Theoretical resolution of the H^{-}resonance spectrum up to the $\boldsymbol{n}=4$ threshold. II. States of ${ }^{1} S$ and ${ }^{1} D$ symmetries

Mirosław Bylicki ${ }^{1, *}$ and Cleanthes A. Nicolaides ${ }^{2, \dagger}$
${ }^{1}$ Instytut Fizyki, Uniwersytet Mikołaja Kopernika, Grudzia̧dzka 5, 87-100 Toruń, Poland
${ }^{2}$ Physics Department, National Technical University, Athens, and Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 11635 Athens, Greece
(Received 2 August 1999; revised manuscript received 12 October 1999; published 12 April 2000)

Abstract

The resonance spectrum of H^{-}for ${ }^{1} S$ and ${ }^{1} D$ symmetries up to the $n=4$ threshold has been computed by solving the corresponding complex eigenvalue Schrödinger equation in terms of basis functions of real and complex coordinates. These functions are chosen and optimized judiciously and systematically in order to account for the specific details of electronic structure, electron correlation, and multistate and multichannel couplings characterizing the problem. Large sets of Slater orbitals, extending in a regular manner to about 8000 atomic units, were employed in order to describe properly the full range and especially the large- r behavior of the localized part of these resonances, as their energy approaches their corresponding threshold. Energies, widths, and wave-function characteristics are presented for $33^{1} S$ states and $37{ }^{1} \mathrm{D}$ states having widths down to about 1×10^{-9} a.u. Of this total of 70 states, only 32 have been identified before via the application of different theoretical approaches, or, for very few of them, in scattering experiments. By adopting the GailitisDamburg model of dipole resonances as the relevant zero order model, we identify unperturbed and perturbed spectral series, in analogy with the well-known spectra of neutral atoms or positive ions, where the zero-order model is based on the Rydberg spectrum of the $1 / r$ Coulomb potential. For perturbed spectra, only rough correspondence can be made with the smooth series predictions of the zero-order model. By achieving manydigit numerical precision for our results, we demonstrate the occasional presence of unique irregularities associated with each threshold, such as the existence of overlapping resonances and of "loner" resonances (i.e., not belonging to any series) below and above threshold. An example for the latter is a ${ }^{1} D$ shape resonance above the $n=3$ threshold. This state was already identified by Ho and Bhatia [Phys. Rev. A 48, 3720 (1993)]. However, our values for the energy above threshold ($\Delta E=0.49497 \mathrm{meV}$) and for the width (Γ $=8.632 \mathrm{meV}$) differ significantly from theirs ($\Delta E=116.94 \mathrm{meV}$ and $\Gamma=157 \mathrm{meV}$).

PACS number(s): 31.50.+w, 32.80.Gc

I. INTRODUCTION

This paper continues the presentation and the analysis of results on the resonance spectrum of the prototypical atomic negative ion, H^{-}, which started in our two concurrent papers [1,2], based on the solution of the complex eigenvalue Schrödinger equation for series of resonances. The symmetries of interest here are ${ }^{1} S$ and ${ }^{1} D$, the energy range is from
the $n=1$ to 4 hydrogen thresholds, and the adopted cutoff for the search of resonances are width values down to about 1 $\times 10^{-9}$ a.u. The above choices follow from the arguments presented in Ref. [2] as to the possibility of high resolution measurements of narrow H^{-}resonances of widths much smaller than 5-10 meV, via two-step excitation mechanisms. Accordingly, a possibly practical excitation path for the ${ }^{1} S$ and ${ }^{1} D$ resonances is

$$
\begin{equation*}
\mathrm{H}^{-} 1 s^{2}{ }^{1} S \xrightarrow{\text { one photon }}{ }^{1} P^{o} \text { (below or above the } \mathrm{H} n=2 \text { threshold) } \xrightarrow{\text { tunable laser }}{ }^{1} \mathrm{~S},{ }^{1} \mathrm{P},{ }^{1} \mathrm{D} \text { (resonances). } \tag{1}
\end{equation*}
$$

The ${ }^{1} P^{o}$ states around the $n=2$ threshold have already been produced and measured below and above threshold at 10.172 and 10.226 eV above the H ground state respectively [3-7]. The even-parity states of ${ }^{1} P$ symmetry were calculated and analyzed in Ref. [1], for the energy spectrum up to

[^0]the $n=5$ threshold and for widths down to about 1 $\times 10^{-10}$ a.u.

The implication of Eq. (1) is that the part of the ${ }^{1} S$ and ${ }^{1} D$ resonance spectra which were of immediate relevance to this work consists of the states which start above the $n=2$ threshold. Nevertheless, for reasons of completeness and of comparison with the very recent results of Gien [8] for H^{-} resonances below the $n=2$ threshold, we also give our results for the ${ }^{1} S$ and ${ }^{1} D$ resonances up to the $n=2$ threshold and compare the positions and widths with his in Table I. In

TABLE I. Energies above the H ground state (in a.u.) and widths (in a.u.) of the ${ }^{1} S$ and ${ }^{1} D$ resonances below the $n=2$ hydrogen threshold obtained from the solution of the complex eigenvalue Schrödinger equation (CESE, this work) and from the solution of the Harris-Nesbet algebraic coupled-channel equations (Gien, Ref. [8]). The notation $[x]$ means 10^{-x}.

