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Stationarity coefficients and short-time deviations from exponential decay in atomic
resonance states
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By solving rigorously and accurately the time-dependent Schro¨dinger equation, we have obtained numerical
results for the decay probability,P(t), of real, multiparticle systems, in the time domain oft'0. Three
different types of atomic nonstationary states were examined, the He2 1s2p2 4P, the CaKLM 3d5p 3Fo, and
the He2 1s2s2p 4P5/2, the last one being metastable and decaying via spin-spin interactions. The main results
are that there is at2 dependence ofP(t'0) and that a time-dependent short-time decay rate can be calculated.
The computed coefficients of thet2 term reflect the degree of stability of the state,~i.e., the degree of proximity
to the notion of the standard stationary state of quantum mechanics!, and are named thestationarity coeffi-
cients. These, together with the conventional quantity of the lifetime, corresponding to the exponential decay
regime, constitute intrinsic properties of each real unstable state. For the herein studied metastable state the
onset of exponential decay occurs after about 5310214 s, i.e., after a duration which is achievable experimen-
tally with laser pulses.

DOI: 10.1103/PhysRevA.65.012112 PACS number~s!: 03.65.Db, 32.80.Dz
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I. INTRODUCTION

The excited states of polyelectronic atoms which lie in
continuous spectrum, henceforth called resonance or
toionizing states, offer a few theoretical and experimen
challenges concerning the fundamentals of quantum mec
ics. With regard to theory, one is the possibility of advanc
and testing many-body theory to unusual and often wea
bound electronic structures, occurring in a variety of scat
ing and photoabsorption experiments~negative ion reso-
nances, multiple excited states, Auger states, etc.!. Another is
the possibility of using them as paradigms of states whe
nonseparable Hamiltonian is known,~i.e., kinetic plus Cou-
lomb interaction operators!, and where the nonstationary a
pects of dissipation~decay! can be understood quantitative
from first principles,~and not in terms of models or of use o
empirical data, as it has been done in other fields of phys!,
in order to study basic questions of quantum theory and
namics.

As is well known, the fundamental characteristic of
isolated nonstationary state interacting with a purely conti
ous spectrum is its exponential decay~ED!. This marks the
temporary formation att50 of a localized wavepacket,C0 ,
of energy E0 inside the continuous spectrum. Associat
with it via analytic continuation to the second Riemann sh
below the real axis is a complex eigenfunction with a co
plex eigenvalue, which drives the ED. The intriguing featu
in this subject is that the formalism of quantum mechan
in conjunction with model calculations, predicts the possib
ity of violations of the ED law, fort'0 and for t@1/G,
whereG is the rate of decay in the ED regime. Neverthele
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such deviations have not been observed, and this fact ag
with calculations based on models which show that the m
nitude of nonexponential decay~NED! is too small to be
observable. Since the literature on this topic is considera
we refer the reader to the treatise of Goldberger and Wa
@1#, to a recent review@2# and to@3–5#, where a large num-
ber of references are included.

It has been argued@3,6# that when it comes to real sys
tems, the appearance of long-time NED has to be searche
particular states, which are close to threshold. Indeed, theab
initio calculations of@4,5# on the nondecay~survival! prob-
ability, P(t), of polyelectronic atomic resonance states, b
this out, thereby enforcing the view that it is significant
understand, formally and computationally, the sources
the magnitudes of the possible violations of thelaw of ED in
real systems.

In the present paper, we apply the method for the cal
lation of P(t) which was first presented and applied in@4,5#
to the calculation ofP(t) very close tot50. This region was
excluded from analysis in our previous work, since this d
main seems to be undefinable, in a rigorous sense, as reg
preparation and measurement. However, given the fact t
during the past two decades, a number of calculations
arguments using models have dealt with this region,~e.g.,
see Refs.@2,7–14#!, we thought that information coming
from ab initio calculations on real states would shed ad
tional insight into the issues, from a different angle. In fa
these calculations have given us the opportunity of exam
ing the notion of stability of a decaying state and to relate
to the coefficients of thet2 term in thet'0 development of
P(t), which we name thestationary coefficients.

