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%e examine the statistical mechanics of the classically integrable Ishimori-I addeev-Haldane lattice

spin model. Thermodynamic properties can be exactly described in terms of an interacting soliton gas.
Our semiclassical scheme can be used to calculate the low-temperature thermodynamics of the S=

2

Heisenberg chain, in very good agreement with recent numerical calculations based on the quantum-

mechanical Bethe ansatz.

PACS numbers: 75. 10.Hk, 05.70.Jk, 75. 10.Jm

The 5 =
2 ferromagnetic Heisenberg chain with

nearest-neighbor interactions is one of the few nontrivial
quantum-mechanical many-body problems amenable to
an exact solution [I]. Nonetheless, a complete analytic
description of its thermodynamic behavior in the vicinity
of the ordered state (T=0) has proved elusive. Sig-
nificant progress was achieved by recent independent nu-
merical investigations [2,3] which suggest that the
specific heat and the zero-field susceptibility are propor-
tional to T'~ (spin-wave behavior) and T (classical
result [4]), respectively. There is yet no consensus re-
garding logarithmic corrections [2(b)] or exact analytic
expressions for critical amplitudes.

In this paper we examine the thermodynamics of a re-
lated model, the Ishimori-Faddeev-Haldane [5-7] fer-
romagnetic chain, whose classical Hamiltonian is given

by

piete loss of long-range order for any T &0; this is an
essential test of the validity of the thermodynamic soliton
picture and contrasts favorably with the divergent spin
deviation produced by a naive magnon gas description of
the Heisenberg ferromagnet [12]. Our results, which de-
scribe the soliton statistical mechanics of (1), the only
lattice spin model known to be classically integrable, thus
provide a useful guide to the low-T behavior of the
Heisenberg ferromagnet of arbitrary spin.

Soliton solutions of the Hamiltonian dynamics result-
ing from (1) are characterized [5,8] by two parameters
w, k, with 0& w & ~ and 0& k & z. It is possible to ex-
press the energy E, the magnetization M, and the canoni-
cal momentum P in terms of w and k; the exact expres-
sions have been derived in the context of semiclassical
quantization [10]. In the context of statistical mechanics
we further need (i) the Jacobi determinant

H = —2JS g in (S +S„.S„+( ), (i) d (w, k) =a(p, ~)/a(w, k) =32S w/(cosh2w —cos2k)

where 5 is the value of the spin and J & 0. At low tem-
peratures neighboring spins are aligned and the physics of
(1) reduces to that of the Heisenberg ferromagnet. Be-
cause of the complete integrability property of (1) [5-8],
its thermodynamics can be exactly formulated [9] in

terms of the phase shifts involved in the soliton interac-
tions. Our statistical description is classical in the sense
that it (i) assumes a continuum distribution of soliton ac-
tion variables (magnetizations and momenta), and (ii)
postulates that solitons would obey Boltzmann statistics if
they were interaction free [9]. Assumption (i) is reason-
able as long as the spectrum is gapless (our case [10]),or
the temperature exceeds the value of the gap [11]. As-
sumption (ii) can be relaxed to allow for a diff'erent type
of free-soliton statistics (e.g. , fermions), resulting only in

a 1% decrease in the critical amplitude of the specific
heat. The fact that the value of 5 enters not only the en-
ergy scale lin the form JS, Eq. (1)], but also controls
the phase-space measure determined by the rules of semi-
classical quantization [10] [cf. Eq. (5) below], enables us
to describe both classical and quantum regimes. Further-
more, the spin deviation due to solitons results in com-

and, in order to describe the phase space of interacting
solitons, (ii) the two-soliton phase shift

A(w, k;w', k') = ln
2w

cosh 2 (w'+ w ) —cos2 (k —k ')
cosh2(w' —w) —cos2(k —k')

~(r) =Z(r)+(I/2~P) J dr'a(r', r)exp[ —Pc(I ')], (3)

where P= 1/T, E(I ) =8JS w is the bare soliton energy,
and dI '= J(w', k')dw'dk'. Equation (3) forms [15] the
basis of statistical mechanics for particles interacting via
phase shifts only. In the form given, Eq. (3) neglects the
presence of extended vibrational modes (magnons),
an approximation which seems justified by the form of

(2)

which can be derived by invoking the gauge equivalence
of (I) with the discrete nonlinear Schrodinger model
[5,i3, i4].

The occupation probability n —=exp[ —pe(I )] of a point
I —= (w, k) in phase space is then determined by the
quasienergy e(r), given by the integral equation [9]
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the semiclassical spectrum [10]. At low temperatures (PJS )) 1) we expect that only modes with w« 1 can contribute.
It is then possible to simplify the two-dimensional integral equation (3) by using the approximate form

A(w, k;w', k') = min(iv, w') 8(k —k') . (4)

The approximation (4) satisfies the exact sum rule fthm dkA(w, k;w', k') =2xmin(l, w'/w) and is similar in spirit to the
one successfully employed [11] in the classical limit of sine-Gordon statistical mechanics. Using (4) it becomes possible
to reduce (3) to the one-dimensional integral equation

C (k,P) = lim [Ps(w, k) —V iv],

where

V = lim r)[Ps(w, k)]/r)iv=8PJS

As a function of Vo and C, the total density of solitons
is [14]

P n/2
nq=

l dk'1
z "0

av,
t)V

(6)

Ps(iv, k) =8PJS iv+ 8S div'
(w' +sin k)'

It turns out [14] that the basic thermodynamic quanti-
ties, as defined in, e.g. , Ref. [9],demand only some global
features of the solution of the integral equation (3) or its
simplified form (5). These are

Vo(k, P) = lim t)[Pc(N, k)]/t)vv
w 0

and

(5)

t
and the asymptotic spatial shift C = lim, [x(t)—v t] as a function of the parameters P, k, and S
(which define a and the final velocity v ).