	Gien [8]		Γ	
	E	This work		
	Γ	E	Γ	
${ }^{1} S(1)$	0.351232565	$1.736[3]$	0.35122025	$1.73870[3]$
(2)	0.37399025135	$8.93[5]$	0.373979753	$9.0934[9]$
(3)	0.37494272785	$5.145[6]$	0.374942173	$5.2292[6]$
(4)	0.3749967172	$2.943[7]$	0.37499668576	$2.998[7]$
(5)	0.37499981185	$1.6915[8]$	0.374999809851	$1.7176[8]$
(6)	0.3749999921	$6.34[10]$	0.374999989	$<4[9]$
${ }^{1} D(1)$	0.37209987705	$3.153[4]$	0.3720726	$3.20[4]$
(2)	0.3749996703	$2.462[8]$	0.3749996629	$2.6[8]$

Tables II and III we present our results for ${ }^{1} S$ and ${ }^{1} D$ resonances below the $n=2$ threshold, including the distance from the nonrelativistic threshold, ϵ_{m}, and the ratios for successive levels, $R_{\epsilon} \equiv \epsilon_{m-1} / \epsilon_{m}$ and $R_{\Gamma} \equiv \Gamma_{m-1} / \Gamma_{m}$. Gien [8] employed the Harris-Nesbet algebraic method, and solved to high numerical accuracy the coupled-channel scattering (CCS) equations with 13 states. Given the reported number of significant digits, there is a descrepancy between there results and ours for the low-lying states. For these states, short-range correlation becomes relatively more important. We remind the reader that the energy region associated with the $n=2$ threshold has been searched repeatedly since the early 1960s for the identification of resonances of different symmetries, computationally as well as experimentally (see Refs. [2-10], and references therein).

For the energy region of interest here, i.e., for the range between the $n=2(-0.125$ a.u.) and $n=4$ (-0.03125 a.u.) hydrogen thresholds, the existing information since the 1960s concerns $11{ }^{1} S$ and $13{ }^{1} D$ resonances. The experimental and theoretical work is cited in Sec. II.

In the present calculations, we identified, analyzed, and classified $27{ }^{1} S$ and $35{ }^{1} D$ in the 2.5497 eV of this energy
range, with widths down to about 1×10^{-9} a.u. (As 1 a.u. for H^{-}, we use the reduced value 27.19658 eV .) The significance of these predictions, as well as of those in Refs. [1,2], is associated with the fundamentals of polyelectronic theory for resonance states, as well as with the possible future arrangements of experiments of high resolution (see Ref. [2]). They constitute the first very accurate resolution of a negative ion resonance spectrum over a physically reachable energy region, and provide reliable quantitative information about trends of spectral features of series of resonances and insight into their wavefunction characteristics.

II. PREVIOUS DATA ON THE E AND Γ OF $\mathrm{H}^{-1} S$ AND ${ }^{1} D$ RESONANCES BETWEEN THE $n=2$ AND 4 THRESHOLDS

Simple calculations and their analysis show that configurations $1 \operatorname{snl}, n \geqslant 2$, do not lead to variationally optimized localized wave functions with energies in local-energy minima above the H 1 s energy at -0.5 a .u. Therefore, no shape resonance associated with the $n=1$ threshold exists.

It is at the $n=2$ threshold that the structure of zero-order

TABLE II. Results of the present CESE (complex eigenvalue Schrödinger equation) calculations for H^{-}resonances of ${ }^{1} S^{e}$ symmetry below the $n=2$ threshold. E : total energy in a.u. For H^{-}, 1 a.u. $=27.19658 \mathrm{eV}$. Γ : total width. $\epsilon_{m} \equiv E_{t h}-E_{m}$: the energy distance from threshold. R_{ϵ} $\equiv \epsilon_{m-1} / \epsilon_{m}$ and $R_{\Gamma} \equiv \Gamma_{m-1} / \Gamma_{m}$.

State	$-E$ ($\mathrm{a} . \mathrm{u}$.	$\epsilon\left(10^{-8}\right.$ a.u.)	$\frac{\Gamma}{2}\left(10^{-8} \text { a.u. }\right)$	R_{ϵ}	R_{Γ}
1	0.14877975	2377975		86935	
2	0.126020247	102024.7	4546.7	23.31	19.12
3	0.125057827	5782.7	261.46	17.64	17.39
4	0.12500331424	331.424	14.99	17.45	17.44
5	0.125000190149	19.0149	0.8588	17.43	17.46
6	0.125000011	1.1	<0.2	17.3	a
The value of the ratio given by the GD model is [34]				17.429	

[^1]TABLE III. As in Table II, for ${ }^{1} D^{e} \mathrm{H}^{-}$resonances below the $n=2$ threshold.

| | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| State | $-E$ (a.u. $)$ | $\epsilon\left(10^{-6}\right.$ a.u. $)$ | $\frac{\Gamma}{2}\left(10^{-6}\right.$ a.u. $)$ | R_{ϵ} | R_{Γ} |
| 1 | $0.1279274^{\text {a }}$ | 2927.4 | 160.0 | | |
| 2 | 0.1250003371 | 0.3371 | 0.0130 | 8684.0 | 12307.0 |
| | The value of the ratio given by the GD model is [34] | | 4422 | | |

${ }^{\text {a }}$ This energy corresponds to 10.8738 eV above the $\mathrm{H}^{-1} S$ ground state, using 1 a.u. $=27.19658 \mathrm{eV}$ and the nonrelativistic H^{-}energy -0.5277510 a.u.. The two-photon experiment of Stintz et al. [35] gave $10.872 \pm 0.002 \mathrm{eV}$.
configurations allows localization, and hence the appearance of resonances below the $n=2$ threshold such as ' $2 s^{2,}{ }^{1} S$, " $2 p^{2, "}{ }^{1} D$, etc. In fact, electron correlation also brings the $2 p^{23} P$ state below the $n=2$ threshold. Since the state does not mix with $1 s \epsilon l$ continua, it belongs to the discrete spectrum of H^{-}, together with the ground state $1 s^{21} S$ [11]. $A b$ initio calculations have been used to conclude that no other discrete states of H^{-}exist [12]. The results presented in Tables I-III for ${ }^{1} S$ and ${ }^{1} D$ states, as well as in our other two papers [1,2] for other symmetries, show how close to the nonrelativistic $n=2$ threshold there exist nonrelativistic complex eigenvalues. In Ref. [2] we commented on the possibility that one or more such eigenvalues might survive relativistic interactions, and therefore may correspond to relativistic shape resonances above the lowest relativistic $n=2$ hydrogen threshold.

