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Physical constraints on nonstationary states and nonexponential decay
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For the understanding of irreversibility at the quantum level, the formation and decay of transient~unstable!
states play a fundamental role. If the system is treated within Hermitian quantum mechanics, the resulting
energy distribution of the resonance state, whose Fourier transform yields the time-dependent probability of
decay,P(t), is real. The physical constraint of the lower bound in the energy spectrum introduces ‘‘memory,’’
and causes nonexponential decay~NED! to set in aftert@t, wheret is the lifetime defined by exponential
decay. The closer to threshold the decaying state is, the earlier NED appears. Apart from the constraint ofE
>0, the constraint oft>0 must be accounted for at the same time. It results from the discontinuity att50 of
the solution of the time-dependent Schro¨dinger equation, which breaks the unitarity associated with theS
matrix and gives rise to a complex energy distribution, as a manifestation of the non-Hermitian property of the
decaying states. For a narrow isolated resonance state, for which the self-energy is essentially energy-
independent, analytic results forPNED(t) obtained from semiclassical path-integral calculations agree with the
quantum-mechanical ones when both physical constraintsE.0 and t.0 are taken into account. As an ex-
ample of the difference in the magnitude of thePNED(t) when using a real and a complex energy distribution,
application is made to the decay of the unstable He2

21 1Sg
1 ground molecular state.
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I. RESONANCES AS DECAYING STATES

Resonances that appear during a large variety of react
and excitations of quantum systems can be interpreted
being caused by intermediate transient states in the co
between reactants att52` ~stationary states! and final
products att51` ~stationary states!. These transient state
are formed at, say,t50, as localized wave packets,C0 .
They exist on the average much longer than the excita
time and then decay irreversibly into a purely continuo
spectrum of the total Hamiltonian. Although the bulk of th
published literature on such resonances has looked at t
from a time-independent point of view, giving emphasis
observations that measure energy-dependent quantities~e.g.,
cross sections!, it is also significant to analyze them from
time-dependent point of view. This means use of the tim
dependent Schro¨dinger equation~TDSE! when the formal-
ism employs wave functions and Hamiltonians~as in this
work!, or of the Liouville–von Newmann equation when st
tistical ensembles are involved.

A treatise on the quantum mechanics of resonance~decay-
ing! states within both time-independent and time-depend
frameworks is the book of Goldberger and Watson@1#. In
developing the arguments of this paper, I will refer to th
results. Samples of volumes dedicated to the issues of r
nance states and irreversibility are the proceedings of a
ellite Nobel symposium entitled ‘‘Resonances and Micro
scopic Irreversibility,’’ edited by Brändas @2#, and the
collection of articles edited by Prigogine and Rice@3#, under
the title ‘‘Resonances, Instability and Irreversibility.’’

Our recent work on the theory and calculation from fi
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principles of theP(t) of nonstationary states in real atom
systems@4# has brought to my attention three papers on tim
dependent properties of decaying states@5–7#. The first two
@5,6# refer explicitly to earlier work by Nicolaides and Bec
@8,9#. The third @7#, having as title ‘‘Asymmetric Quantum
Mechanics,’’ defines resonance states in terms of ‘‘rigge
Hilbert spaces’’ and discusses their connection to the disc
tinuity of the TDSE att50, an issue which also concerne
the work of @8,9#.

The present contribution was written in view of these
ticles and of the continuing interest in the fundamental pr
erties of decaying states. Its purpose is to emphasize th
the rigorous treatment of the issue of the time dependenc
decaying states, which is described, as usual, by the no
cay ~survival! probability P(t), and of their role in micro-
scopic irreversibility, two physical constraints must be a
counted for simultaneously, regardless of the degree
energy dependence of the ‘‘self-energy’’ of the unstable st
These constraints are that the energy integrations must b
the range 0<E,`, rather than2`,E,`, and that the
relevant quantities must correspond only tot>0. Both of the
above constraints have consequences as regards the ap
ance and magnitude ofP(t) in the regime of very long times
where exponential decay~ED! formally changes into nonex
ponential decay~NED!, with probability denoted here by
PNED(t→`).

