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We consider problems of short-time dynamics of a polyelectronic atomic nonstationary state, V, assumed to
be formed as a wave packet at t=0. We focus on two cases, for which the role of the quasicontinuum of the
upper part of the Rydberg states, with which the V state has nonzero coupling matrix elements, is investigated.
In the first case, the position of the V state is just above the ionization threshold, E=0, and so V dissipates into
the free electron continuum as an autoionizing state. The question is how the presence of the Rydberg series
converging to E=0 affects the time evolution of the autoionizing V. In the second case, the position of V is
embedded in the quasicontinuum of the Rydberg series below threshold. The question is whether there are
distinct features in the time evolution of this V, although its position is in the discrete part of the energy
spectrum. In this case, by focusing on short times and by evaluating analytically certain infinite sums, analo-
gous to Fourier integrations, the following result is obtained: For small times, the V state evolves as an
exponentially decaying state. However, in addition to the term describing exponential decay, there is a term,
entering with a small coefficient, which describes exponential growth and eventually dominates. It is shown
that exponential decay holds for times shorter than the time tp needed by the wave packet to reach the outer
classical turning point. For the decay to be physically meaningful, this time must be smaller than the time td

which equals the inverse of the half-width in atomic units. We examined a model system of V-Rydberg state
interaction based on the Boron 2S spectrum. The results indicate that the effect is observable on the scale of
femtoseconds.
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I. INTRODUCTION AND DESCRIPTION OF THE
PROBLEM

The mathematical spectrum of multiparticle systems such
as atoms is associated with the poles and cuts of the resol-
vent operator, R�z�=1/ �z−H�, where z is a complex variable,
z=E± i�, and H is the Hamiltonian. The time evolution op-
erator, e−iHt, is given by

e−iHt =
1

2�i
�

spectrum
R�z�e−iztdz �1�

where the contour surrounds the spectrum of H on the first
Riemann sheet of E, in which case it is valid for t�0 and
t�0. For t�0, e.g., the case of a nonstationary state decay-
ing into a purely continuous spectrum irreversibly, the con-
tour reduces to a line parallel to the real axis with Im z�0,
e.g., Refs. �1,2�. Since R�z� is analytic on the first Riemann
sheet, any of its possible complex poles, z0, must appear on
the second sheet. As is well known, for normal cases these
are associated with resonance states—in atoms they are also
called autoionizing or Auger states. In the time-dependent
framework, they are associated with nonstationary states,
i.e., wave packets formed at t=0 as localized but unstable
states, and with assumed loss of information from the exci-

tation process that starts at t=−�. Let us assume the case of
an isolated state. We symbolize this t=0 wave packet by �0
and its energy, which is real, by E0. The square-integrable
state ��0 ,E0� is embedded in a continuous energy spectrum
of scattering states, uE, satisfying H0uE=E uE. For physical
as well as mathematical reasons, the operator H0 is given by
H0= ��0���0�H��0���0�= ��0�E0��0� and the decay is ef-
fected by the perturbing operator V=H−H0. Without loss of
accuracy, the spectrum of the energies E into which E0 is
embedded is assumed to be the same as that defined by the
full operator H, e.g., Refs. �1,2�.

The survival probability of the wave packet is given by
�with � =1�

P�t� = ���0�e−iHt��0��2 	 �G�t��2, �2�

where

G�t� = 
� g�E�e−iEtdE , �3�

g�E� is the distribution of �0 over the energy spectrum. The
symbol of the sum in Eq. �3� stands for the discrete states
below threshold. It is the role of this part of the full spectrum
that the present investigation focuses on.

Once the formation of �0 is assumed, it follows from
quantum mechanics that, regardless of the details of the form
of the energy distribution, the probability decreases exponen-
tially, P�t��e−2	t, t�0 � 	 is the half-width�, except for very
short and very long times �3�. �Also see Refs. �4–7�.�
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It was shown in Ref. �2� that, for the case where the
self-energy function �basically the width function� is inde-
pendent of energy, the mathematics of nonexponential decay
�NED� can be expressed in terms of the exponential integral,
E1�z� �8,9�. Furthermore, a crucial parameter in the quantita-
tive significance of NED is the ratio 	 /Er, where Er is the
energy of the resonance state �2,7�. The closer Er is to the
fragmentation threshold, the quantity 	 /Er tends to an order
of magnitude of unity and the importance of E1�z� relative to
the contribution of the pole, z0 �the cause of exponential
decay�, increases. The quantities E1�z� and the 	 /Er are used
in the discussion of the sections that follow.