II. NONEXPONENTIAL DECAY FOR tÉ0

For many decades, the theory of decaying states in
fields of physics has treated the time dependent decay
©2001 The American Physical Society12-1



e
its
tu

y

in
ar

th

l a

s

n

nc

-

o
tin
t i

un

ris
ay
to

o
c
m
ta

n

t
he

to
tiv

t
for

ns

and
ms.

ing
icle

i-
uity
-
al-
or
es.
the
te,
te at
the

sec-

the
-
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namics in terms of assumptions and models@1–14#, and ref-
erences therein. Specifically, the quantity of interest has b
the P(t), which att50 is one. The standard approach to
calculation and analysis has been to compute the ampli
G(t), @P(t)5uG(t)u2#, from the expression (\51),

G~ t !5^C0ue2 iHt uC0&5E
0

`

dE g~E!eiEt. ~1!

uC0& is the initially (t50) localized state with real energ
E0 , g(E) is the real spectral function given byu^C0uE&u2,
uE& is the energy normalized scattering state at energyE, and
the lower bound 0 of the integral signifies the starting po
of the continuous spectrum into which the nonstation
state decays. The calculation ofG(t) and ofP(t) according
to Eq. ~1! has been done in many publications since
1950s, by assuming a form forg(E), the best known one
being the Breit-Wigner. We point out that in@3,6# it was
shown that in order to account for time asymmetry as wel
for the fact that the spectrum is bounded from below,~i.e.,
t.0, E.0!, the integral forG(t) must involve a complex
spectral function rather than a real one. In the latter ca
G(t) includes the contribution from the adjoint~time re-
versed! states@6# since ‘‘g(E) does not differentiate betwee
positive and negative times’’ ~p. 492 of @3#!. In the former
case, G(t)5^C0uu(t)e2 iHt uC0&, where u(t) is the step
function for t.0.

Regardless of the adopted form ofg(E), or, if time asym-
metry is considered, of the form of a complex spectral fu
tion, the law of exponential decay~ED!, which is expressed
by P(t)5e2Gt, whereG is the rate of decay in the ED re
gion, is not satisfied fort'0 and fort@1/G. Yet, a variety of
measurements have not uncovered any violation of ED
fundamental origin in an isolated quantum state dissipa
into a purely continuous spectrum. A testimony to this fac
a comment on the law of ED by Greenland@15#, who, fol-
lowing the null results of the careful measurements on
stable nuclei by Normanet al. @16#, conjectured: ‘‘The cor-
rect combination of circumstances does not seem to a
naturally to produce deviations from exponential dec
which is why it is such an accurately fulfilled law, even out
45 half-lives.’’

In two relatively recent publications@4,5#, we presented a
theory for theab initio solution of the time-dependent Schr¨-
dinger equation~TDSE! in the case of polyelectronic atomi
resonance states decaying into the continuous spectru
the kinetic energy of the free electron. It is based on the s
specific expansion of the time dependentC(t), with C(0)
5C0 , in terms of accurate representations of bound a
energy normalized scattering wave functions~see below!.
The choice of the states that were studied in@4,5# followed
from the earlier prediction@3,6# that, in real multiparticle
systems, in order for the magnitude of the long time NED
become non-negligible after only a few ED lifetimes, t
resonance state must be very close to threshold.~As with
every generally accepted rule~law! of physics, possible vio-
lations may occur only in exceptional cases.! We reported
results for the long time NED, which turned out
be considerably enhanced for states of nega
01211
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ions (He2 1s2p2 4P,Li21s 22s2p 3Po) as well as of
atoms (CaKLM 3d5p 3Fo). These states, excep
Li21s22s2p 3Po, have also been used as the examples
the present work on thet'0 NED regime.

For t'0, i.e., in the preexponential short time regime,

P~ t !'12~DE!2t21¯ , ~2!

where

~DE!25^C0u~H2^H&!2uC0&5d, ~3!

^H&5^C0uHuC0&5E0 . ~4!

The extensively discussed expression~2! is obtained di-
rectly from the expansion of the operatore2 iHt in Eq. ~1!.
Although it is model independent, several investigatio
have also considered models forg(E) where the shortt de-
pendence is different, e.g.,@7–11,14#. It is then significant to
understand, formally and computationally, the sources
the magnitudes of the possible violations in real syste
Specifically, we have asked the question: How does theP(t)
of a true atomic decaying state behave fort'0? If we fit this
short timeP(t) to a polynomial int, which term dominates
and with what coefficient?