The fact that the continuous spectrum is bounded fr
below (0,E,`) may have an effect on the evolution o
quantum systems when passing through a resonance~decay-
ing! state. Its manifestation is the formal appearance
PNED(t→`), regardless of whether the energy distribution
real or complex@8–10#, a property that is connected to th
nature of quantum-mechanical irreversibility~see below!.

The second constraint,t.0, is a consequence of the fa
©2002 The American Physical Society18-1



t
rit
w

th

a
e-

th
e
r

a

ts
al
ic
fo

la

ble

t-
t
ra
e
g

th
a

v
f
in

ld
-

rr
s

of
In

m

re
ce
n
et

or
se
ept

m
ce of
m-
ob-
the

of

via
of
u-
g

e

em-
the
dels
s to
,

pect

te,
for

ra-

ous

f a
o-

axis
for
for

ion
ble
il-

CLEANTHES A. NICOLAIDES PHYSICAL REVIEW A66, 022118 ~2002!
that there is a singularity in the solution of the TDSE at
50 when considering a decaying state. This singula
breaks unitarity, and theory must select only one of the t
complex eigenfunctions~eigenvalues! resulting from it,
namely the decaying~and not the ‘‘growing’’! state. The cor-
responding energy distribution is now complex, whereas
real energy distribution, here denoted byg(E), is the result
of the unitary structure ofS-matrix quantum mechanics, vi
which the formalism incorporates the contribution of tim
reversed states.

The above remarks raise the issue of the nature of
energy distribution in the description of irreversibility at th
quantum level, and its possible manifestation. In this pape
is emphasized that, although the ED part ofP(t), in terms of
which the normal definition of unstable states is made, c
not distinguish the effect ofg(E) from that of the corre-
sponding complex energy distribution, the NED part ofP(t)
does so. The arguments are supported by analytic resul
two different types of treatment: Application of the form
theory of decaying states and application of the semiclass
theory of path integrals to model potentials appropriate
the description of tunneling phenomena, such asa-particle
emission and autodissociation of extraordinary molecu
ground states~e.g., He2

21 1Sg
1!.

II. REMARK ON THE CATEGORIES OF THEORIES
AND COMPUTATIONS OF THE P„t…

OF DECAYING STATES

The general description of the dynamics of irreversi
decay is characterized by the law of ED,P(t)5e2Gt

(\51), whereP(t) is defined byP(t)5 z^C0C(t)& z2. C(t)
is the solution of the appropriate TDSE andC0 @[ C~0!# is
a many-particle~in general! localized wave packet represen
ing the nonstationary state att50. It is worth stressing tha
the assumption of existence and the possibility of accu
computation ofC0 as a square-integrable wave function, r
gardless of whether it can be interpreted as correspondin
a ‘‘Feshbach’’ or a ‘‘shape’’ resonance, is fundamental to
theory of decaying states. It is usually introduced formally
an eigenfunction of a zero-order operatorH0 , where the in-
teraction causing the decay has been excluded. Howe
when the Hamiltonian is nonseparable, the explicit form o
local operatorH0 is impossible, since the decay-causing
teraction is part of an interparticle operator~e.g., Coulomb!,
unless it is caused by the application of an external fie
Therefore, the construction ofC0 for real many-particle sys
tems, such as atoms, molecules, or nuclei, must engage
vanced theory and special methods, since interparticle co
lations may be strong and at the same time the state lie
the continuous spectrum with an energy,E05^C0uHuC0&,
that is only a local minimum with respect to variations
linear or nonlinear parameters in the trial wave function.
atomic physics, this problem has been solved in the fra
work of thestate-specifictheory~e.g.,@11,12# and references
therein!, whereby the polyelectronic wave functions a
made up of suitably chosen and optimized function spa
that are compact as well as physically transparent, and ca
used in rather complex calculations, such as the recent d
02211
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mination of basic properties of attosecond dynamics@13#.
The constantG above is the rate of exponential decay,

1/t, wheret is the corresponding lifetime. In the rare ca
that NED becomes physically significant, a different conc
of lifetime must be considered, and computed ast̄
5*0tP(t)dt/*0P(t)dt @4#.