Except in the case a =0 (autonomous limit), it is not
possible to integrate (9) analytically. However, the
analytical solution [11,14] [cf. (ii) below] can serve as a
useful guide in two physically significant limiting cases.
First, one can obtain the classical limit [4], corresponding
to J~ 0, 5 ~ with JS ~ j. In this limit, it can be
shown that for large but finite values of S there will be a
temperature range j/S « T«j in which the system can
be described as a dense soliton gas (n, —,

' ), which
exhausts all degrees of freedom, and exhibits low-
temperature classical behavior [4], i.e., a constant
specific heat. The other limiting case, as will become
clear below [(i)-(iii)], is the approach to zero tempera-

the energy per site

T t x/2 tiCu= ——
J dk

tl InP

and the magnetization per site (for T~O)

av,
m = lim

o av

(7)

the expressions (6)-(8) can be derived from the full two-
dimensional integral equation (3), using the symmetries
of the phase shifts (2). The one-dimensional version (5)
yields the same expressions, provided that the reasoning
which leads to (4) is applied consistently. The integral
equation (5) is equivalent to the ordinary diA'erentiai
equation

d x 8
e

dr ' (1+ar ') ' (9)
O

where x Ps, r Sw/sin k, and a sin k/S, subject to
the initial condition x(0) =0 and the final condition

0.5 1.5

t = lim (dx/dr) =8pJSsin k= V sin k/S.

Equation (9) can be thought of as describing a nonauto-
nomous mechanical system. The problem then is to de-
termine the initial velocity to=(dx/dt), =o= Vosin k/S

FIG. I. The energy density in k space U(k) = —(t)C /
t)lnP)1, as a function of k/k, , where k, =P ~, for various
values of P. The solid line corresponds to the limit P ~. The
four other curves correspond, from top to bottom, to p=lO,
10, 10, and 1, respective1y.
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FIG. 2. The quantity (11VO/|)V )i, =(ilvo/ilv )i, as a func-

tion of k/k, where k, =P t', for various values of P. 0, P=1;
A, P =5; +, P = 10; &&, P =50; 1, P = 100; '7, P =500. For
large values of p the results are indistinguishable from the pre-

dictions of the autonomous (scaling) limit a =0 [cf. Eq. (9),
dashed curve).

ture (regardless of the value of S) and corresponds to ex-
plicitly quantum behavior, i.e., 0 ( T(JS.

It should be noted that in the autonomous limit the pa-
rameters P and k enter the solution in the combination
Psin k, i.e., this limiting case is characterized by a scal-
ing property.

We have performed the numerical integration of (9)
using the Bulirsch-Stoer method [16] for a variety of P
and k values, and J=1, S =1. The choice of a particular
value of S—O(l ) does not aA'ect the leading asymptotic
behavior as T 0 except for a rescaling of constants.
Our results can be summarized as follows:

(i) As the value of P increases, the integrand of (7),
which represents the soliton energy density in k space, ap-
proaches a limiting function determined by the auto-
nomous limit of Eq. (9) (Fig. 1).

(ii) The quantity (rive/r)v )k tends to zero as k 0, in

accordance with the requirement of vanishing long-range
order, for all Pnite temperatures (Fig. 2); the same quan-
tity appears in the integrand of (6), which determines the
soliton density. Note that the approach to the asymptotic
limit (determined by the relationship vv =16+v ) is

now much more rapid.
(iii) A detailed study of asymptotic behavior reveals

that the energy per site and the soliton density approach
the values 2AT / and AT'/, respectively (Fig. 3), where
A =(2tr) ' /[1 (4 )] =0.1907. The fact that n, 0 ex-

FIG. 3. Solid line: the quotient u/T'i', where u is the energy
per site [Eq. (7)], as a function of log(l/T). Dotted line: the
quotient 2nv/T't', where n, is the soliton density calculated
from (6) and (9). Dashed line: the two quantities are identical
in the autonomous (scaling) limit a =0 [cf. Eq. (9)].

plicitly confirms the presence of a dilute soliton gas. The
ratio 2T is consistent with the principle of energy
equipartition implicit in our "classical logic. ' Since the
asymptotic limit depends on the combination pJS (cf. the
expression for v above), our result translates to a free
energy per site f= —4AT(T/JS)'/ = —1.0787T / in

the case of S= & . Our value of the critical amplitude
lies within the estimated accuracy of the best numerical
estimates based on the full quantum-mechanical Bethe
ansatz (BA) [2,3], obtained using several hundreds of
coupled integral equations. It deviates very slightly from
the value 1.042 predicted within the free-magnon-gas
framework [3]. Whether it represents a better approxi-
rnation to the exact BA value is clearly a matter that can
only be settled in the context of the BA formalism (in this
framework Schlottmann [2(b)] gives an estimate of 1.1).

In summary, we have formulated and derived the equi-
librium statistical mechanics of the only available discrete
spin model which has the property of classical integrabili-
ty. The soliton gas has been shown to be dilute at low

temperature, and the nontrivial dependence of thermo-
dynamic quantities on S allows us to describe the
quantum-mechanical regime. The leading-order asyrnp-
totic behavior can be described analytically, and the com-
putational eAort involved in extending results to higher
temperatures (while still satisfying pJS )) 1) can be kept
at a minimum. Since the model by construction reduces
to the Heisenberg model at very low temperatures, the re-
sults derived here reflect the asymptotic behavior of the
latter.
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