In all previous formal discussions of the properties of P�t�
for a resonance state, the spectrum which is considered in
Eq. �1� is taken to be that defined exclusively by scattering
states. In other words, the spectrum is continuous and there
is no involvement of the discrete states below the fragmen-
tation threshold. In atoms, the effective −1/r Coulomb po-
tential creates an infinity of bound states, the so-called Ryd-
berg �R� states. As the ionization threshold is approached, the
R states form a quasicontinuum that rigorously belongs to the
discrete spectrum. It is the existence of the hitherto neglected
effect of the bound Rydberg states, which constitute part of
the spectrum in Eq. �1�, that this work has examined with
respect to the time evolution of nonstationary wave packets
close to threshold, below �a closed system� and above �an
open system�.

Specifically, two cases are examined.
�1� We assume that a very fast excitation process can

create, at t=0, a multielectron wave packet in the form of a
valence �V� configuration whose E0 is just below the ioniza-
tion threshold and is embedded in the quasicontinuum of the
R states converging to the ionization threshold. If formation
of V is possible, then it must evolve by interacting with these
R states. In the general case, the width may cross the
threshold—see Fig. 1. We ask the question: Given that the
energy-dependent stationary state picture of the bound eigen-
functions produced by the V-R superposition is as in Fig. 1,
is there a describable time evolution of the V state treated as

a nonstationary state, as it interacts with the R states, in
analogy with the case of a �0 just above threshold? Obvi-
ously, for Er above threshold, the system is open and the
interaction of �0 with the continuum of scattering states
causes autoionization and concomitant exponential decay
�ED� for P�t�. Is there a corresponding process for the V state
of Fig. 1 �which defines a closed system�, and for what time
scales? As it will be shown in the discussion that follows, for
small times �to be defined below�, the P�t� of the V state
follows ED, only this time it is succeeded by an exponential
blow up as the wave packet returns from its classical turning
point.

�2� Suppose that the excitation creates a nonstationary �0
and a corresponding resonance state with Er just above
threshold, having a distribution that enters the upper part of
the R-state discrete spectrum, as in Fig. 2. What is the effect
of the Rydberg series on P�t�?

In both of the above cases, the spectral significance of the
V nonstationary state is diluted by the mixing with the
Rydberg/continuum states. In the case of �1�, it is shown that
the P�t� of V undergoes a rapid, finite-time decay and sub-
sequent growth, both of which are within measurable time
limits. We focus on the features that emerge when the time of
observation is smaller than twice the time needed for the
wave packet to reach the classical outer turning point of the
effective potential. In the model examined here, which is
based on the Boron spectrum of 2S states, it is found that this
time interval falls into the femtosecond �fs� time domain,
within which the interaction produces a seemingly finite life-
time, even when the initial energy is below threshold. Such a
lifetime can in principle be recorded during the ED—shown
here to occur for a short period—before the V state is re-
populated also exponentially. In order to derive this result,
we developed formulas that evaluate reliably the relevant
summations, with results that resemble those derived by the
corresponding integrations over the energies of the continu-
ous part of the spectrum.

FIG. 1. A Lorentzian distribution, whose peak lies below the
ionization threshold, extends mainly over the discrete part of the
spectrum.

FIG. 2. A Lorentzian distribution, whose peak lies above the
ionization threshold, extends mainly over the continuous part of the
spectrum.
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II. NONSTATIONARY STATE ABOVE THE IONIZATION
THRESHOLD—AN OPEN SYSTEM.

We assume the energy distribution described by Fig. 2.
The width is taken to be energy independent and, conse-
quently, the energy distribution is a Lorentzian function. By
considering that the spectrum of Eq. �1� includes the bound
Rydberg series of a polyelectronic atom below the ionization
threshold, the part of the distribution in the discrete spectrum
has the form �10,11�

g�En� =
1

�


n	

�En − Er�2 + 	2 , �4�

where the factor 
n=dEn /dn �En are the energies of the per-
turbed R states� reconciles the volume normalization of
states of the discrete spectrum with the energy normalization
of states belonging to the continuous spectrum �11�. For
practical purposes, since the V state is very close to thresh-
old, 	=����0�V�UE��2 is evaluated at the ionization thresh-
old. For neutral atoms and positive ions, En=−a /2�n−��2

and 
n=a / �n−��3, where � is the quantum defect—here
considered as constant—of the Rydberg series, and a is a
constant that depends on the units and the electric charge, the
energies being measured from the ionization threshold. Upon
evaluating summations over Rydberg states

GR�t� = 

n

g�En�e−iEnt �5�

it is reasonable to separate a small number of lower Ryd-
bergs, which are treated explicitly, from the infinity of the
upper states which are treated approximately, as a unit. The
form �4� is rewritten as

g�En� =
1

2�i
 
n

En − z0
* −


n

En − z0
� , �6�

where

z0 = Er − i	 . �7�

Here, Er=E0+�, where � is the energy shift due to the in-
teraction of �0 with the states of the Rydberg/continuous
zero order spectrum. In the present treatment of an energy-
independent self-energy, � is small.

