results for the energy shift and width of the He
2p' D' resonance, for the 2s2p P'ed channel, using the
@McHF( 1 ) and 4McHF(2) of Table I and HF functions for the
final states. The large difference between the energy shifts re-
sults in a drastic reduction of the deviation of the E(MCHF) of
Table I, the remaining small difference (0.075 eV) being caused
by the slightly different radial functions of the two NMcHF (see
text).

Shift (meV) Width (meV)

+MCHF( ) +MCHF( ) +MCHF( ) @MCHF(

Eq. (3a)
Eq. (5)
Eq. (6a)

40 —403
244
279

329
332

from Eqs. (5) and (6) when using 4McitF(1), i.e., when the
OCL configuration is included. The difference between
@Meit„(1)and @Meit„(2) for Eq. (6a) is due mainly to the
different orbitals constituting the two sets of
configurations. @Meit„(1) gave results which are closer
to the accurate ones (Table III) with both formulas (5)
and (6).

Having obtained @Mc~„,we proceeded with the calcu-
lation of 'Ilo of Eq. (1), one corresponding to @Meit„(1),
Vo(1), and one corresponding to %Meit„(2), 'Po(2). X~„
contains one-, two-, and three-electron symmetry-
adapted correlation functions which are optimized varia-
tionally while they are kept orthogonal to the MCHF or-
bitals as well as to HF orbitals of lower-lying core states.

The electronic structure methods for carrying out such
computations have been summarized recently in a brief
review of atomic negative ions [25]. First we create
symmetry-adapted configurations corresponding to the
correlation functions we wish to compute. For the D'
state the formal subshell expansion of X&, is

X„,( D')=[(2p ) P, 'D]o 2

Eo(1)~9s s&c= —0.719 1144 a. u. =59.447 eV,

Eo (2)
~ 9~ s~c = 0.701 566 3 a. u. =59.924 eV .

(34a)

(34b)

Finally, using the 'Po's we computed again Eqs. (3)—(6),
this time including core correlation in the final state [Eqs.
(8), (31), and (32)]. The total energies are [Eq. (4)]

E(1)= —0.718 6880 a. u. =59.458 eV,

E(2)= —0.713 2159 a. u. =59.607 eV,

and the total width [Eq. (6)] is

(35a)

(35b)

where symbolizes the operation of symmetry coupling
to form I. ,S states.

The correlation functions o (r t ), vr(r i, r2 ), and
r(r„r2, r3) are expanded in terms of spherical harmonics
with radial coefficients which are Slater-type orbitals
(STO's). In the first step, the radial parts of the pair func-
tions are optimized independently (in the present calcula-
tions STO's up to l =5 were used), by minimizing the
corresponding energy in the presence of the total MCHF
function under the orthogonality constraints mentioned
above. We then add the configurations containing the o.
and carry out a configuration-interaction (CI) calculation
with @Mc&F and all the terms containing the optimized
vr, as well as the o. which are now optimized in the pres-
ence of m.

Since the radial optimizations for each pair function
are done separately, the vr (and o) are not orthonormal
among them. Thus the diagonalization of the full Hamil-
tonian matrix involves nonorthonormal CI (NONCI) (see
[25], and references therein).

The next and final step is the addition of the triple
correlation functions ~ and a full NONCI calculation us-
ing the complete function of Eq. (33) together with

The final results for the two types of %o, Vo(1)
and Vo(2) were as follows, for Eo(1) with 98 symmetry-
adapted configurations (SAC), and Eo(2) with 97 SAC:

+2p ~2 2(3p 1D~ 2 32ao (33) I"(2)=282 meV . (36)

Shift (meV)

%,(2)

Width (meV)

e,(2)

Eq. (3a)
Eq. (5)
Eq. (6a)

12 —317
230
253(256)

286
252(276)

TABLE III. Final results for the energy shift and width for
the He 2p' D' resonance using %0(1) and %0(2) (see text) and
correlated (uncorrelated) core [Eq. (8)] with HF scattering orbit-
als for the important 2s2p P'ed channel. As regards the other
two channels, 1s2p 'P', only the %0(2) wave function was
used for reasons of consistency (see text). It gave 5(1s2p P')
= 10 meV, y(1s2p P') =21 meV, 6(1s2p 'P') =2 meV,
y(1s2p 'P') =9 meV. In this case, neither core correlation nor
the use of Eq. (5) (golden rule) made any difference. For %0(1),
the energy shift of the 2s2p P'ed channel is very small (12
meV) because it has already been included in the overall varia-
tional calculation through the MCHF OCL configuration. As a
final total energy we adapted the slightly lower E(1) (see text),
which corresponds to 59.46 eV above the He ground state.