Before we proceed with theab initio calculation, in the
following section we draw from earlier work@17# in order to
discuss a concept about stationarity of excited states.

III. DEGREE OF STATIONARITY OF UNSTABLE STATES

It has been argued@3,17,18#, with examples of highly ex-
cited states, that the crucial concept in the theory of decay
states is the existence and computation of a multipart
localized wavepacket in the continuous spectrum,C0 , hav-
ing a real energyE0 . Assuming loss of memory of the exc
tation process, this causes the breakdown of time contin
of the Schro¨dinger equation att50, and, through its interac
tion with the open channels, and, possibly, with other loc
ized wavepackets via the open channels, it produces, ft
.0, the observable information about its intrinsic properti
uC0& is square integrable but is not an eigenfunction of
full Hamiltonian H, since it does not represent a discre
stationary state. Instead, it represents a nonstationary sta
t50 without whose existence, concepts such as poles of
scattering matrix, complex eigenvalue Schro¨dinger equation,
rapid phase shift changes and peaks in a reaction cross
tion, cannot be justified.

The proximity, due touC0&, of the concept of a decaying
state to that of a stationary state, implies that, formally,
time domain oft'0 might reveal information about the de
gree of stationarity of the nonstationary state,uC(t)&. Fol-
lowing the arguments of@17#, we define the vector fort
'0,

uu~ t !&5uC~ t !&2uC0&. ~5!

Equation~5! implies thatG(t);1, since, for allt, uC(t)& is
formally given byG(t)uC0&1uû(t)&, whereuû(t)& signifies
the decayed products.
2-2
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STATIONARITY COEFFICIENTS AND SHORT-TIME . . . PHYSICAL REVIEW A 65 012112
For t'0, one intuitively would expect that

i lim
t→0

u~ t !&i5i lim
t→0

@exp~2 iHt !2exp~2 iH 0t !#uC0&i5min,

~6!

where

H05uC0&^C0HuC0&^C0u

and

^C0uHuC0&5E05^C0uH0uC0&. ~7!

Also,

lim
t→0

@exp~2 iHt !#512 iHt ,

lim
t→0

@exp~2 iH 0t !#512 iH 0t. ~8!

From Eqs.~6! through ~8! we obtain the result that for th
nonstationary state, the optimaluC0& is such that the vari-
anced of Eq. ~3! is minimum @17#

d5min. ~9!

The use of Eq.~9!, and its non-Hermitian extension whic
allows the optimization of trial wave functions for the calc
lation of widths, has been demonstrated in actual calculat
of resonance states@17,19–22#. Here, its usefulness is take
to be conceptual. It signifies the degree of the deviation fr
stationarity, before exponential decay sets in. In this work
will call d the stationarity coefficient. Its definition implies
that it depends only onuC0& and the first two moments ofH.
In this work, we will compute it from the solution of th
TDSE, for the first time for real multiparticle systems.

We point out that the moments ofH, i.e., ^C0uHnuC0&,
are related, in the limit oft→0, to the derivatives of the
nondecay amplitude,G(t), by ~Appendix C of@3# corrected
for misprints!:

^C0uHnuC0&~2 i !n5~2 i !n^C~ t !uHnuC~ t !& ~10a!

5~2 i !nE dE Eng~E! ~10b!

5
]nG~ t !

]tn U
t50

. ~10c!

As is well known, if the computation ofd is to be done
directly from its definition, Eq.~3!, then this requires that th
evaluation of expressions~10a! and~10b! for n52 produce a
finite result. However, there are distributions, such as
Lorentzian, for which~10a! and~10b! yield an infinite result.
On the other hand, a time dependent calculation such as
one described below, can always produce@]nG(t)#/]tnu t50 ,
from which the related moments, and in particular, then
52 case, can be obtained.
01211
ns

e

e

he

IV. METHOD OF INTEGRATION OF THE TDSE

The dynamics of decay is given by the solution of t
TDSE,

i
]

]t
C~ t !5HC~ t !, ~11!

where H is the polyelectronic Hamiltonian andC(t50)
([C0), is the initially localized wave function of the reso
nance, whose energyE0 , @see Eq.~4!#, is embedded in the
continuous spectrum.

