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Nonhyperbolic escape and changes in phase-space stability structures
in laser-induced multiphoton dissociation of a diatomic molecule

Vassilios Constantoudis1,2,* and Cleanthes A. Nicolaides1,2,†
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~Received 19 April 2001; published 22 October 2001!

The dependence of photodissociation of a diatomic molecule~vibrating according to the Morse potential! on
the frequency of the laser field that induces it, is studied in the context of classical nonlinear dynamics. First,
it is observed that as the laser frequency increases towards the harmonic frequency of the potential, a transition
from stabilization due to Kolmogorov-Arnold-Moser tori to stabilization caused by the resonance stability
island occurs. Then, considering the photodissociation as a nonhyperbolic half-scattering process, we investi-
gate the influence of these changes in the phase space stability structures on dissociation dynamics via the
examination of the fractal set of singularities appearing in the time-delay function of the initial state. It is found
that the effective fractal dimension of this set~a finite-scale approximation of the exact dimension which is
always equal to 1! and the percentage of its singularities provide a link between these changes and the
dissociation rate.
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I. INTRODUCTION

During the last fifteen years, the influence of nonlinear
on scattering processes has been studied extensively in
context of classical dynamics@1#. A universal feature of this
influence is the appearance of a fractal set of singularitie
scattering functions. The scattering functions represent
dependence of some output variable characterizing the
jectory after scattering~e.g., time delay, scattering angle! on
some input variable contributing to the initial condition
the trajectory. The trajectory can initially be located eith
outside the scattering region~scattering processes! or inside
it ~half-scattering processes!. In both cases, the presence
fractal singularities in scattering functions defineschaotic
scattering, whereby very small changes in the initial cond
tions may result in large changes in the output variable.

It has been established that chaotic scattering is due to
existence of nonattracting chaotic invariant sets in ph
space containing an infinite number of unstable periodic
bits. The dynamics on this set is classified as either hyp
bolic or nonhyperbolic. In the hyperbolic chaotic scatterin
there are no tori in the scattering region and all perio
orbits are unstable. The typical survival probability functi
decays exponentially and the dimension of the fractal se
singularities is less than 1. On the other hand, nonhyperb
chaotic scattering is connected to the presence of stable
riodic orbits in the scattering region and, as current evide
indicates, is characterized by power law decay of the surv
probability due to the stickiness effects of the stable regi
surrounding the stable periodic orbits. Moreover, it has b
proposed@2# and verified numerically from the study of re
or model systems@2–4# that the fractal dimension of th
singularities is always 1, even though their Lebesgue m
sure remains zero.

*Email address: vconst@eie.gr
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Although the scattering processes encountered in m
physical situations are typically nonhyperbolic, the vast m
jority of recent research has focused on hyperbolic cases@1#.
For example, the evolution of hyperbolic chaotic scatter
as a function of a parameter has been studied extensi
@5–8#, whereas, to the best of our knowledge, the cor
sponding problem in nonhyperbolic dynamics, as it will
stated below, has not been addressed yet, although som
tention has been paid to the more general problem of
transition from hyperbolic to nonhyperbolic scattering@4,9#.
Since parameter changes in nonhyperbolic dynamics are
sociated with variations in the stability structures in pha
space, the problem actually has to do with the influence
these variations on the scattering dynamics. The study of
problem is motivated not only by the theoretical need
complete the theory of chaotic scattering, but also, and m
importantly, by the fact that many scattering systems dep
on parameters whose variation modifies the structure
stable regions. Thus, the aim of this paper is to investig
this problem with respect to a real physical process, nam
that of themultiphoton dissociation of a diatomic molecu
induced by a strong laser field. In the context of classica
dynamics, this process can be considered as a nonhyper
half-scattering process, where the laser frequency plays
role of the parameter whose variation modifies the featu
of the stable regions.