Apart from the formal analysis on the deviations fro
ED, such as the ones discussed in this paper, the existen
quantum-mechanical NED is confirmed by numerical co
putation. For example, the essential phenomenology was
tained decades ago via the direct numerical solution of
TDSE with a model one-dimensional potential@14#. On the
other hand, for states of real systems treated in terms
many-particle wave functions, theab initio calculation of
P(t) for decaying states has been achieved only recently,
the transformation of the TDSE into a large system
coupled integrodifferential equations which are solved n
merically @4#. A number of results were obtained, pertainin
to the ED and to thet'0 and long-time NED regimes. Th
TDSE for the calculations in@4,14# did not include the
d-function inhomogeneity imposed by the singularity att
50 @see Eq.~10!#.

The bulk of the numerous papers on the subject have
ployed the Fourier-Laplace transform relation between
energy and the time domains, using assumptions and mo
for the choice of the energy distribution. Such approache
the calculation ofPNED(t→`) deal with phenomenology
and can be divided into two categories.

In the first, the calculation has proceeded byassuminga
form for the realg(E) with a pole structure~e.g., @10,15–
20#!, from which G(t)[^C0uC(t)& is obtained via Fourier
transformation@see Eq.~1! below#. The case in which the
self-energy is energy-independent, as is reasonable to ex
for narrow isolated resonances,g(E) is derived to be the
Lorentzian~e.g.,@9# and below!.

In the second, which, as I will argue, is more appropria
the calculation starts by connecting the decay amplitude
t.0 to the corresponding Green’s function,G.(E1 i0),
given by the diagonal matrix element of the resolvent ope
tor, R(z)5(z2H)21. R(z) is a bisectionally analytic func-
tion above and below the real energy axis of the continu
spectrum, whose discontinuity forE>0 is g(E). This con-
nection leads to the construction of a Fourier integral o
complex energy distribution, which, for the case of an is
lated resonance, has a complex pole below the real
@1,8,9#. When this integral is truncated so as to account
the lower bound of the continuous spectrum, the result
PNED(t→`) contains the effect ofE>0 as well as oft>0
@8,9# and herein.

III. THE REAL ENERGY DISTRIBUTION g„E… AND ITS
USE FOR THE CALCULATION OF THE SURVIVAL

AMPLITUDE, G„t…

The concept of a decaying state starts with the format
at t50 inside the continuous spectrum of a square-integra
C0 which is not a discrete stationary state of the total Ham
tonian H. For a time-independentH, the formal solution of
the TDSE isC(t)5exp@(2i/\)Ht#uC0& with t.0 or t,0.
8-2
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PHYSICAL CONSTRAINTS ON NONSTATIONARY . . . PHYSICAL REVIEW A66, 022118 ~2002!
Assuming loss of memory of the excitation mechanis
something which is acceptable when the lifetime of the s
associated withC0 is much longer than the duration of ex
citation, the survival amplitudeG(t) can be written as (\
51) ~see, however, the discussion that follows!

G~ t ![^C0uC~ t !&

5^C0uexp~2 iHt !uC0&

5E
0

`

dE g~E!e2 iEt. ~1!

g(E) is the energy distribution of the resonance state, gi
by the real and positive functionz^C(E)uC0& z2, anduC(E)&
are the exact scattering stationary states of the continu
spectrum with Dirac normalization,̂C(E8)uC(E)&5d(E8
2E). An elegant formalism for the calculation ofC(E) in
the presence of resonances, in the framework of the Her
ian, standing-wave properties of the reaction~K! matrix, has
been presented by Fano@21# in his analysis of photoabsorp
tion in regions where autoionizing states exist. The last te
of Eq. ~1! results from the insertion of the unit operatorI
5*dEuC(E)&^C(E)u, which is Hermitian. The lower limit
of the continuous spectrum is set at zero.