Our approach to the solution of the TDSE for this pro
lem has been to expandC(t) in terms of state specificN
electron wave functions, calculated by advanced meth
which account for the electronic structure of each particip
ing state, and solve for the time-dependent coefficients.
details of the method have been given in previous publi
tions@4,5#, and therefore, only the essentials are given bel

The expansion over the stationary states involvesC0 and
other square-integrable wave functions,Cn , representing
other resonances possibly contributing, indirectly, to the
cay dynamics, and the scattering functions,U(e), represent-
ing the continuous spectrum. Thus, the form of this exp
sion is

C~ t !5 (
n50

N

an~ t !Cn1E
0

`

b~e,t !U~e! de ~12!

with the initial conditiona0(t50)51 and an(0)5b(e,0)
50, for nÞ0.

In our previous work@4,5# as well as in the present one
Cn were obtained numerically as multiconfiguration
Hartree-Fock~MCHF! wave functions. The wave function
of the continuous spectrum have the structure

U~e!5Ccorê e l , ~13!

where the continuum orbitalse l are energy normalized an
are obtained, numerically, for each value of the energe
from a scattering calculation where the potential is fixed
the structure and the symmetry of the core state. The w
function of this core state is also obtained numerically at
MCHF level.

As the next step, we substituteC(t) of Eq. ~12!, into ~11!.
The following system of integrodifferential equations is pr
duced:

i
d

dt
an~ t !1 i E

0

` d

dt
b~e,t !Sn~e!de

5Enan~ t !1E
0

`

b~e,t !Vn~e!de, n50,1, . . . ,N,

i
d

dt
b~e,t !1 i (

m50

N
d

dt
am~ t !Sm~e!de

5~Eth1e!b~e,t !1 (
m50

N

am~ t !Vm~e!. ~14!
2-3
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The overlap,Sn(e), and interaction,Vn(e), matrix elements
are given by

Sn~e!5^CnuU~e!&, Vn~e!5^CnuHuU~e!&. ~15!

The existence and the magnitude ofSn(e) depends on the
electronic structure of initial and final states and on the fu
tion spaces used to represent them. For shape~single par-
ticle! resonances~see below!, this overlap is, in general, sig
nificant and must be included.

The integrals in Eq.~14! are performed by the trapezoid
rule and the solution for the coefficients is tested for conv
gence with respect to two parameters: the number of sca
ing states and the extent of the continuous spectrum.
time dependent coefficients are advanced in time via the T
lor series expansion technique@4# that has proven efficient in
solving systems of tens of thousands of coupled equatio

V. RESULTS ON THE SHORT-TIME EVOLUTION OF
NONSTATIONARY STATES

We chose to study three resonance states belongin
different categories as regards their decay mechanism
their lifetimes. The first two, He2 1s2p2 4P and CaKLM
3d5p 3F°, fall into the category of short-lived states~life-
time of 10214– 10213s! with decaying mechanisms involvin
one and two electron nonrelativistic operators. The third o
He2 1s2s2p 4P5/2, is a long-lived metastable state~lifetime
of about 350ms! that decays via relativistic spin-spin inte
actions.

A. The HeÀ 1s2p2 4P shape resonance

This state is a shape~single particle! resonance, lying
about 11 meV above threshold and decaying into
He2@1s2p 3Po1ep#4P continuum @4#. For the purpose of
the present study, the correlated localized partC0 of the
resonance wave function was computed in terms of a MC
expansion, containing the five most important compone
@4#:

C050.916c ~1s2p2!20.383c ~1s3p2!10.118c ~1s3d2!

10.010c ~1s4p2!10.005c ~1s4d2!.

Its calculated energy is 12.7 meV, while its experimental o
@23# is 10.8 meV. One might think that such a small diffe
ence would play an insignificant role in the overall calcu
tion. However, we found that for such a state, and proba
also for other shape resonances very close to threshold
calculation is sensitive to the value ofE0 and its position
relative to the distribution of the interaction. In this work, w
adopted the experimental value. The system~14! was solved
for very short times and forn50 only, since the other fou
roots of the MCHF solution, which represent higher lyin
resonance states, do not affect the substance of the phys
the decay of He2 1s2p2 4P.