Using the result of the Appendix, the part of the summa-
tion �5� over the upper Rydberg states �we write it as GuR�t��,
gives

GuR�t� �
1

2�i
�e−iz0tE1�− iz0t� − e−iz0tE1�i�Eb − z0�t�

− e−iz0
*tE1�− iz0

*t� + e−iz0
*tE1�i�Eb − z0

*�t�� . �8�

Eb is the energy of the nbth state, which is the bottom state of
the upper Rydberg spectrum. This is divided between the
upper and the lower Rydberg series, GlR�t�, so that each sum
includes half the contribution from the nbth state. The reason
for this is discussed in the Appendix. Note that

GuR�0� =
1

�
tan−1 	

Er
� −

1

�
tan−1 	

Er − Eb
� �9�

indicating that part of the population which is missing from
the continuum �the first term of Eq. �9�� resides in the upper
Rydberg series. Figure 3 gives the GuR�t� as a function of
time for Er=210−4 a .u. and 	=10−4 a .u. �continuous
line� to be compared with the right-hand side of Eq. �8�
�dashed line�. It is seen that the exponential integrals produce
a kind of average of the summation for each value of t.

III. NONSTATIONARY STATE BELOW THE IONIZATION
THRESHOLD—A CLOSED SYSTEM

Suppose that the V state is considered as a nonstationary
state, whose time evolution is caused by its interaction with
the Rydberg/scattering states of the same symmetry. We re-
solve the Lorentzian into fractions and compute the expres-
sion

G�z0,t� = 

n=nb

nt 
n

En − z0
e−iEnt �10�

based on the results of the Appendix. The finite summation
has been chosen for easy computer checks. For values of
Re z0�Et, which is a case analogous to that of an autoion-
izing state, a simple generalization of Eq. �A13� for a finite
upper bound is



n=nb

nt

�nb

n

En − z0
�nte

−iEnt

� E1�i�Et − z0�t�e−iz0t − E1�i�Eb − z0�t�e−iz0t, �11�

where

FIG. 3. The part of the survival probability, �GuR�t��2, due to the
upper Rydberg series, of an autoionizing state with Er=2
10−4 a .u. and 	=10−4 a .u., as computed by the exact summation
of Eq. �5� �continuous line� and by the sum of exponential integrals
of Eq. �8� �dashed line�.
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�nb = �1 − 1
2�nnb� and �nt = �1 − 1

2�nnt� �12�

i.e., the first and the last term enter with coefficient 1 /2.
Numerical calculations show that �11� is also valid for
Re z0�Eb, which is the case of a perturber �V state� lying
inside the lower R states. Thus, the result of the summation
�11� is identical to that of integration according to the recipe
�A15�, as long as Re z0 lies outside the range of the integra-
tion. In order to evaluate the sum �11� in the case where
Eb�Re z0�Et, the equivalent of the principal value integra-
tion for sums is employed. As it has been explained else-
where �11,12�, this consists of adding a cotangent term which
cancels the poles of the sum. Indeed, numerical checks show
that the correct formula is



n=nb

nt

�nb

n

En − z0
�nte

−iEnt + � cot ��� + ��e−iz0t

� E1�i�Eb − z0�t�e−iz0t − E1�i�Et − z0�t�e−iz0t − i�e−iz0t,

�13�

where the last term on the right-hand side is the contribution
of the pole and � is defined by the expression

z0 = −
1

2�2 . �14�

The discrete spectrum of the upper Rydberg states in �13� is
given by En=−1/2�n−��2. For t=0, the sum in Eq. �13� is
expressed in terms of gamma functions and the � cot ���
+�� term arises naturally from them �11�. Setting

f�z0� = 1
2 �1 − i cot ��� + ��� , �15�

Eq. �13� is written in the form



n=nb

nt

�nb

n

En − z0
�nte

−iEnt

� E1�i�Eb − z0�t�e−iz0t

− E1�i�Et − z0�t�e−iz0t − 2�if�z0�e−iz0t. �13��

The expression �13�� is similar to that obtained by contour
integration for an autoionizing state lying in the continuum
of energies above the ionization threshold. In that case, f�z0�
equals unity while f�z0

*� equals zero in the corresponding
expression G�z0

* , t� for the pole in the upper half-plane. As is
shown below, this is only approximately true for energies
below the ionization threshold. The implication that f�z0

*�,
being the coefficient of the term that blows up, is not exactly
zero, is that this term will, after the initial exponential decay,
dominate the time evolution.