It is very difficult to compute accuratelyg(E) for real
systems, the level of difficulty depending on the degree
complexity of the Hamiltonian and of the related many-bo
problem.@A calculation of theg(E) of a polyelectronic au-
toionizing state was produced in@4~c!#, by first computing
C0 and C(t).# Instead, as already mentioned, in the ov
whelming majority of the publications onG(t), g(E) is in-
troduced byassumingan analytic form. Hence, the resul
are necessarily phenomenological. For example, the Lor
zian form, which is the example adopted here, has been
in @6,8–10,15# for the study of aspects of NED. Differen
forms, such as those chosen in@16–19#, have been used fo
discussions on unstable states of nuclear and particle ph
and on the so-called ‘‘Zeno’’ effect. A generalized Lorentzi
was used recently in connection with random matrix mod
@20#.

In all such cases, it becomes clear thatG(t) is determined
not only by the pole structure ofg(E), which provides the
celebrated exponential decay, but also by the mod
independent behavior ofC(t) for t'0 @via the first-order
expansion of the evolution operator, exp(2iHt)'12iHt#, by
the possible energy dependence ofg(E) beyond the Lorent-
zian, and by the energy lower bound atE50, where the
continuous spectrum starts, features that cause NED.

I now make two comments regardingg(E) and NED. The
first is that, as Khalfin@10# first demonstrated by applying
theorem of functional analysis, sinceg(E) is real and posi-
tive, the existence of the lower bound forbids the satisfact
of ED for all t. A simple mathematical proof of the sam
argument was given in@9#. The degree of violation of ED for
long times, i.e., the comparative magnitudes ofPNED(t
→`) and ofe2Gt, depends on the proximity of the energy
the decaying state to the threshold of the continuous s
trum, regardless of the form ofg(E) @8,9,4#.
02211
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The second comment has to do with the choice of
form for g(E). For an isolated resonance state,g(E) is char-
acteristic ofC0 and of its interaction with the continuou
spectrum. Fano’s theory of the mixing of discrete with sc
tering states@21# or the formal theory of decaying states, e.
@9#, shows that

g~E!dE5
1

2p

G~E!

@E2E02D~E!#21
G2~E!

4

dE, ~2!

where the energy-dependent functionsG(E) ~the width! and
D(E) ~the energy shift fromE0! are given in terms of matrix
elements^C0uHuw(E)&, w(E) being the scattering wave
functions of the continuum in the absence of the effect
bound-discrete interaction, that are mixed withC0 to form
C(E). On the other hand, the theory of decaying states@1,9#
also leads to an alternative equation forg(E), expressing its
relation to Hermitian quantum mechanics, where unitarity
preserved and information from time-reversed states is
cluded. The derivation is based on the analytic properties
the resolvent operator,R(z)5(z2H)21, and leads to

g~E!5~1/2p i !@G,~E2 i0!2G.~E1 i0!# ~3a!

57~1/p!Im G~E6 i0!5^C0d~E2H !uC0&, ~3b!

where

G~z!5^C0uR~z!uC0& and G~z* !5@G~z!#†,

z5E1 i0. ~3c!

z is a complex variable with units of energy.@G(z)#† is the
adjoint of G(z).