Figure 1 depictsP(t) for short times as a function oft2.
The main contribution toP(t) is expected to come from th
quadratic term of the expansion
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Indeed, this is what Fig. 1 demonstrates. The slope of
straight line is the stationarity coefficient. In practice, by fi
ting polynomials of increasing order to the calculatedP(t),
we found that the coefficienta2 , which is the stationarity
coefficientd of Eqs.~3! and~9!, is by far the dominant one in
the expansion~16!. Specifically, its value is21.931027.

In addition to the above, we define atime-dependent rate
by considering thelogarithmic derivative ofP(t):

G~ t !52
d

dt
@P~ t !#/P~ t !, ~17a!

which, for short times, (P(t)'1), is

G~ t !'2a122a2t2¯ . ~17b!

This time-dependent rate is shown in Fig. 2 for a wide ran
of values oft. For sufficiently large times~relatively speak-

FIG. 1. He2 1s2p2 4P shape resonance. Short time nondec
probabilityP(t)5ua0(t)u2 as a function oft2, see also Eq.~1!. One
atomic unit of time52.418310217 s.

FIG. 2. He2 1s2p2 4P shape resonance. Short time, tim
dependent decay rateG(t) ~in a.u., logarithmic scale!, from Eq.
~17a!.
2-4
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ing! (t>700 a.u.), G(t) acquires an essentially time
independent value that coincides with the autoionization r
On the other hand, for short times,G(t) varies linearly with
t and the concomitant slope is, as expected, equal to22a2 .

The special value of the present work and approach is
it produces results on the dynamics of decay of real, mu
particle systems starting from first principles. This fact
lows the possibility of comparison with previous work whic
has been carried out by assuming models of decay of
stable states. Two such comparisons are made below.
first involves the possible relationship between the ene
spread,DE5d1/2, and the lifetime,t, of a nonstationary
state. The second involves the details of initial timeP(t) and
its connection to the position and interaction with the co
tinuum of C0 .

An immediate answer to the first issue is provided by
time–energy uncertainty relationship,DEDt> 1

2. A stricter
condition has been proposed by Gislason, Sabelli, and W
@9#

DEt>3p51/2/2550.843. ~18!

For the shape resonance under study, we obtainedDE
5(1.931027)1/2. In addition, the calculation of the lifetime
in @4# yieldedt'5200 a.u. From theseab initio results, the
first of their kind, we indeed confirm the condition of Gisl
sonet al. @9#, sinceDEt'2.3.0.843.

The second issue regards the oscillatory behavior ofG(t)
which appears after its initial linear variation witht, around
the value of the autoionization rate. Such behavior has b
seen in model calculations of Levitan@10# who studied, ana-
lytically, the time dependent rate in the second order of
unstable quantum system using a model interaction of
exponential type@Vn(e) of Eq. ~15!#. He concluded that, if
the interaction decreases slowly as a function of energy
that contributions from energies higher thanE0 are included,
then the quadratic mode is followed by an oscillating per
before ED. This conclusion is in harmony with our finding
Indeed, Fig. 3 shows that the full interaction drops slow

FIG. 3. He2 1s2p2 4P shape resonance. Full interaction matr
elementV0(e)2(Ethreshold1e)S0(e) ~in a.u.! as a function of the
energye ~in a.u.! above threshold. The thick vertical line indicate
the positionE0 of the resonance.
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with energy.@The full interaction matrix element in calcula
tions of decay of real states of multielectron systems is gi
by V0(e)2(Ethreshold1e)S0(e), where the symbols are de
fined in Eq.~15!. The individual behavior as a function ofe
of each matrix element is different. For example, in H2

1s2p2 4P the values ofV0(e) are positive for alle and those
of S0(e) are negative.# The thick line shows the position o
the resonance, which is at about 3.331024 a.u. The curve
reaches a maximum at aboute50.1 a.u. and then starts drop
ping slowly. ~Not possible to include it within the scale o
this figure.! Its value reaches 231023 a.u. at aboute
51 a.u.