If we focus our attention on a line of initial conditions i
phase space representing the initial state, then the influe
of the movement and deformation of the stability islands
the escape dynamics is determined by two factors: the r
tive position of this line with respect to the stable regions
phase space and the strength ofthe stickiness effects@10# in
the borders of nearby stable regions. It will be shown that
role of these factors is revealed by examining the change
the structure of the set of singularities present in the tim
delay functions of the initial state, which serve as a fing
print of the corresponding changes in the chaotic invari
set in phase space. These changes, however, cannot be
©2001 The American Physical Society11-1
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tified by the exact value of the fractal dimension since, as
said above, it is always equal to 1 for nonhyperbolic syste
and hence irrelevant to the changes in the singular set.
the contrary,the effective fractal dimension deff , which is an
approximation to the exact value since it is estimated fo
particular range of finite scales, will be shown to be a go
descriptor of the aforementioned changes. The same wil
found to be true for the percentage of the singular ini
conditionsNup over the escaping part of the initial state.
particular, when a stable region in phase space approa
the initial state and at the same time the associated sticki
effects are getting increasingly pronounced, an incremen
the deff of the singular set and a proliferation of the sing
larities ~increment of the percentageNup! take place. This is
in fact the situation for the classical dissociation of t
ground vibrational state of a diatomic molecule when
laser frequency approaches the harmonic frequency of
molecular potential. Moreover, this behavior seems to be
nonhyperbolic analog of thephenomenon of crisis and en
hancement of hyperbolic chaotic scattering@7,8#.

An important question concerns the observable con
quences of the behavior ofdeff and Nup. It will be shown
that both quantities are connected with the classical disso
tion rate,Rcd, of the initial state. In particular,Rcd decreases
exponentially sufficiently accurately asdeff or Nup increases.
Therefore, we conclude that the effective fractal dimens
deff and the percentage of the singularitiesNup provide a link
between the movement and deformation of the stable reg
in phase space induced by the change in some paramete
the behavior ofRcd as a function of this parameter.

The paper is organized as follows. We start in Sec. II
presenting the system we study and by investigating
changes in phase space structure as the frequency of the
field increases. These changes are associated with the b
ior of the dissociation probabilityPcd and the red shift of the
optimum frequency. In Sec. III, we use the tools of chao
scattering theory and focus our attention on the structur
the fractal set of singularities of the time-delay functions.
particular, we suggest a link between some characteristic
this structure and the dissociation rate. Finally, Sec. IV c
tains an outlook of the paper and some thoughts about fu
research.

II. PHASE SPACE STRUCTURE VS LASER FREQUENCY

We consider the pure vibrational motion of a diatom
molecule for a fixed electronic configuration and under
assumption that rotational motion is not excited. Then
molecular potential may be described by a Morse poten
@11#

VM~r !5D~12e2a~r 2r e!!, ~1!

where D is the dissociation energy,r e is the equilibrium
bond distance, anda21 is the range of the potential. HF
HCl, and NO are some examples of diatomic molecu
where our assumptions are well satisfied. The Hamiltonia
such a molecule in an external laser field can be given b

H~r !5H0~r !2m~r !F cos~ f t !, ~2!
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where H0(r )5p2/2m1VM(r ) is the unperturbed Hamil-
tonian,F is the amplitude of the electric field of the laser,f is
its frequency,m is the reduced mass, andm(r ) is the dipole
function.

For the parameters of the Morse potential we use the
ues corresponding to the molecule HF@12#, whereas for the
dipole function we use the same analytical form as in Re
@13,14#,

m~r !5Ar exp~2jr 4!

with A50.4541 andj50.0064~in a.u.!. We have confirmed
that the results of our study are not sensitive to small va
tion of these choices.

The classical dynamics of our system can be obtained
the numerical integration of Hamilton’s equations

ṙ 5
p

m
, ~3a!

ṗ52Dae2a~r 2r e!~12e2a~r 2r e!!

1Ae2jr 4
~4jr 421!F cosf t. ~3b!