Resonances of ${ }^{1} S$ and ${ }^{1} D$ symmetries in the region between the $n=2$ and 4 thresholds have attracted the interest of a number publications, which are briefly discussed below. On the experimental side, it is electron scattering experiments that have been carried out. The first measurement of the position (but not the width) of such states were made by McGowan and co-workers in the late 1960s [3]. They found one ${ }^{1} S$ state at 11.65 eV above $\mathrm{H} 1 s$, and one ${ }^{1} D$ state at 11.89 eV . In the early 1970s, Spence [13] reported a measurement of the $3 p^{21} D$ state at $11.860 \pm 0.030 \mathrm{eV}$. Years later, Williams [14], working with a resolution below 10 meV, identified two ${ }^{1} S$ and two ${ }^{1} D$ states below $n=3$. The positions as well as widths were measured. The same states were later detected by Warner, Rutter, and King [15], but only their energies were reported. The values of these energies are in slight disagreement with those of Williams. The above experimental data are presented in Table IV.

On the theoretical side, three categories of calculations
have been reported. The first is the variational diagonalization of the Feshbach-O'Malley-Geltman projected ($Q H Q$) real Hamiltonian in an \mathcal{L}^{2} basis of hydrogen and Slater functions by Oberoi [16]. This method produces only unshifted (by the interaction with open channels) energies and no width. In spite of this incomplete identification, at the time of their publication (1972) the Oberoi energies constituted a considerable advance in the knowledge of the whereabouts of five ${ }^{1} S$ states and four ${ }^{1} D$ states below $n=3$, and five ${ }^{1} S$ states and five ${ }^{1} D$ states below $n=4$. The second category is the diagonalization of non-Hermitian matrices to produce complex eigenvalues, the real part giving E and the imaginary one giving Γ. Two such methods have been applied. The first is the complex coordinate rotation (CCR) method, where the rotated Hamiltonian $H\left(r e^{-i \theta}\right) \equiv e^{-i 2 \theta} T+e^{-i \theta} V$ is diagonalized repeatedly as a function of θ for one or more large \mathcal{L}^{2} basis sets, until a point of eigenvalue stability is recognized. The CCR method, as implemented and demonstrated by Doolen and co-workers [17,18], was applied to H^{-}in many publications starting in the late 1970s by Ho and co-workers [19-23], but only a few ${ }^{1} S$ and ${ }^{1} D$ resonances were identified. For example, below $n=3$ only one ${ }^{1} S$ state [19] and one ${ }^{1} D$ state $[20,22]$ have been reported. Also one ${ }^{1} D$ shape resonance above the $n=3$ threshold was found [23]. Finally, below $n=4$, Ho [19] identified two ${ }^{1} S$ states, Ho and Callaway [20] two ${ }^{1} S$ states and three ${ }^{1} D$ states, and Ho [21] six ${ }^{1} S$ states. Our Tables V-VII contain the CCR results of Refs. [19-23].

The other method is that of solving the complex eigenvalue Schrödinger equation via the use of appropriate function spaces of real and complex coordinates. (See the discussion in Ref. [2].) Chrysos et al. [24] reported E and Γ, and also the partial widths with interchannel couplings for specific resonances of ${ }^{1} S$ symmetry (the lowest ones below the

TABLE IV. Experimental values for $\mathrm{H}^{-1} S$ and ${ }^{1} D$ resonances between the $n=2$ and 4 thresholds. The energies E are in eV above the H ground state, and the widths Γ are in meV .

	McGowan et al.	Spence	Williams		Warner et al.
	$[3]$	$[13]$	E	$[14]$	Γ
	E	E	E		$[15]$
	11.65 ± 0.03		11.723	41 ± 8	E
${ }^{1} S(1)$			12.026	9 ± 3	11.718 ± 0.009
${ }^{1} S(2)$	11.89 ± 0.02	11.860 ± 0.030	11.805	46 ± 8	11.815 ± 0.005
${ }^{1} D(1)$		12.04	7 ± 3	12.055 ± 0.008	
${ }^{1} D(2)$					

TABLE V. Positions above the H ground state (in a.u.) and widths (in mau, 1 mau $=10^{-3}$ a.u.) of $\mathrm{H}^{-1} S$ and ${ }^{1} D$ resonances below the $n=3$ threshold, as identified in this and in previous works.

	Algebraic coupled channel Callaway [30]		$\begin{gathered} R \text { matrix } \\ \text { Odgers } \text { et al. }[32] \end{gathered}$		Ho [19] Complex coordinate rotation \quad Ho and Callaway [20] Bhatia and Ho [22]						CESE This work	
	E (a.u.)	Γ (mau)	E (a.u.)	Γ (mau)	E (a.u.)	Γ (mau)	E (a.u.)	Γ (mau)	E (a.u.)	Γ (mau)	E (a.u.)	Γ (mau)
${ }^{1} S(1)$	0.431003	1.430	0.43100	1.52	0.43100	1.42					0.43099394	1.41786
(2)	0.442232	0.306	0.44228	0.299							0.44221827	0.30822
(3)	0.443872	0.0776	0.44389	0.094							0.443860535	0.087792
(4)	0.444004	0.034	0.44400	0.032							0.443993379	0.049676
(5)											0.4443508498	0.012986
(6)											0.4444250551	0.0027234
(7)											0.4444404250	0.00056584
(8)											0.44444361103	0.00011733
(9)											0.44444427160	0.00002432
(10)											0.4444444085	0.00000628
${ }^{1} D(1)$	0.434055	1.635	0.43404	1.68			0.4340	1.6	0.4340467	1.658	0.434041	1.652
(2)	0.443188	0.242	0.44321	0.242							0.4431694	0.2528
(3)	0.444100	0.027	0.44427	0.0214							0.44424173	0.04168
(4)											0.44426613	0.04936
(5)											0.444411505	0.006856
(6)											0.4444390840	0.0011232
(7)											0.4444425339	0.0007814
(8)											0.44444357062	0.000183112
(9)											0.44444430197	0.0000296
(10)											0.4444444206	0.0000114

TABLE VI. Positions above the H ground state (in a.u.) and widths (in mau, 1 mau $=10^{-3}$ a.u.) of $\mathrm{H}^{-1} S$ and ${ }^{1} D$ resonances below the $n=4$ threshold, as identified from the implementation of four methods for the calculation of resonances.