B. The Ca 3d5p 3F o autoionizing state

This state, which is found experimentally at 0.24 e
above threshold, has two valence electrons, whose inte
tion constitutes the dominant cause of the decay into
Ca1@4s 2S1e f #3Fo continuum via Coulomb interactions.

The analysis of the contributions of the various correl
ing configurations resulted in a three-term compact wa
function C0 , which was obtained self-consistently by th
MCHF method,

C0~Ca 3d5p 3Fo!50.994c~3d5p!20.103c~4d4p!

10.013c~4d4 f !.

Details of the long-time decay curve of this state we
given in @5#. Also in @5#, by Fourier transforming the time
dependent amplitude of decay, we obtained for the first ti
for a real autoionizing state its spectral function,g(e) of Eq.
~1!.

Figure 4 shows the survival probability as a function
t2, for short times. From the slope of the straight line w
obtain the stationarity coefficientd52a2521.1231025.
Now, DE5(1.1231025)1/2 and the lifetime which was cal
culated in @5#, t'1450 a.u. Therefore,DEt'4.8.0.843,
that again satisfies the form of the uncertainty relation~18!,
proposed in@9#.

As in the previous case of He2 1s2p2 4P, the time-
dependent rateG(t) provides us witha2 and with the region
of time where exponential decay sets in. Indeed, from Fig

FIG. 4. As in Fig. 1, but for the Ca 3d5p 3Fo autoionizing state.
2-5
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one sees that fort>400 a.u. ED has essentially taken ove
On the other hand, for short times the slope of the linea
varying G(t) is equal to22a2 .

The interaction of the initially localized state with th
underlying continuum is shown in Fig. 6. Here, because
the two-electron rearrangement and the ionic core, the o
lap S(e), which is defined by Eq.~15!, is zero. The thick
vertical line indicates the positionE0 of C0 . The same con-
clusion with the case of He2 1s2p2 4P regarding the origin
of the oscillations holds.

C. The HeÀ 1s2s2p 4P5Õ2
o metastable state

This is a metastable state that decays to the 1s2e f 2Fo

underlying continuum via spin-spin interactions. Its lifetim
is about 350ms ~see Ref.@5#!. Because of this very long
lifetime, the determination of the full time-dependent cur
of decay has proven to be impossible within certain co
straints of computer speed and of length of duration of
computation@5#. The calculation of wave functions and o
relativistic matrix elements in the Breit-Pauli approximatio
follows from the 1980s work of Aspromallis and Nicolaide
@24#.

FIG. 5. As in Fig. 2, but for the Ca 3d5p 3Fo autoionizing state.

FIG. 6. Ca 3d5p 3Fo autoionizing state. Absolute value of th
interaction matrix element,V(e) ~in a.u.!, as a function of energye
~in a.u.! above threshold.
01211
.
y

f
r-

-
e

On the other hand, it is indeed possible to compute
short-time rateG(t). Figure 7 depictsG(t) as a function oft.
It is revealed that ED sets in fort>2000 a.u., while from the
slope of the linearly varyingG(t), for very short times, we
obtain a2522.7310216. For this case the productDEt is
equal to 23105, which, of course, also satisfies inequali
~18!.

The spin-spin interaction ofC0 with the continuum,
which causes the decay, is shown in Fig. 8. As in the pre
ous case, the overlapS(e) is zero. The vertical line indicate
the positionE0 , which is 0.69 eV above threshold. The e
planation of the oscillatory structure ofG(t) in Fig. 7 is as
before, and verifies again the results that emerged from
model calculations of Levitan@10#.

VI. DISCUSSION AND CONCLUSION

The phenomenon of decay of unstable quantum mech
cal states involves irreversible fragmentation into a pur
continuous spectrum of a multiparticle system which initia
(t50) is represented by a localized wave function,C0 ,
whose energyE0 is embedded in the continuous spectrum
the kinetic energy of the emitted articles. The physics of t

FIG. 7. As in Fig. 5, but for the He2 1s2s2p 4P5/2
o metastable

state.