We can also use the action-angle variables of the un
turbed Morse oscillator

J52A2mD

a2 ~12A12E!, ~4a!

u52sgn~p!arccosF12E

AE
ea~r 2r e!2

1

AE
G , ~4b!

whereE5H0 /D is the dimensionless energy of the unpe
turbed molecule. The action-angle variables are limited
the bound part of the unperturbed dynamics (E,1) and this
is why we prefer to integrate numerically the Hamilton
equations in~r,p! representation and then transform them v
Eq. ~4! to the (u,J) or (u,E) representation.

In order to mimic more effectively the quantum photod
sociation process, we choose the initial classical state
an ensemble of initial conditions with the energy of t
quantum state and angle variablesu uniformly distributed
between2p and p @14,15#. In the rest of the paper, we
consider that initially the molecule vibrates in its groun
state with energyE0 and interacts with a laser field of
constant and strong~nonperturbative! intensity equal to
7.331023 a.u. In addition, we focus our study on the fr
quency region in the neighborhood of the harmonic f
quencyf 05(2Da2/m)1/2 of the Morse potential, since it ha
been observed that in this region the photodissociation p
ability is maximized and the quantum and classical res
resemble each other@14,16#.

To understand the dependence of photodissociation on
frequencyf of the laser field, first we have to examine th
movement of the stable regions in phase space as well a
deformation of their size caused by the increment of the
quencyf. Roughly speaking, the overlap of the line of th
initial state with these regions in phase space gives the n
1-2
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NONHYPERBOLIC ESCAPE AND CHANGES IN PHASE- . . . PHYSICAL REVIEW E 64 056211
dissociating part of the initial state. The remaining part co
sists of transiently chaotic trajectories, which, after wand
ing through the interaction region for some time, escape
infinity leading to molecular dissociation. For the particu
choice of field intensity and frequency interval, there ex
two types of stable regions. The first is the area of KAM to
which has survived deformed from the unperturbed dyna
ics, and the second is the stability region surrounding
main resonance 1:1 between the field and the internal
namics. By increasing the frequency towardsf 0 , the reso-
nance region is lowered in energy and is enlarged, while
KAM tori area gradually disappears. These changes in
structure of phase space and their effect on the initial s
are depicted in Fig. 1, which shows the energy range of
KAM tori ~gray region! and the resonant tori~light gray re-
gion! for the whole interval of interest of the rescaled fr
quencyv5 f / f 0 . The dotted curve at the center of the res
nance region represents the frequency dependence o
energy of the stable periodic orbit of the resonance, whe
the dashed curve is the line of the initial vibrational state
energyE0 . By inspecting also the inset in Fig. 1, we ca
separate the dissociation behavior into three frequency
gimes.

In the first regime (v,v1>0.82), part of the initial state
remains trapped in KAM tori and, consequently, the class
photodissociation probabilityPcd, the percentage of the tran
siently chaotic and finally dissociating trajectories, is le
than 1. As frequency increases, this part becomes gradu
smaller since the KAM area is shrinking more and more, a
consequentlyPcd increases too. Atv5v1 we pass to the
second regime. Here the whole classical state can esca
infinity in the limit of infinite time ~no overlap takes place!,

FIG. 1. Energy ranges of KAM and resonance stability regio
vs rescaled frequencyv5 f / f 0 . The dashed curve shows the ener
E0 of the initial state and the dotted curve the energy of the sta
periodic orbit of the main resonance. The frequenciesv1 and v2