	R matrix Pathak et al. [31]		Complex coordinate rotation				Algebraic coupled channel Callaway [30]		CESE This work	
			Ho and Ca	away [20]						
	E (a.u.)	Γ (mau)								
${ }^{1} S(1)$	0.460392	1.09	0.46036	0.95	0.460362	0.95	0.4603	1.0	0.46036471	0.95466
(2)	0.465307	0.71	0.46527	0.88	0.46527	0.88	0.4657	0.81	0.46527663	0.8636
(3)	0.466475	0.27			0.466433	0.34			0.46643330	0.34036
(4)	0.468005	0.093			0.467982	0.127			0.46798266	0.127954
(5)	0.468483	0.045			0.468491	0.046			0.46849313	0.04534
(6)	0.468540	0.045			0.46853	0.07			0.468531196	0.069572
(7)	0.468662	0.013							0.46866427	0.015208
(8)									0.468721274	0.005134
(9)									0.4687361131	0.004744
(10)									0.46874036	0.001720
(11)									0.4687467663	0.0005614
(12)									0.4687489161	0.00019548
(13)									0.46874914414	0.00029276
(14)									0.4687496373	0.00006504
(15)									0.4687498804	0.0000202
(16)									0.46874994720	0.00001834
(17)									0.46874998	0.00002
${ }^{1} D(1)$	0.461246	1.25	0.46125	0.95			0.4613	1.2	0.4612636	0.9882
(2)	0.465523	0.735	0.46551	0.76					0.46550115	0.7674
(3)	0.466829	0.210	0.46687	0.24					0.4668382	0.3152
(4)	0.466943	0.272							0.46688715	0.22538
(5)	0.467338	0.013							0.467332382	0.01538
(6)	0.468185	0.010							0.46817064	0.1098
(7)	0.468475	0.0075							0.46847318	0.00418
(8)	0.468689	0.0075							0.4685698	0.05286
(9)	0.468696								0.46856980	0.035506
(10)									0.46869466	0.00076
(11)									0.46869377	0.01124
(12)									0.468732598	0.00350
(13)									0.4687388165	0.000254
(14)									0.468740005	0.003328
(15)									0.4687421425	0.001916
(16)									0.468744565	0.001084
(17)									0.4687477424	0.0000320
(18)									0.4687482994	0.0003374
(19)									0.4687494674	0.0001066
(20)									0.46874950228	0.00015178
(21)									0.46874954519	0.00000876
(22)									0.4687498367	0.0000390
(23)									0.4687499115	0.00000286
(24)									0.4687499797	0.00001266

$n=3$ and 4 thresholds.) The same quantities were reported by Themelis and Nicolaides [25] for ${ }^{1} D$ resonances below $n=3$ and 4 .

The third category consists of CCS calculations of different types, where fundamental quantities such as the phase shift or the reaction matrix are obtained as a function of real energy and then are used to fit appropriate formal expressions satisfied in the vicinity of a resonance. The first such
method to produce results for the resonances of interest was the direct numerical one, without and with correlation terms, implemented by Burke and collaborators in the 1960s [2628]. They identified two ${ }^{1} S$ and ${ }^{1} D$ states below $n=3$. Callaway and coworkers [29,30] obtained algebraic solutions of the CCS equations using up to 28 states. Callaway identified four ${ }^{1} S$ states and three ${ }^{1} D$ states below $n=3$, and two ${ }^{1} S$ states and one ${ }^{1} D$ state below $n=4$ [30]. Finally, the

TABLE VII. Energy (in $10^{-4} \mathrm{eV}$ above the $\mathrm{H} n=3$ threshold), width (in $10^{-4} \mathrm{eV}$) and wave-function composition (in terms of the dominant symmetries) of the $\mathrm{H}^{-1} D$ shape resonance above the n $=3$ threshold from the present CESE calculations. Comparison is made with E and Γ obtained by Ho and Bhatia [23], who implemented the CCR method.

CESE (this work)								CCR [23]	
E	Γ	$d d$	$s d$	$p p$	$p f$	ff	$d g$	E	Γ
4.965	8.6	0.561	0.234	0.092	0.084	0.017	0.012	1171	1569

R-matrix method was applied by Pathak, Kingston, and Berrington [31] and Odgers, Scott and Burke [32]. Below the $n=3$ threshold, four ${ }^{1} S$ states and three ${ }^{1} D$ states were identified $[31,32]$, and below the $n=4$ threshold seven ${ }^{1} S$ states and nine ${ }^{1} D$ states were found [31]. These results are included in Tables V and VI.

III. PRESENT CALCULATIONS AND RESULTS

The theory and methodology which were applied for the present calculations were explained in the preceding paper [2]. Here we only discuss the implementation and the results.

The hydrogen states associated with the open channels, up to $n=4$, were represented by real Slater type orbitals (STO's) whose exponents were chosen equal to $1 / n$ so that, when combined, they can form the exact hydrogen functions. The real STO's used for the description the localized parts of the wave functions as well as those complex STO's describing the outgoing Gamow orbitals, were chosen so that their average r values formed geometrical sequence covering the region from $\langle r\rangle_{\min }$ to $\langle r\rangle_{\text {max }}$. The values of $\langle r\rangle_{\text {min }}$ and $\langle r\rangle_{\max }$ are given in Table VIII together with the number of localized STO's, $N_{l o c}$, and complex rotated STO's, $N_{\text {rot }}$, for each orbital symmetry, l. The rotated orbitals were combined with the STO's representing the hydrogen target states to form the two-electron configurations describing the asymptotic part of the wave function. Since in the H^{-}dipole resonances one electron is supposed to be, on average, close to the nucleus, whereas the other one moves in very large orbits, the whole orbital basis set was used for the outer electron and only half of it (the low $\langle r\rangle$ part) was used for the inner electron. The number of configurations obtained in this way is given in Table IX together with the specification of angular $l l^{\prime}$ terms. The non-Hermitian Hamiltonian matrices were built from such bases, and diagonalized for 12 values of θ in the range from 0.2 up to 0.75 rad . The $\langle r\rangle_{\text {min }}$

TABLE IX. The basis set expansion for the CESE computation of ${ }^{1} S$ and ${ }^{1} D$ resonances. For a given total symmetry the number of radial terms within the angular contribution $l l^{\prime}$ is given.

	ss	$p p$	dd	ff	$g g$	hh	sd	$p f$	$d g$	$f h$	gi	Total
${ }^{1} S$	596	491	424	392	345	301						2549
${ }^{1} D$		436	373	343	299		884	759	655	582	501	4832

parameter was also optimized within a range of a few atomic units in order to obtain the best θ stabilization of the complex roots corresponding to the sought after resonances. (The values of $\langle r\rangle_{\text {min }}$ given in Table VIII define the lowest limit for this range.)