The functionsG(E6 i0) are the diagonal matrix elemen
^C0u(E2H6 i0)uC0& and the symbols. or , are added to
label the contribution toG(t) for t.0 and fort,0, respec-
tively, when the Fourier transform is evaluated. Equat
~3b! shows explicitly thatg(E) represents the discontinuit
of ^C0uR(z)uC0& on the real axis of the continuous spe
trum. The significance of Eq.~3! for the present issue will be
discussed in the next section. Suffice it to add here that
reality of g(E) is secured by both forms, Eqs.~2! and ~3!.
However, it becomes immediately obvious from Eq.~3a! that
if only one of the Green’s functions is kept, sayG.(E
1 i0), which corresponds to the decaying state fort.0, then
the energy distribution becomes complex~Sec. IV!. I recall
that the analytic continuation through the cut to the seco
Riemann sheet below the real axis reveals one complex
close toE0 , which is the complex eigenvalue of the deca
ing state, whose eigenfunction is not square-integrable.

Equation~2! suggests immediately that the approximati
of G(E)'G(E0)[G, D(E)'D(E0)[D, which is very rea-
sonable for narrow resonances, leads to the Lorentz
~Breit-Wigner! form
8-3
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CLEANTHES A. NICOLAIDES PHYSICAL REVIEW A66, 022118 ~2002!
gL~E!dE5
1

2p

G~E0!

@E2E02D~E0!#21
G2~E0!

4

dE. ~4!

The constantsG and D can also be evaluated atEr , where
Er5E01D(Er) is the exact position of the resonance sta
However, the corresponding very small difference as rega
the present discussion is totally irrelevant.

It is the Lorentzian that was adopted by Khalfin@10# to
obtain an expression forG(t) in the NED regime@Eq. ~3.20!
of @10##, which he obtained under the assumption of (t/\)
(Er

21G2)1/2@1 @his Eq.~3.17!#. It was also adopted by Slui
and Gislason@6# @their Eq. ~23!#, who used the formulas
given in @9# for the evaluation of the integral~1! @Eq. ~8.37!
of @9# as compared with Eq.~19! of @6##. It was shown in@9#
@Eq. ~8.54!, corrected here for a misprint#, that the use of
gL(E) in Eq. ~1!, derived from the pole approximation t
g(E) of Eq. ~3a!, produces the analytic result forPNED(t
→`) of

PNED~ t→`!'
\2G2

4p2~Er
21G2/4!2t2 . ~5!

This is the result that corresponds to the amplitude deri
by Khalfin @Eq. ~3.20! of @10##.

It was demonstrated explicitly in@9#, pp. 494–498, that
Eq. ~5! is the result of two conditions onE and ont, within
the simple pole approximation of energy-independentG and
D. It is obtained for the case represented bygL(E) and Eq.
~1!, namelyE>0 and`.t.2`, as well as for the sym-
metric case oft>0 and `.E.2`, represented by the
choice of only (21/2p i ) G.(E1 i0) in Eq. ~3a!. The first
case is the one chosen implicitly by Khalfin@10#, since as
already stated, the realg(E) ‘‘does not differentiate between
positive and negative times’’~p. 492 of@9#!. The second case
is the one corresponding to the treatment of@1#, where the
crucial expression is their Eq.~40d! on p. 434,

C~ t !5~1/2p i !E
2`

`

dE e~2 iEt !G1~E!Xa ~6!

@Eq. ~40d! of @1#, p. 434#. The functionsG1(E)5G.(E
1 i0) andXa5C0 . As Goldberger and Watson state~p. 434
of @1#!, ‘‘The wave functionC(t) contains a complete de
scription of the system fort.0.’’ However, Eq.~6! does not
consider the fact that the continuous spectrum has a lo
bound. The integration for the corresponding survival am
tudeG.(t) was done in@1# via the contour of Fig. 8.3 on p
447. This contour shows that the contribution to NED com
from integration for negative imaginary values along tw
directions, from2 i` to 0 and from 0 to2 i`. Thus, the
integral of Eq.~108! on p. 448 of@1# is equivalent to the
integral 8.30 of@9# ~case oft>0,̀ .E.2`!, and to the
integral 8.39 of@9# ~case ofE>0 and`.t.2`!.
02211
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IV. THE SINGULARITY AT tÄ0, COMPLEX ENERGY
DISTRIBUTION, AND PNED „t\`…

The use of realg(E) is in accordance with Hermitian
structures and has characterized most of the calculation
G(t). Its origin lies in the use of the unit operatorI
5*dEuC(E)&^C(E)u, an expansion that is part of the foun
dations of the quantum mechanics of stationary states an
unitarity.