mark the transition from KAM to resonant stabilization of the initi
state. In between them, no stabilization occurs and the entire in
state dissociates. The inset shows the dependence of the cla
photodissociation probabilityPcd on the rescaled frequencyv. The
Pcd is defined as the percentage of the chaotic and dissocia
trajectories over the whole initial state.
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and thePcd takes on its maximum value (Pcd51). This situ-
ation holds untilv5v2>0.925, where a new overlap phe
nomenon starts to occur~third frequency regime!. The tori of
the resonance region, initially lying at higher energies
lower frequencies, now begin to overlap the initial sta
causing the reduction of thePcd. Finally, at higher frequen-
cies the resonant tori cover the whole classical state and
Pcd vanishes. Not surprisingly, the frequency region, whe
the probability of photodissociation is maximized, lie
slightly to the left of the harmonic frequency (v51). This
red shift has been observed in both classical and quan
studies and so cannot be considered an exclusively quan
phenomenon@3,14,17–19#. As we can conclude from inspec
tion of Fig. 1, in classical phase space terms, a transi
from KAM to resonant stabilization mechanisms lies behi
this phenomenon, and in particular the enlargement of
resonance area as frequency increases.

It is worth noting that the energy range of the resonan
area shown in Fig. 1 is actually a rough estimation. T
difficulty in locating the outer torus of the resonance regi
is due to the rich structure occurring at its borders@20,21#.
This structure involves both cantori~remnants of broken tori!
and higher-order resonance zones resulting in strong st
ness effects@10#. On the contrary, for the particular interva
of frequency values, the phase space structure around
KAM region is quite different. Stroboscopic plots reveal th
no cantori exist and the high-order resonance zones are
narrow. Therefore, the stickiness effects caused by the K
tori are much weaker than the corresponding effects of
resonance stable region. This difference, combined with
movements of the stable regions described above, has
matic effects on the dissociation dynamics of the initial st
for the frequency region to which we limited our study a
sheds light on the dependence ofRcd on the laser frequency
We will explain and quantify these effects as well as th
possible relation to the photodissociation rate in the follo
ing.

III. FRACTAL SINGULARITIES
AND DISSOCIATION RATE

In accordance with relevant literature@22,23#, we con-
sider that a trajectory escapes from the bound part of
potential leading to dissociation of the molecule when
compensated energy of the molecule becomes greater
D. The compensated energy is defined by

EC5
1

2m Fp2
F

v
Ae2jr 4

~124jr 4!sin~vt !G2

1VM~r !

~5!

and it is used because it removes the oscillations of the
energy caused by the oscillations of the time-dependent fi
Therefore, it helps us to determine the time at which
effect of the molecular potential vanishes. After this tim
the molecular bond can be considered broken and hence
elapsed time is in fact the photodissociation timeTd of
the particular trajectory. Obviously,Rcd depends on theTd
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FIG. 2. The time-delay functionsTd(u) of the initial state withE5E0 for increasing values of the rescaled frequencyv. Observe the
changes in the magnitude of the dissociating part of the initial state~cf. Fig. 1! and also the modifications in the fractal set of singulariti
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of the trajectories that comprise the initial state. Followi
our previous work@3#, we calculateRcd by applying the form

Rcd5
1

N (
i 51

N

~Td
~ i !!21, ~6!

whereTd
( i ) is the photodissociation time of thei th trajectory

and the summation is taken over all transiently chaotic
finally dissociating trajectories of the initial state. Reme
bering that the dissociation process is in fact a half-scatte
process, it seems natural to use as a probe the influenc
the aforementioned changes in phase space on the featu
the time-delay functionTd(u) of the initial state. This func-
tion is characterized by a fractal set of singularities as
can see in Fig. 2, which shows theTd(u) for v
50.73,0.81,0.89,0.97. The transition from KAM to resona
stabilization may also be detected here. Atv50.73 and 0.81,
the central part of the initial state does not dissociate beca
of the presence of KAM tori, whereas atv50.97 the non-
dissociating part of the initial state (uuu.1) is due to the
overlapping with the resonant tori. Apart from this, one c
also observe some modifications in the structure of the se
singularities that have to influence the dissociation dynam
How can we quantify these changes? Usually, the fracta
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of the set of these singularities is described by the unc
tainty dimensiond @24,25#. In the case of nonhyperbolic dy
namics, it has been proposed@2# and numerically verified
@2–4# that the exact value ofd is always equal to 1. Obvi-
ously, this quantity is irrelevant to our problem since it ca
not describe the effect of the movement and deformation
the regular regions on the set of singularities, which de
mines the behavior of the photodissociation rate. Nevert
less, it is worth noting thatd converges to its exact value
only when it is computed for successively smaller scales«,
that is,d→1 as«→0 @2,3#. For a specific limited range o
scales«, the computedd is actually an approximation from
below to the exact value. This approximated oreffective un-
certainty dimension deff is shown to be an important quantit
for our problem. We have calculateddeff for 212< log10(«)
<24 as a function of the rescaled laser frequencyv in the
interesting region and the results are shown in Fig. 3~full
circles!.