Our final results for the positions and widths of the ${ }^{1} S$ and ${ }^{1} D$ resonances are presented in Tables I, V, and VI, where they are compared with results of the most accurate and extensive previous calculations. We give the decimal figures which were found to be stable against variation of θ.

The completeness of the present results as regards the resolution of the resonance spectra allow the possibility of analysis of general properties of the H^{-}spectrum and of the resonance wave functions. Tables II, III, and X-XIII reveal the regularities and the disturbances of the resonance spectra. Specifically, apart from the energies and widths, we give the energy positions with respect to the threshold where the spectrum accumulates, $\epsilon_{m} \equiv E_{t h}-E_{m}$, their ratio R_{ϵ} $\equiv \epsilon_{m-1} / \epsilon_{m}$, and the ratio of the resonance widths, R_{Γ} $\equiv \Gamma_{m-1} / \Gamma_{m}$. Given the prediction of the dipole approximation [33], we classified the computed complex eigenvalues into series according to these ratios. According to the Gailitis-Damburg (GD) model [33], the ratios R_{ϵ} and R_{Γ} should be the same for a given series. The model values of this ratio, obtained by Pathak, Burke, and Berrington [34], are also given in Tables II, III, and X-XIII.

If there is only one series in a given region, the convergence of ratios to the model value is quite good. Single series are predicted by the model [34] for ${ }^{1} D$ below the $n=2$ threshold and for ${ }^{1} S$ below $n=2$ and 3 thresholds. Let us consider the ${ }^{1} S$ series below the $n=3$ threshold. Nine members of it have been identified by our computation (Table X). There is very nice convergence of the R_{ϵ} and R_{Γ} to the model value. As discussed in Ref. [2], it is typical in such a case for R_{ϵ} to approach the model value monotonically from above, and for R_{Γ} to do so from below. This is due to the fact that the binding of lower-lying members of the series is in fact stronger than that predicted by the GD model. However, here there is a clearly seen disturbance, caused by the

TABLE VIII. The orbital basis set used in the present computation of ${ }^{1} S$ and ${ }^{1} D$ resonances. The number of localized radial STO's, $N_{l o c}$, and the number of complex rotated radial STO's, $N_{\text {rot }}$, for each orbital symmetry l are given. The STO's are chosen systematically so as to have their average r fall in a regular way inside the range defined by $\langle r\rangle_{\min }$ and $\langle r\rangle_{\max }$.

	s		p		d		f		g		$\begin{gathered} h \\ N_{l o c} \end{gathered}$	$\begin{gathered} i \\ N_{l o c} \end{gathered}$	$\begin{gathered} \langle r\rangle_{\min } \\ \text { (a.u.) } \end{gathered}$	$\begin{gathered} \langle r\rangle_{\max } \\ \text { (a.u.) } \end{gathered}$
	$N_{\text {loc }}$	$N_{r o t}$	$N_{\text {loc }}$	$N_{\text {rot }}$	$N_{\text {loc }}$	$N_{\text {rot }}$	$N_{\text {loc }}$	$N_{r o t}$	$N_{\text {loc }}$	$N_{\text {rot }}$				
${ }^{1} S$	32	34	32	33	32	32	32		30		28		1.5	8000
${ }^{1} D$	31	32	31	31	31	30	31	29	29	28	27	25	1.1	5500

THEORETICAL RESOLUTION OF II. . . .
TABLE X. As in Table II, for ${ }^{1} S^{e} \mathrm{H}^{-}$resonances below the $n=3$ threshold. Note that, apart from the series A predicted by the GD model [34], the B state appears, which is not predicted by the model.

State	$-E$ (a.u.)	$\epsilon\left(10^{-8}\right.$ a.u. $)$	$\frac{\Gamma}{2}\left(10^{-8} \text { a.u. }\right)$	R_{ϵ}	R_{Γ}
1 A1	0.06900606	1345050	70893		
2 A2	0.05778173	222617	15411	6.042	4.600
$3 B$	0.056139465	58390.9	4389.6		
4 A3	0.056006621	45106.5	2483.8	4.938	6.204
5 A4	0.0556491502	9359.46	649.3	4.819	3.825
6 A5	0.0555749449	1938.93	136.17	4.827	4.76
7 A6	0.0555595750	401.94	28.292	4.824	4.813
8 A7	0.05555638897	83.341	5.8665	4.823	4.823
9 A8	0.05555572840	17.284	1.216	4.822	4.824
10 A9	0.0555555915	3.59	0.314	4.81	a
The value of the ratio given by the GD model is [34]				4.823	

${ }^{2}$ See the footnote of Table II.
occurrence of a 'loner'" state, which we labeled B. This state, not predicted by the model, appears between the $A 2$ and $A 3$ states of the discussed series, and pushes the $A 3$ level up. This is recognized by analyzing the R_{ϵ} values. Another effect is that the A3 state is more stable against autoionization, as compared to what would be expected from the regular behavior of unperturbed series.

The situation becomes more complicated and interesting when, in a given region, there are two or more series of resonances of the same symmetry. Then the interseries interaction often results in the lower-lying states of higher series being pushed up. As a consequence, the convergence of
higher series has different character than that of the lowest one.