The integral~1! overg(E) can be done either for realE or
in the complex energy plane@1,6,8–10,15–20#. This is evi-
dent from the structure of Eqs.~2!–~4!. When this is done,
the term of ED emerges from the pole below the real axis
addition, either the participation of both directions along t
imaginary axis or the contribution of two poles,z0 and its
conjugatez0* , corresponding to the adjoint Green’s functio
G.(E1 i0) andG,(E2 i0), gives rise to NED@1,9,10#. If
the approximation of energy-independent self-energy
made, the Fourier integral that must be evaluated is the
of contributions from 1/(z2z0) and from 1/(z2z0* ) and in-
tegration must go from 0 tò . The integration can be don
exactly in terms of exponential integrals~shown to be valid
for complex variables as well! and retention of the leading
term. The result forPNED(t→`) is Eq. ~5! @9#.

The theory and calculations of@8,9# argued that in order
for the arrow of time to be accounted for together with t
basic characteristic of the energy spectrum, the rigor
treatment ofP(t) must account for both constraints,E>0
and t>0. The former constraint introduces ‘‘memory’’ int
the evolution process, regardless of the form of the ene
distribution, and eventually causes a slowing down of
decay from its exponential form„see the Appendix of@4b#….
The latter constraint expresses the initial conditions at~step
function! the t50 singularity, which is caused by the mo
mentary formation of the nonstationary state. This singula
of the solution of the TDSE breaks, in principle, a bas
feature of Hermitian quantum mechanics, namely unitar
by separating the decaying state,t.0, from its adjoint, t
,0. As a result, instead ofg(E), the energy distribution
associated with irreversibility at the microscopic level
complex. In @8,9#, the use of the approximation of th
energy-independent self-energy@D2( i /2)G# allowed the
derivation of analytic results forPNED(t→`), both in terms
of GL(E) ~real function! and in terms of the correspondin
~unnormalized! complex Green’s function,

GL~E!'2@E2Er1~ i /2!G#21, E.050, E<0.
~7!

The arguments and calculations of@8,9# aimed at intro-
ducing and demonstrating two main ideas.

~i! The association of a resonance state with a simple p
and with the concomitant ED is a function of the ratioEr /G.
Given the lower bound atE50, as this ratio approache
O(1) while threshold is reached, the violation of ED at lon
times is enhanced, since the effects of memory are accu
lated faster. Therefore, the search for the discovery of n
stationary states where NED is observable should focus
8-4
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PHYSICAL CONSTRAINTS ON NONSTATIONARY . . . PHYSICAL REVIEW A66, 022118 ~2002!
exceptional cases, i.e., on resonance states very close t
threshold„see also@4~b! and 4~c!#….

~ii ! For the rigorous treatment of irreversible decay, bo
the E>0 and thet>0 restrictions must be considered. Th
latter implies that the real functiong(E) should be replaced
by the complex functionG.(E1 i0) of Eq. ~3a!, which,
upon continuation through the cut of the real energy axis i
the second sheet, reveals the decaying state pole atz05E0
1D2( i /2)G.

Conditions~ii ! above imply that only one pole,z0 , and its
corresponding complex eigenfunction are used for the
scription of the physics of decay. For energy-independ
@D2( i /2)G#, the result forG.(t) is @8,9#

G.~ t !5
1

2p i R exp~2 izt!

z2z0
dz

5exp~2 iz0t !F12
1

2p i
E1~2 iz0t !G , ~8!

whereE1(x) is the exponential integral. The first term is du
to the pole. The second originates from the contour integ
tion along the imaginary axis in one direction only. By takin
the first term of the asymptotic form ofE1(x) and by omit-
ting the interference terms, the result forPNED(t→`) is
@8,9#

PNED~ t→`!'
\2

4p2~Er
21G2/4!t2 . ~9!