Combination of the expressions for the two poles gives,
with Er being the energy of V below threshold,

GuR�t� 	
1

2�i
�G�z0

*,t� − G�z0,t��

=
1

�


n=nb

�

�nnb


n	

�En − Er�2 + 	2e−iEnt

� 
 E1 + f�z0�e−iz0t − f�z0
*�e−iz0

*t, �16�

where the first term in the last expression signifies the sum of
the contributions involving the exponential integrals �see Eq.
�8��. For 	�Er the function f�z0� may be written in a form
which illuminates the time evolution of GuR�t� in Eq. �16�.
As the behavior of the function cot ���+�� in Eq. �15� is
determined by Im �, an expression of this quantity is re-
quired. To this purpose, the complex � is examined,

� 	 �− 2z0�− 1
2 =

1

2�z0�
���z0� − Er − i��z0� + Er� . �17�

Setting �0=1/�−2Er, Eq. �17� is written in the form �
=�0F�	 /−Er� which, provided the condition 	�Er is satis-
fied, gives

Re � � �0 − 3
2�0

5	2 and Im � � �0
3	 . �18�

Now, define the time

tp 	 ��0
3. �19�

This is the half-period of the classical orbit with energy Er
�0. By letting

�1 � �0 + � − 3
2�0

5	2 and f = �1 − e−i2��1e−2	tp�−1,

�20�

Eq. �15� gives

f�z0� � f and f�z0
*� � − f*ei2��1e−2	tp. �21�

Using these forms, Eq. �16� is written in the transparent form
as

GuR�t� � 
 E1 + fe−iE0te−	t + f*e−iE0tei2��1e	�t−2tp�. �22�

Apart from very small values of t, the behavior of �GuR�t��2 is
determined by the last two terms which describe the contri-
bution of the perturber, the rest being small corrections. For
times smaller than the time tp needed for the wave packet
centered on the energy E0�0 to reach the classical outer
turning point, the exponential behavior dominates. For t= tp,
the two real exponentials in �22� become equal. Subse-
quently, the exponentially increasing term dominates and the
similarity with a resonance in the continuum ends as the
wave packet turns back. The right-hand side of Eq. �22� con-
tinues to provide a reasonable approximation to �G�t��2 as
long as t�2tp. Defining a decay time td=1/	, the condition

tp � td �23�

implies e−2	tp �1, and in this case the V state will lose a
substantial part of its population during the decay time.
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IV. APPLICATION

We did not find in the literature a recorded Rydberg spec-
trum with a V state in its upper part, close to threshold.
Therefore, in order to illustrate the results discussed above,
we adopted a model spectrum by choosing as the V state the
2s2p2 2S valence state of Boron. In reality �13�, this state is
3369 cm−1 below threshold and lies between the 6s and 7s
Rydberg levels, after which the quasicontinuum of the 2S R
states begins. The energy of the perturber is quite low �tp
�15 fs�, and so the condition �23� is not fulfilled �td

�242 fs�. Thus, the exponential decay is very soon followed
by an exponential growth. However, we may demonstrate the
predicted effect by choosing, arbitrarily, the value of E0 to be
closer to threshold. �This result would be obtained if the
nuclear charge were taken to be slightly smaller than 5.� So
the following approach was applied.

It is seen from experiment �13� that the 2S series has a
large quantum defect �Fig. 4�. This is due mainly to the pen-
etration of the s orbitals in the core. The average value �
=0.88 was chosen for the problem. What we did is to assume
that the position of the V state is higher �and therefore em-
bedded in the quasicontinuum of the Rydberg series�, and to
compute its interaction with the state at the ionization thresh-
old using Hartree-Fock wave functions. �For this symmetry,
electron correlation is not important as far as the problem of
interest is concerned.� Such a computation provides the re-
quired quantity, 	�10−4 a .u.

The exponential decay is indeed obtained, as is depicted
in Figs. 5�a�–5�c�, where �GuR�t��2 is plotted as a function of
time for �0=15, 17, 19 with tp�256.5, 373.3, 521.2 fs, re-
spectively. The exact summation is given by the continuous
line, while the analytic formula �right-hand side of Eq. �22��
is given by the dashed line. The latter describes the evolution
of the wave packet during the first cycle only.