Coexistence of different series leads also to the appearance of overlapping resonances. The most complicated case investigated in this work is that involving the ${ }^{1} D$ resonances below the $n=4$ threshold (see Table XIII). Our computation identified 24 states, which are classified into four series (A, B, C, and $D)$, in accordance with the prediction of the GD model. Among them there are five pairs of overlapping resonances. Members of such pairs belong to different series, and their energy difference is comparable to the width of at least one state of the pair. The most striking case is the overlap-

TABLE XI. As in Table II, for ${ }^{1} S^{e} \mathrm{H}^{-}$resonances below the $n=4$ threshold. Note the existence of overlapping resonances $A 4$ and $B 2$.

State	$-E$ (a.u.)	$\epsilon\left(10^{-8}\right.$ a.u. $)$	$\frac{\Gamma}{2}\left(10^{-6} \text { a.u. }\right)$	A		B	
				R_{ϵ}	R_{Γ}	R_{ϵ}	R_{Γ}
1 A1	0.03963529	838529	477.33				
2 B 1	0.03472337	347337	431.8				
3 A2	0.03356670	231670	170.18	3.619	2.805		
4 A3	0.03201734	76734	63.977	3.019	2.660		
5 A4	0.03150687	25687	22.67	2.987	2.822		
6 B2	0.031468804	21880.4	34.786			15.874	12.413
7 A5	0.03133573	8573	7.604	2.996	2.981		
8 A6	0.031278726	2872.6	2.567	2.984	2.962		
9 B 3	0.0312638869	1388.69	2.372			15.756	14.665
10 A7	0.03125964	964	0.860	2.980	2.985		
11 A8	0.0312532337	323.37	0.2807	2.981	3.064		
12 A9	0.0312510839	108.39	0.09774	2.983	2.872		
$13 \mathrm{B4}$	0.03125085586	85.586	0.14638			16.226	16.204
14 A 10	0.0312503627	36.27	0.03252	2.988	3.006		
15 A11	0.0312501196	11.96	0.0101	3.033	3.220		
16 B5	0.03125005280	5.280	0.00917			16.209	15.963
17 A12	0.03125002	2	0.01	a	a		
The values of the ratio given by the GD model are [34]				2.982		16.210	

[^2]TABLE XII. As in Table II, for ${ }^{1} D^{e} \mathrm{H}^{-}$resonances below the $n=3$ threshold. Note the existence of overlapping resonances $A 3$ and $B 1$.

State	$-E$ (a.u.)	$\epsilon\left(10^{-6}\right.$ a.u. $)$	$\frac{\Gamma}{2}\left(10^{-6} \text { a.u. }\right)$	R_{ϵ}	R_{Γ}	R_{ϵ}	R_{Γ}
1 A1	0.065959	10403	826				
2 A2	0.0568306	1275.0	126.4	8.159	6.535		
3 A3	0.05575827	202.71	20.84	6.290	6.065		
$4 B 1$	0.05573387	178.31	24.68				
5 A4	0.055588495	32.939	3.428	6.154	6.079		
6 A5	0.0555609160	5.3604	0.5616	6.145	6.104		
7 B 2	0.0555574661	1.9105	0.3907			93.332	63.169
8 A6	0.05555642938	0.87382	0.091556	6.134	6.134		
9 A7	0.05555569803	0.14247	0.0148	6.133	6.186		
10 B3	0.0555555794	0.0238	0.0057			80.125	68.544
The values of the ratio given by the GD model are [34]				6.134		80.552	

ping pair of $B 2$ and $A 4$ states. Within the 10^{-7} a.u. accuracy obtained for the B2 state, their energies do not differ, and their widths are about 52×10^{-6} and 35×10^{-6} a.u. We thus have a case for the two-electron Coulomb Hamiltonian where near perfect degeneracy of states seems to exist on the
real energy axis. However, we hasten to point out that the resonance spectrum occurs in the second Riemann sheet as complex energies. Therefore, the meaning of the degeneracy must be expanded, referring to both real and imaginary energies. Actually, when θ trajectories are followed, i.e., the

TABLE XIII. As in Table II, for ${ }^{1} D^{e} \mathrm{H}^{-}$resonances below the $n=4$ threshold. Note the existence of pairs of overlapping resonances: $B 2$ and $A 4, D 3$ and $A 5, D 4$ and $B 3 B 3$, and $C 2$, and $B 4$ and $D 6$.

State	$-E$ ($\mathrm{a} . \mathrm{u}$.	$\epsilon\left(10^{-6}\right.$ a.u. $)$	$\frac{\Gamma}{2}\left(10^{-6} \text { a.u. }\right)$	A		B		C		D	
				R_{ϵ}	R_{Γ}	R_{ϵ}	R_{Γ}	R_{ϵ}	R_{Γ}	R_{ϵ}	R_{Γ}
1 Al	0.0387364	7486.4	494.1								
2 B 1	0.03449885	3248.85	383.7								
3 A2	0.0331618	1911.8	157.6	3.916	3.135						
$4 C 1$	0.03311285	1862.85	112.69								
5 D 1	0.032667618	1417.618	7.69								
6 A3	0.03182936	579.36	54.9	3.300	2.871						
7 D2	0.03152682	276.82	2.09							5.121	3.679
$8 B 2$	0.0314302	180.2	26.43			18.029	14.518				
9 A4	0.03143020	180.20	17.753	3.215	3.092						
10 D3	0.03130534	55.34	0.38							5.002	5.500
11 A5	0.03130623	56.23	5.62	3.205	3.159						
12 A6	0.031267402	17.402	1.75	3.231	3.211						
13 D 4	0.0312611835	11.1835	0.127							4.948	2.992
14 B3	0.031259995	9.995	1.664			18.029	15.883				
15 C 2	0.0312578575	7.8575	0.958					237.079	117.630		
16 A7	0.031255435	5.435	0.542	3.202	3.229						
17 D5	0.0312522576	2.2576	0.0160							4.954	7.938
18 A8	0.0312517006	1.7006	0.1687	3.196	3.213						
19 A9	0.0312505326	0.5326	0.0533	3.193	3.165						
20 B4	0.03125049772	0.49772	0.07589			20.082	21.926				
21 D6	0.03125045481	0.45481	0.00438							4.964	3.653
22 A 10	0.0312501633	0.1633	0.0195	3.261	2.733						
23 D7	0.0312500885	0.0885	0.00143							5.139	3.063
24 B5	0.0312500203	0.0203	0.00633			24.518	11.989				
The values of the ratio given by the GD model are [34]				3.197		18.777		3227		4.940	