Equation~9! has the same dependence ont as Eq.~5!, but the
coefficients are different.

V. ANALYSIS AND DISCUSSION

Sluis and Gislason@6# commented on the results of@8,9#,
suggesting, as Druger and Samuel@5# did before them, that
the evaluation ofG(t) was done improperly, and that th
result of Eq.~9! is incorrect. The objections of@5,6# seem to
have missed the point made in@8,9# and here. The results~8!
and~9! were obtained under physical constraints that acco
for time asymmetry as well as for the spectral lower bou
In order to produce them, the Fourier integration over 1/E
2z0) can be done for realE from 0 to`. ~See the numerica
results of@8,9# and Appendix B of@9#.! Of course, it can also
be done in the complex energy plane. The correspond
contour of integration chosen in@8,9#, and criticized in@5#, is
shown in Fig. 1. It does not enclose the positive real axis
both directions from 0 tò . This means that use is not mad
of the unit operator@Eq. ~1!# over the stationary states o
Hermitian quantum mechanics. Instead, it deals directly w
G.(E1 i0) of Eq.~3a! and goes along only one direction o
the imaginary energy axis, accounting for the lower bound
the energy spectrum and expressing the fact that the sy
becomes non-Hermitian owing to the imposed boundary c
ditions of the time arrow at the singularity,t50.

In fact, subsequent results of Holstein@22# on theP(t) of
a-particle decay, obtained via semiclassical path-integral
culations with a model potential consisting of a spherica
02211
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symmetric square well and a Coulomb repulsion, led exa
to Eq.~9! @Eq. ~29! of @22##. In the path-integral formulation
the direction (x1 ,t1)→(x2 ,t2), t2.t1 , comes in naturally,
and therefore the corresponding propagatorG(t), t5t2
2t1 , must incorporate only thet.0 contribution. Actually,
using the path-integral formalism for the determination
the semiclassical Green’s function,Gsc(E), and the subse-
quent evaluation ofG.(t) via a truncated Fourier transform
Douvropoulos and the author@23# have shown that the sam
results hold as well for even more realistic model potenti
with a local minimum supporting nonstationary state
Gsc(E) consists of a summation over the complex poles c
responding to the resonance states that the potential can
port, multiplied by quantities that can be calculated semicl
sically. The complex eigenvalue of interest appears wit
negative imaginary part, thereby contributing tot.0 decay
only.

In conclusion, the ‘‘memory’’ introduced into the decay o
an unstable state by the existence of the lower limit of
continuous spectrum breaks the Markovian nature of ti
evolution and results in NED, regardless of the type of e
ergy distribution@10,9#. However, there is a difference o
fundamental importance when the arrow of time introduc
by the singularity in the solution of the TDSE att50 is
considered. In this case, the energy distribution driving
decay is complex. The use of a real energy distribution
plies the contribution toG(t) from ‘‘adjoint time-reversed
states’’ as well~p. 684 of@8#, p. 492 of@9#!. In other words,
the use ofg(E) is in accordance with Hermitian quantum
mechanics, but the problem of decaying states is intrinsic
non-Hermitian. The conclusion is that, together withE>0,
the calculation must express the result of the replacemen
the time-evolution operator,T(t)5e2 iHt , which is unitary
over the domain (2`,t,1`), by u(t)e2 iHt , whereu(t)
is the step function fort.0. The corresponding time
asymmetric TDSE is then@Eq. ~3.4! of @9##

~ i ] t2H !T~ t !5 id~ t !. ~10!