FIG. 8. He2 1s2s2p 4P5/2
o metastable state. The spin-spin inte

action~in a.u.! of C0 with the 1s2e f 2Fo continuum, as a function
of the energye ~in a.u.! above threshold.
2-6
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phenomenon is of fundamental interest and has been
cussed in a number of papers over many decades. In
overwhelming majority of these works, the main interpre
tive and computational tool has been Eq.~1! and equivalent
forms, and the use of models and assumptions about the
and properties of the functiong(E). This approach has pro
duced qualitative and phenomenological information ab
the existence of nonexponential decay~NED! for short times,
t'0, and for very long times,t@1/G.

In recent publications@4,5#, as well as in the present in
vestigation, we showed that it is possible to obtain quant
tively from first principles, for all times covering the expo
nential decay~ED! regime and the two NED regimes, th
survival probabilityP(t) @or any quantity for which the time
dependent wave function,C(t), is needed#, for real, poly-
electronic unstable atomic states, by solving numerically
time-dependent Schro¨dinger equation ~TDSE!. This is
achieved by using a physically appropriate expansion
C(t) over accurately computed state-specific polyelectro
wave functions representing localized states~square-
integrable wave functions! and fragmented states~energy-
normalized scattering wave functions!. P(t) is obtained nu-
merically for each state of interest. Furthermore,
obtaining numerically the interaction matrix elements a
other quantities, such as the energy dispersion, it is poss
to compare with previous results based on models and
malism. ~See the discussion in the text related to Refs.@9#
and @10#.!

The theory and calculations of@4,5# focused on the expo
nential and long-time NED regime. In the work presented
this paper we focused on the pre-exponential, short-t
NED regime, using as prototypical examples, three ato
autoionizing~autodetaching! states: He2 1s2p2 4P, which is
a single particle shape resonance for which the change o
self-consistent field as well as the two-electron opera
contribute toP(t), Ca KLM 3d5p 3Fo, which autoionizes
predominantly via the two-electron Coulomb interaction, a
He2 1s2s2p 4P5/2

o which decays slowly via relativistic
spin–spin interactions.

The results of our calculations showed that, by fitti
P(t) to a polynomial int, Eq. ~16!, the short-time NED is
overwhelmingly dominated by thet2 term, in agreement with
the formal expansion of Eq.~2!. It was argued that the com
puted coefficient of thet2 term,d5a2 which we named the
. B
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stationarity coefficient, is a physically meaningful property
of each real state, analogous to the lifetime associated
the regime of ED, and reflects the degree of the states st
ity. We also showed that it is possible to define and comp
for short times a time-dependent rate, Eq.~17a!, whose ex-
pansion reveals thatd is half the coefficient of the linear term
in t @Eq. ~17b!#.

As we mention in Secs. I and II, the clear-cut observat
of NED for an isolated unstable quantum state remains
sive. Regarding the long-time NED, Nicolaides and Be
@3,6# argued, via formal and numerical demonstrations, t
the magnitude of this type of violation of the law of ED ca
be enhanced considerably in multiparticle states whose
ergy is very close to the threshold of the continuum in
which they decay, even when the energy dependence o
interaction is weak. The choice of the He2 1s2p2 4P and the
Ca KLM 3d5p 3Fo nonstationary states and the related a
plications which were presented in@4,5# were made for this
reason. Indeed, the suggestion of@3,6# was confirmed in the
first principles computations of@4,5#. It remains to be seen
whether such deviations can be clocked experimentally
possible scheme may involve pump-probe synchroniza
with femtosecond laser pulses in the process

He2 1s2s2p 4P5/2
o →

hn

He2 1s2p2 4P

→
hn8

He 1s2p 3Po1e2.

The population of 1s2p2 4P is time dependent~since the
state is nonstationary! and this dependence ought, in prin
ciple, to be recordable in the intensity of the photoelectro

When it comes to the question of observing the short-ti
NED we opined@3,4# that thet50 point is not well defined
since it depends on the excitation wave packet and on
detection setup. On the other hand, it appears that the p
bility of its observation should depend primarily on the d
ration of this pre-exponential NED regime. By choosing
investigate the metastable state He2 1s2s2p 4P5/2

o , we ex-
plored the possibility that the duration of the pre-exponen
NED regime is sufficiently long to be clocked experime
tally. Indeed, this duration for this state is abo
5310214 s, which is within the femtosecond range of ava
able laser pulses.
. D
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