The breakdown of these numbers is given in Table III.
The total energy E(1) and the width I (2) are the ones
adopted for reasons which were discussed earlier. We
note that for the important 2s2p P'ed channel, the two
wave functions Vo(1) and Vo(2) gave the same partial
widths with the exact formula (6): y(1)=253 meV,
y(2)=252 meV. As already explained, the difference of
0.161 eV between E(1) and E(2) is due mainly to the re-
laxation of the MCHF orbitals in the presence of the
OCL configuration and to the related adjustment of the
optimized virtual orbitals entering in X„,. From Eo(1)
of (34a) and the HF energy of —0.660 813 a.u. , it follows
that the localized correlation energy in this case is 1.575
eV, of which 1.471 eV (93%) is picked up just by the
@Mc+F(1)of Table I.

Finally, given the interest in relating the autoionizing
states to the nearby thresholds and in characterizing
them as closed-channel (Feshbach) or open-channel
(shape) resonances, we note that the He 2p D' state
can be called "Feshbach" with respect to the He 2p 'D



3586 NICOLAIDES, PIANGOS, AND KOMNINOS

autoionizing state at 59.91 eV [27] or with respect to the
He 2P 2 3P discrete state at 59.68 eV [33].

VI. THEHe 2s2p PSTATE: IS ITASHAPEORA
FESHBACH RESONANCE?

Since the beginning of the application of scattering-
type formalisms, such as that of Feshbach or of close-
coupling theory (see, e.g. , [27,34]), to the computation of
resonances in atoms and molecules, the notions of
closed-channel (or Feshbach) and open-channel (or shape)
resonances have been widely used. In fact, they have oc-
casionally been elevated to the level of an important is-
sue, as, for example, with the case of the doubly excited
He Is2s2p P' resonance [8,27,35,36] or of the triply
excited 2s2p D resonance [7,8]. This emphasis has its
roots in the fact that these methods examine the system
"electron plus target. " As Burke (Ref. [34], p. 174) sum-
marizes, "Closed channel resonances arise when the in-
teraction potential between the incident particle and an
excited state of the target is strong enough to support a
bound state. They lie energetically below the channel or
channels to which they are most strongly coupled, while
shape resonances lie energetically above. "

As already stressed, they present state-specific theory
does not involve a "target" state and corresponding con-
cepts or computational constraints. Instead, it aims
directly for the wave function of the localized component
of the decaying state which is characterized by its own
electronic structure-dependent multiconfigurational self-
consistent field. This approach renders the question of
Feshbach vs shape resonance without computational or
physical significance. Consideration of a nearby threshold
enters only for establishing whether it contributes to the
width or not. On the other hand, if the desire exists, it is
still possible to understand the character of the state un-
der examination by analyzing the major configurations in
conjunction with the energy results. For example, for the
aforementioned He 1s2s2p P' resonance. Komninos,
Aspromallis, and Nicolaides [19]demonstrated that just a
two-term, properly coupled MCHF wave function pre-
dicts that this state is mainly Feshbach in nature, al-
though "it contains smaller parts than can be expanded
in terms of the wave functions of the open channels
1s2s Sap and 1s ep." In harmony with the analysis of
this work, they added (Ref. [19], p. 1867), "So, we have
absorbed part of the open channels into the localized part
+ of the resonance and, in doing so, we included part of
the energy shift 6 into Eo."

The He 2s2p P state studied here constitutes anoth-
er prototypical case where the Feshbach-vs-shape ques-
tion can be asked. This is because, when seen from a
scattering point of view, there are three physically
relevant doubly excited thresholds which may be thought
of as parent states: He 2s2P P' (E =58.31 eV), 2p P
(E =5.68 eV), and 2s2p 'P' (E =60. 15 eV). The compu-
tations described below included configurations
representing the coupling of these channels, as well as of
many others.

First, an 11-term 4&MCHF (Table IV) was calculated as
the self-consistent representation of the localized part of
the He 2s2p P state. Using these 2s and 2p orbitals,

TABLE IV. Configurations, their coefficients, and the energy
of the MCHF solution for the compact, zeroth-order represen-
tation of the He 2s2p P valence shape resonance. The 4d or-
bital was included in the Fermi-Sea because it was found that it
helped convergence. The most significant mixing comes from
the 2s~3d orbital excitation, a correlation effect having the
physical significance mediating of the coupling to the He
2s 2p 'P' and 'D thresholds. Note that the combination
(2s2p +2s3p ) includes, via orbital rotation, the contribution
of 2s2p3p, whose structure is the same as that of the open chan-
nel (2s2p) P'ep.

2s 2p
2s 3p
3d(2p ) P
3d{2p ) D
(2p 3s) 'P'3p
(2p 3s)'P '3p
2s4d
2p (3p4d)'P'
2p(3p4d) P'
2p (3p4d)'D'
2p(3p4d) D'

0.9150
—0.0869

0.2101
—0.2783

0.1239
—0.1229
—0.0357

0.0084
0.0239

—0.0102
0.0351

E = —0.706993 8 a.u.