Although there are no first-principles computations on r
systems based on Eq.~10!, it follows from the equivalent

FIG. 1. Contour of integration chosen in@8,9# for the evaluation
of the survival amplitude of an isolated decaying state with ener
independent self-energy. It accounts for the physical constraint
E>0 and t>0. The contour on the arcC2 is zero asz→`. The
pole z0 is put on the second Riemann sheet.
8-5
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results of the integral formulation that although the inhom
geneity does not change the lifetime in the regime of ex
nential decay, it does affectPNED(t→`), as demonstrated b
the difference between Eqs.~5! and ~9!. In this context, one
might object that the results~5! and ~9! are specific to the
approximation of energy-independentG andD. Nevertheless,
it is the fact that they are different in magnitude that h
value regarding the understanding of the violation
quantum-mechanical time symmetry caused by the forma
of resonance states. If, in the future, it becomes possibl
measure with great accuracy the NED of an isolated unst
state, for which accurate calculations of the same quan
could also exist within the two frameworks discussed in t
paper~real and complex energy distributions!, significant in-
formation as to the physical relevance of long-time NE
should emerge. A proposal for an experiment in atomic ph
ics is presented in@4~a!#.

VI. APPLICATION TO THE He 2
2¿ 1sg

2 1Sg
¿ MOLECULAR

AUTODISSOCIATING STATE

Because of the smallness of the possible quant
mechanical effects in the regime of long-time NED, when
comes to computation or measurement it is preferable to c
sider well-defined isolated states with unperturbed de
channels. Such cases, involving polyelectronic atomic re
nance states, were studied in@4# via the numerical solution o
the TDSE from first principles.

Another type of physical situation where there is a n
row, well-defined initially localized nonstationary state d
caying into a single open channel of free particles is rep
sented by the extraordinary ground state of the He2

21

molecule, the 1sg
2 1Sg

1 . The fact that this state exists in
local potential-energy minimum inside the continuous sp
trum of He11He1 was first discovered and interpreted b
Pauling in 1933@24#. The form of this potential implies the
s

.
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existence of vibrational levels as shape resonances. Vie
from a different angle, this system, as well as similar m
lecular ground states@25,26#, can store large amounts of en
ergy that can be easily released as kinetic energy of H1

1He1. The crucial element in such a consideration is t
degree of stability of the vibrational levels toward autodiss
ciation ~tunneling! @25#. The energy of thev50 vibrational
level of the He2

21 1sg
2 1Sg

1 state is about 1.3 eV below th
top of the barrier and about 8.9 eV above the energy of
dissociated product, He11He1. Using semiclassical WKB
formulas for tunneling, its lifetime was calculated to b
about 220 min@25#. Semiclassical results of such width
were subsequently confirmed by quantum-mechanical ca
lations @27,28#.

The analysis of@23# has shown that the tunneling vibra
tional levels of the He2

21 1sg
2 1Sg

1 state can be subjected t
the NED treatment discussed here. In general, when the l
is not near the top of the tunneling barrier, in which case
width is broad and may be energy-dependent~apart from the
possibility of resonance overlap!, PNED(t→`) is given ex-
actly by Eq.~9!. Therefore, the quantum theory of decayin
about the nature of the energy distribution and the limits
integration in the calculation ofP(t) (t>0,E>0) is con-
firmed again using path integrals, where the arrow of time
intrinsic to the formalism.

Finally, it is instructive to see the result of the applicatio
of formulas ~5! and ~9! to the lowest vibrational resonanc
level of He2

21 1sg
2 1Sg

1 , when the energy and the widt
calculated in@25# are used. A significant difference is ob
served, even though the magnitude ofPNED(t→`) relative
to e2Gt is too small for this system, since the ratioEr /G is
large and the level is far from threshold@8,9#. Specifically,
when the result from the use of the real energy distribution
applied @Eq. ~5!#, NED starts dominating after about 19
exponential lifetimes. When Eq.~9! is applied, NED domi-
nates after about 102 exponential lifetimes.
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