TABLE XIV. Wave-function characteristics for the ${ }^{1} S \mathrm{H}^{-}$resonances lying below the $n=3$ threshold. $\left\langle r_{\text {out }}\right\rangle$ is the estimate for the size of each state due to the outer electron, computed as the average of the distance of the outer electron from the center of mass (in a.u.). $R_{\langle r\rangle}$ is the ratio of consecutive values of $\left\langle r_{\text {out }}\right\rangle$. The notation $[x]$ means 10^{-x}.

State	$\left\langle r_{\text {out }}\right\rangle$	$R_{\langle r\rangle}$	$s s$	$p p$	$d d$	$f f$	$g g$	$h h$
$1 A 1$	20.10		0.512	0.443	0.045	$0.3[3]$	$0.8[6]$	$0.5[7]$
$2 A 2$	44.92	2.235	0.465	0.467	0.068	$0.2[3]$	$0.6[6]$	$0.2[7]$
$4 A 3$	100.4	2.235	0.429	0.468	0.107	$0.2[2]$	$0.2[5]$	$0.2[6]$
$5 A 4$	228.8	2.279	0.416	0.486	0.099	$0.4[4]$	$0.4[7]$	$0.3[8]$
$6 A 5$	507.1	2.216	0.409	0.488	0.103	$0.7[5]$	$0.7[8]$	$0.4[9]$
$7 A 6$	1118	2.205	0.406	0.489	0.105	$0.1[5]$	$0.1[8]$	$0.8[10]$
$8 A 7$	2461	2.201	0.404	0.489	0.106	$0.3[6]$	$0.3[9]$	$0.2[10]$
$9 A 8$	5408	2.197	0.404	0.490	0.107	$0.6[7]$	$0.6[10]$	$0.4[11]$
$10 A 9$	11680	2.160	0.403	0.492	0.106	$0.1[7]$	$0.1[10]$	$0.7[12]$
$3 B$			0.294	0.125	0.563	0.022	$0.3[4]$	$0.3[5]$

dependence of the resonance eigenvalue on the rotation parameter θ is determined, the roots are never degenerate, and in the limit of $\theta=0$, where they lie on the real axis, they are different from each other.

The classification of resonances into series is also supported by the recognition of their electron correlation patterns [36]. We obtained their size due to the outer electron $\left\langle r_{\text {out }}\right\rangle$, computed as the average of the distance of the outer electron from the nucleus, and the angular term contributions to the resonance wave functions. Resonances belonging to a given series have common angular electron correlation patterns, i.e., different states have the same contributions from various angular terms to their wave functions. The size of states increases as energy increases along a series. Furthermore, the ratio $R_{\langle r\rangle}=\left\langle r_{\text {out }}\right\rangle_{m+1} /\left\langle r_{\text {out }}\right\rangle_{m}$ converges along a given series to a well-determined value, which is characteristic of the series.

As an example of the above, consider the ${ }^{1} S$ resonances below the $n=3$ threshold. We give their wave-function characteristics in Table XIV [37]. Series A, which is the only one predicted by the model, is characterized by large contributions from the ss and $p p$ angular terms. On the other hand, the perturbing B state is mainly determined by the $d d$ angular wave. Moreover, the characteristic ratio for the increasing size of states along the series is about 2.2 , so that the B state, which is more compact than the $A 2$ state below B, does not fit the series. A similar case of a loner state not belonging to any of the model series was also found in the preceding paper [2]. Such states are essentially 'created'" by strong correlation and exchange effects which are not taken into account by the dipole model.

IV. SYNOPSIS

Together with the results and conclusions of [1,2] for H^{-} resonances of ${ }^{1} P,{ }^{1} P^{o},{ }^{1} D^{o}$, and ${ }^{1} F^{o}$ symmetries, the present work on ${ }^{1} S$ and ${ }^{1} D$ resonances constitutes a comprehensive determination of the H^{-}resonance spectrum for an energy range which, on the one hand, is sufficient to allow
a thorough understanding of the physics, and, on the other hand, can be probed by sophisticated experiments of very high resolution, at least in principle.

The theory and methods that we presented and applied, here and in Refs. [1,2], allow a practical and quantitative treatment of series of resonances in other systems as well, with two or more electrons. The identification of resonances is done in the conceptual framework of decaying states rather then by solving scattering-type equations. The solution of the complex eigenvalue Schrödinger equation involves the use of trial functions consisting of two major parts, one optimized on the real energy axis using real basis sets with real coordinates, and the other optimized in the complex energy plane, together with the first part, using basis sets of both real and complex coordinates.

In the present special case of H^{-}, we chose Slater-type orbitals with 'group-of-states-specific'" properties as regards their extent and their average r. Thus the various STO basis sets covered ranges of about $1-8000$ a.u., representing both compact, "valence"'type intrashell configurations, mostly relevant for the representation of possible shape resonances, and diffuse, up to extremely diffuse, intershell configurations, relevant for the representation of the 'dipole resonances" below each threshold. The resolution of these H^{-} resonance spectra is characterized by a very high numerical accuracy, covering the energy continuum up to the $n=4$ threshold and widths down to about 10^{-9} a.u. A total of 70 ${ }^{1} S$ and ${ }^{1} D$ states were uncovered, one of them being a shape resonance and a few of them strongly overlapping, providing ample quantitative information for series of resonances of a negative ion. This fact allowed the categorization of the H^{-} spectra into unperturbed and perturbed series with respect to the Gailitis-Damburg model of dipole resonances.