5=0.001 36 a.u. =37 meV,

E =E +6=—0.709570 a.u. =59.706 eV .

(37b)

(37c)

These results once again reveal the benefits of comput-
ing MES's in terms of state-specific, selected few MCHF
configurations. For example, the energy diff'erence be-
tween the 11-term NMcH„and the 95-term 0'o, including
the energy shift, is only 0.070 eV.

The energy results, in combination with the charac-
teristics of Vo, show the following. The He 2s2p P

the single configuration energy E (HF) = —0.660 550 a.u.
=61.040 eV above He. The MCHF energy is
E(MCHF) = —0.706 994 a.u. =59.776 eV above He, pro-
ducing an electron correlation lowering of 1.264 eV.
These two results immediately establish that the He
2s 2p P resonance is between the He 2g 2p P ' and
2s2p P' thresholds but leaves open the question as to its
position with respect to the He 2p P state.

The MCHF energy contains to a large part the contri-
bution from the 2s2p P'ep open channel through the
MCHF mixing 2s(2p +3p ), which eliminates the OCL
configuration 2s2p3p. Also, the contribution from the
2p Pad P channel, which at this stage of the computa-
tion might appear to be open, is included through the
configuration (2p ) P3d. Furthermore, Table IV reveals
that the 2P 'D channel (the corresponding He state is at
59.91 eV [27]) also couples strongly, even though the usu-
al qualitative arguments of orbital structure and symme-
try would exclude it as a parent state for He 2s2p P.
Stated in a diff'erent way, the closed-channel relation of
the He 2s2p P resonance to the He 2p D threshold is
revealed only when electron correlation is considered.

Carrying out the computation as in Sec. V, the follow-
ing energy results were obtained:

Eo ~9& s&c= —0.710934 a.u. =59.669 eV, (37a)
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I =79 meV . (38)

VII. CONCLUSION

We have discussed how polyelectronic autoionizing
states can be computed within the framework of state-
specific theory, regardless of whether they are doubly, tri-

state contains components which correspond to coupling
to four nearby thresholds, the He 2s2p P', 2p P,
2p 'D, and 2s2p P' (see Table IV). It is a shape reso-
nance with respect to the 2s2p P' state to which it is
connected by a single orbital excitation. The interaction
between the localized and continuum components is pos-
sible even in zeroth order, since the HF orbitals in initial
(2s2p ) and final [(2s2p) Pad] configurations are not
orthonormal. Of course, when correlation is included, ad-
ditional energy and overlap matrix elements contribute
[see Eqs. (3)—(6)].

At the same time, the He P resonance is clearly
below the He 2p 'D and 2s2p 'P' thresholds —while our
computed energy places it only 0.025 eV above the He
2p P state. However, we expect that this small
difference is covered by the remaining localized correla-
tion which pushes the He resonance just below the He
2p P threshold, rendering it a Feshbach resonance with
respect to this threshold as well, which it also overlaps
via its finite width of I =79 meV [Eq. (38)].

Having chosen the open channels according to all the
previous arguments as the He 2s2p P', 1s2p 'P', and
1s2p P', the final computations of the width were car-
ried out. The partial shift for the 2s2p P'ep channel is 35
me V, and the partial width is 60 me V. Also,
y(ls2p P')=9 meV and y(ls2p 'P')=10 meV. Thus
the total width is

ply, quadruply, etc., excited, regardless of their symme-
try, and regardless of the relative position of correspond-
ing thresholds. Emphasis was given on the justification
and efficiency of starting the overall computation with a
suitably chosen set of self-consistently optimized
configurations. Formal and numerical results were
presented regarding the calculation of the width and the
type of correlating configurations which enter %0, the
wave function of the localized part of the resonance. It
was shown that if open-channel-like bound configurations
are included in the MCHF solution, efficient convergence
to an energy which is close to the exact one is achieved,
since much of the bound-continuum interaction is includ-
ed self-consistently. As an application, the existence of
two new n =2 intrashell triply excited resonances of
He, the 2p D' (E =59.46 eV, I =282 meV) and the
2s2p P (E =59.71 eV, I =79 meV)'has been predicted.
Given the structure of the three open thresholds involved
and the related very small coupling due to the required
1s ~2s excitation, the widths were obtained by applying
Eq. (6) and the independent channel approximation, i.e.,
by omitting interchannel coupling. The resulting error
ought to be insignificant. Our partial-width computa-
tions show that both resonances decay primarily to the
He 2s2p P' threshold, which itself is autoionizing, but
with a longer lifetime (I =0.009 eV).

Finally, in conjunction with earlier experimental and
theoretical results, the present findings show that the re-
cently measured [1] new structures at 58.415+0.005 and
58.48+0.02 eV cannot correspond to the He 2p S'
and D' states, nor to any other He n =2 intrashell
state. New experiments for the region 58—60 eV ought to
allow verification of the above predictions and con-
clusions.
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