We realize thatdeff is sensitive to the observed changes
the set of singularities caused by the increase in freque
and therefore it can be considered as a good descriptor o
modifications of the chaotic invariant set triggered mainly
the energy descent of the resonant region. Despite the p
ence of some fluctuations,deff increases with increasing fre
quency. A qualitative explanation of this fact is given belo
1-4
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NONHYPERBOLIC ESCAPE AND CHANGES IN PHASE- . . . PHYSICAL REVIEW E 64 056211
Apart fromdeff, the structural changes of stability region
also have an effect on the relative ‘‘size’’ of the fractal set
singularities compared with the dissociating part of the ini
state. We can quantify this relative ‘‘size’’ by the percenta
of the uncertain points~singular initial conditions! Nup(«)
for a particular sufficiently small value of«. Apparently,
Nup(«)5Nup(«)/Ntc , where Nup(«) is the number of the
«-uncertain points andNtc is the number of the transientl
chaotic trajectories. Figure 3 shows the dependence
Nup(«51026) on the rescaled frequencyv ~open squares!.
We observe that the behavior of the percentageNup(v;«) is
roughly similar to that ofdeff . It increases with frequency
Our calculations showed that this behavior is independen
the specific value of«.

Thus, we conclude that the movement and deformation
the stability regions in phase space influences the structu
the set of singularities in time-delay functions and this eff
can be quantified by the effective fractal dimensiondeff and
the percentage of the singularitiesNup. In particular, because
of the weaker stickiness effects around KAM tori, it
mainly the energy descent and the enlargement of the r
nant region that makes the fractal set of singularities den
at small scales and more extended in the initial state.

A qualitative explanation of this behavior may be the fo
lowing. It is well known that the singularities in the scatte
ing functions fall on the intersections of the line of initi
conditions with the closure of the stable manifold of t
unstable periodic orbits embedded in the nonattracting c
otic invariant set whose existence marks the chaotic sca
ing. If there were no stable regions in phase space, then
escape dynamics would be hyperbolic and the uncertain
mension would be lower than 1. The presence of the stab
regions is associated with the appearance of stickiness ef
@10#, according to which some chaotic orbits ‘‘stick’’ to th
borders of these regions for some long time interval, lead
to a power law behavior of the survival probability. The
effects are due to the cantori and the zones of high-o
resonances that appear on the borders of stable regions
manifolds of the unstable periodic orbits of these zones c
tribute to the formation of the chaotic invariant set providi

FIG. 3. The effective fractal dimensiondeff ~full circles! and the
percentage of the singular initial conditionsNup vs rescaled fre-
quencyv. Notice their sensitivity tov despite the nonhyperbolicity
of dynamics.
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the nonhyperbolic character of the dynamics. The stick
trajectories actually come from the intersections of the
stable manifolds with the line of initial conditions. It is ob
vious that the influence of the nonhyperbolicity of the d
namics on the initial state depends on the strength of
sticking effects of the stable regions as well as on their re
tive position with respect to the line of the initial state. It
worth stressing that, the strength of these effects depends
only on the external parameters of the dynamics but also
the type of the stable region. Specifically, in our system a
for the particular range of the laser frequency, the stickin
effects around the tori of the main resonance are more
nounced than those of the KAM tori because of the rich
structure of cantori and secondary resonances that dev
along its borders. Additionally, the enlargement of the sta
region is expected to amplify these effects further. Therefo
as regards the nonhyperbolicity of the dynamics, the inc
ment of the frequency causes two effects. First, due to
enlargement of the resonant region, the chaotic invariant
is enriched with the manifolds of the unstable periodic orb
of the high-order resonance zones, and hence its nonhy
bolic character becomes more pronounced. Second, this
creasing nonhyperbolicity of the chaotic invariant set b
comes more prominent in the initial state as the stable are
the main resonance comes nearer. These effects are qu
fied by the increment ofdeff andNup.