ACKNOWLEDGMENTS

Support to one of us (M.B.) from the National Technical University of Athens is gratefully acknowledged. This work was supported by the Polish Committee for Scientific Research (Grant No. KBN 2 PO3B 125 18).
[1] M. Bylicki and C. A. Nicolaides, J. Phys. B 32, L317 (1999).
[2] M. Bylicki and C. A. Nicolaides, preceding paper, Phys. Rev. A 61, 052508 (2000).
[3] J. W. McGowan, Phys. Rev. 156, 165 (1967); J. W. McGowan, J. F. Williams, and E. K. Curley, ibid. 180, 132 (1969); S. Ormonde, J. McEwen, and J. W. McGowan, Phys. Rev. Lett. 22, 1165 (1969).
[4] J. F. Williams, in Progress in Atomic Spectroscopy, edited by W. Hanle and H. Kleinpoppen (Plenum Press, New York, 1979), p. 1031.
[5] H. C. Bryant, B. D. Dieterle, J. B. Donahue, H. Sharifian, H. Tootoonchi, D. M. Wolfe, P. A. M. Gram, and M. A. YatesWilliams, Phys. Rev. Lett. 38, 228 (1977).
[6] D. W. MacArthur, K. B. Butterfield, D. A. Clark, J. B. Donahue, P. A. M. Gram, H. C. Bryant, C. J. Harvey, and G. Comtet, Phys. Rev. A 32, 1921 (1985).
[7] H. H. Andersen, P. Ballingw, P. Kristensen, U. V. Pedersen, S. A. Aseyev, V. V. Petrunin, and T. Andersen, Phys. Rev. Lett. 79, 4770 (1997).
[8] T. T. Gien, J. Phys. B 31, L1001 (1998).
[9] G. J. Schulz, Rev. Mod. Phys. 45, 378 (1973).
[10] S. J. Buckman and C. W. Clark, Rev. Mod. Phys. 66, 539 (1994).
[11] I. Midtdal, Phys. Rev. 138, A1010 (1965).
[12] D. R. Beck and C. A. Nicolaides, Chem. Phys. Lett. 59, 525 (1978).
[13] D. Spence, J. Phys. B 8, L42 (1975).
[14] J. F. Williams, J. Phys. B 21, 2107 (1988).
[15] C. D. Warner, P. M. Rutter, and G. C. King, J. Phys. B 23, 93 (1990).
[16] R. S. Oberoi, J. Phys. B 5, 1120 (1972).
[17] G. D. Doolen, J. Nuttal, and R. W. Stagat, Phys. Rev. A 10, 1612 (1974).
[18] G. D. Doolen, J. Phys. B 8, 525 (1975); Int. J. Quantum Chem. 14, 523 (1978).
[19] Y. K. Ho, J. Phys. B 10, L373 (1977); 12, L543 (1979).
[20] Y. K. Ho and J. Callaway, Phys. Rev. A 27, 1887 (1983); 34, 130 (1986).
[21] Y. K. Ho, J. Phys. B 23, L71 (1990).
[22] A. K. Bhatia and Y. K. Ho, Phys. Rev. A 41, 504 (1990); 50, 4886 (1994).
[23] Y. K. Ho and A. K. Bhatia, Phys. Rev. A 48, 3720 (1993).
[24] M. Chrysos, Y. Komninos, Th. Mercouris, and C. A. Nicolaides, Phys. Rev. A 42, 2634 (1990).
[25] S. I. Themelis and C. A. Nicolaides, Phys. Rev. A 49, 596 (1994).
[26] P. G. Burke, S. Ormonde, and W. Whitaker, Proc. Phys. Soc. London 92, 319 (1967).
[27] A. J. Taylor and P. G. Burke, Proc. Phys. Soc. London 92, 336 (1967).
[28] J. Macek and P. G. Burke, Proc. Phys. Soc. London 92, 351 (1967).
[29] L. A. Morgan, M. R. C. McDowell, and J. Callaway, J. Phys. B 10, 3297 (1977).
[30] J. Callaway, Phys. Rev. A 26, 199 (1982); 37, 3692 (1988).
[31] A. Pathak, A. E. Kingston, and K. A. Berrington, J. Phys. B 21, 2939 (1988).
[32] B. R. Odgers, M. P. Scott, and P. G. Burke, J. Phys. B 28, 2973 (1995).
[33] M. Gailitis and R. Damburg, Proc. Phys. Soc. London 82, 192 (1963).
[34] A. Pathak, P. G. Burke, and K. A. Berrington, J. Phys. B 22, 2759 (1989).
[35] A. Stintz, X. M. Zhao, C. E. M. Strauss, W. B. Ingalls, G. A. Kyrala, D. J. Funk, and H. C. Bryant, Phys. Rev. Lett. 75, 2924 (1995).
[36] For the classification of two-electron states by using approximate quantum numbers, see D. R. Herrick and O. Sinanoğlu, Phys. Rev. A 11, 97 (1975); S. I. Nikitin and V. N. Ostrovsky, J. Phys. B 9, 3141 (1976); D. R. Herrick, M. E. Kellman, and R. D. Poliak, Phys. Rev. A 22, 1517 (1980); C. D. Lin, Adv. At. Mol. Phys. 22, 77 (1986); J. M. Rost and J. S. Briggs, J. Phys. B 24, 4293 (1991); Y. Komninos, S. I. Themelis, M. Chrysos, and C. A. Nicolaides, Int. J. Quantum Chem., Symp. 27, 399 (1993).
[37] Tables containing the wave-function characteristics for all the states under consideration can be obtained from ftp:// ftp.phys.uni.torun.pl/pub/publications/ifiz/mirekb/H_/tab_II.ps.

[^0]: *Electronic address: mirekb@phys.uni.torun.pl
 ${ }^{\dagger}$ Electronic address: can@eie.gr

[^1]: ${ }^{\text {a }}$ Because of the extreme diffuseness of this state function and of the corresponding small number for Γ, the value for R_{Γ} did not have the same level of accuracy, and therefore it is excluded from the list.

[^2]: ${ }^{\mathrm{a}}$ See the footnote of Table II.