The above procedure seems to be, in some sense, the
hyperbolic analog ofthe phenomenon of crisis and enhanc
ment of hyperbolic chaotic scattering, which is observed
when two isolated chaotic invariant sets become heteroc
cally tangent to each other leading to an increment of
uncertainty dimension of the set of singularities as well as
a proliferation of them in the scattering function, the latt
called ‘‘enhancement of hyperbolic chaotic scattering’’
@7,8#. In the case of the nonhyperbolic dynamics of our s
tem, we roughly have a heteroclinic intersection of the no
hyperbolic invariant set of the unstable periodic orbits of t
secondary resonance zones with the hyperbolic invarian
lying in the chaotic region. In accordance with the hype
bolic case, we have found an increment of the effective fr
tal dimensiondeff and a proliferation of the singularities i
the time-delay function expressed by the increment ofNup.

Since the uncertain initial conditions are in fact interse
tions with the stable manifold of the chaotic invariant s
they will give trajectories acquiring a long dissociation tim
Td . Therefore, a connection betweendeff andNup, describ-
ing the fractal set of singularities, andRcd is expected to
exist. In order to check the validity of this expectation, w
calculateRcd by the formula~3! for the frequency region we
used in previous calculations. Figure 4 showsRcd as a func-
tion of deff ~a! and Nup ~b!. We observe that, despite som
fluctuations, an exponential relation can clearly be extrac
At present, the exact form is not relevant. The important f
is that the increment ofdeff andNup is undoubtedly associ
ated with exponential reduction ofRcd. Hence, we can think
of the deff andNup as the quantities connecting the chang
in the structure of the stable regions in phase space with
observable photodissociation rate.
1-5
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IV. OUTLOOK AND FUTURE PERSPECTIVES

In this paper, we investigated the classical photodisso
tion of a Morse diatomic molecule by using the tools of t
theory of chaotic scattering. In particular, two questions w
addressed. The first referred to the dependence of the p
space stable regions and hence the photodissociation p

FIG. 4. The exponential dependence of the classical photodi
ciation rateRcd on the effective fractal dimensiondeff ~a! and on the
percentage of the singular initial conditionsNup ~b!.
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ability on the laser frequency. It was indicated that a tran
tion from KAM to resonance stabilization occurs as the la
frequencyf increases towards the harmonic frequency of
potential f 0 , and that at the edge of this transition the ph
todissociation maximizes. An interesting issue for futu
study is the quantum mechanical implications of these t
different stabilization mechanisms and, in particular, t
quantum aspects of the stickiness effects associated with
resonance stability islands.

The second and more important question had to do w
the influence of the above phase space changes on the d
ciation dynamics and rate. This question was investiga
using as a probe the changes in the structure of the fracta
of singularities in the time-delay functions of the initial cla
sical state. We proposed two quantities that can desc
these changes, namely, the effective fractal dimension
the percentage of the singular trajectories, and showed
they relate to the classical dissociation rate. The findin
concerning the last question may be considered as a first
towards a deeper understanding of the core problem in n
hyperbolic scattering, that is, the influence of the charac
istics of the stable regions on scattering dynamics. The s
ond step would be to confirm the generic character of
results by investigating other nonhyperbolic scattering
half-scattering systems. Furthermore, additional analysis
volving in a quantitative way the properties of the nonattra
ing chaotic set and their relation to the dissociation r
would hopefully provide the theoretical background of o
results.
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