V. CONCLUSION

Given the current possibilities of observing processes oc-
curring within very short time scales, we considered that it

would be useful to examine the fundamentals of the time
evolution not only of nonstationary states that are part of the
continuous spectrum but also of specific cases of polyelec-
tronic states belonging to the discrete spectrum of atoms. In

FIG. 4. Experimental quantum defects of the Boron 2S spectrum
�13�, exhibiting the disturbance of the Rydberg series by the sp2

perturber.

FIG. 5. The part of the survival probability, �GuR�t��2, of a per-
turber state with E0=−1/2�0

2 for �0=15, 17, and 19 and 	
=10−4 a .u., as computed by the exact summation of Eq. �5� �con-
tinuous line� and by the analytic form of Eq. �22� �dashed line�.
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such spectra, a localized wave packet, which is labeled by a
valence configuration, V, may be prepared at t=0 close to
threshold, either above or below. If the state V is in the
continuous spectrum, it dissipates by emitting an electron.
However, if it is below threshold, then it is part of the dis-
crete spectrum, and the accepted wisdom is that its time de-
pendence is a sum of phase factors, eiEnt, involving eigenval-
ues, En.

In the present work, we showed how the existence of
Rydberg series affects the dynamics of states of both catego-
ries. The interesting finding is the fact that, under special
conditions, the survival probability of the V state in the dis-
crete spectrum may exhibit, for a short period of time, expo-
nential decay which, in principle, is observable, provided
such states exist and experiments manage to prepare them
and measure their short-time evolution.
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APPENDIX

The sum

GuR�z0,t� = 

n=nb

�

n

En − z0
e−iEnt �A1�

which refers to the upper Rydberg series, is evaluated below.
To this purpose, use will be made of one of the addition
theorems of the confluent hypergeometric �Kummer’s� func-
tion U�a ;c ;z�. This is a multiple-valued function with its
principal branch at −��arg z�� and the addition theorem
of interest is �9�

ez�

q=0

�
�− 1�q

q!
�z��qU�a;c + q;z� = U�a;c;z + z�� . �A2�

Setting both parameters a and c equal to unity, and using the
relation of the resulting special form to the incomplete
gamma function, namely

U�1;q + 1;z� = z−qez	�q,z� , �A3�

Eq. �A2� becomes



q=0

�
�− 1�q

q!
 z�

z
�q

	�q,z� = 	�0,z + z�� . �A4�

Furthermore, since the exponential integral is a special form
of the incomplete gamma function,

	�0,z� = E1�z� , �A5�

Eq. �A4� can be written as



q=1

�
�− 1�q

q!
 z�

z
�q

	�q,z� = E1�z + z�� − E1�z� , �A6�

where the infinite summation now starts from unity. Finally,
since �� /�z�E1�z�=−e−z /z, differentiation of Eq. �A6� with
respect to z� produces the formula



q=1

�
�− 1�q

�q − 1�! z�

z
�q

	�q,z� = −
z�

z + z�
e−�z+z��. �A7�

Equations �A6� and �A7� are extremely useful in evaluating
the sum of the upper Rydberg states. Specifically, �A7� is
used to represent the nth term of �A1� as a power series
expansion about the threshold �Eth=0 in our choice�. Setting
z�= iEnt and z=−iz0t in �A7� results in

− En

En − z0
e−iEnt = 


q=1

�
�− 1�q

�q − 1�!− En

z0
�q

	�q,− iz0t�e−iz0t.

�A8�

To proceed further, the functional form of the energy is
specified, En=−1/2�n−��2, where � is the quantum defect
considered as constant for the members of the upper Rydberg
series. Then, 
n=1/ �n−��3. Multiplying �A8� by 2/ �n−��
and summing with respect to n, in order to evaluate �A1�, we
obtain an expression in which the summation over n has
been transformed to a summation over q,



n=nb

�

n

En − z0
e−iEnt = 2


q=1

�
�− 1�q

�q − 1�!
��2q + 1,nb − ��

�2z0�q 	�q,

− iz0t�e−iz0t, �A9�

where use has been made of the generalized Riemann zeta
function

��2q + 1,nb − �� 	 

n=0

�
1

�n + nb − ��2q+1 = 

n=nb

�
1

�n − ��2q+1 .

�A10�

For large values of the argument nb−�, the generalized
Riemann zeta function is approximated by the asymptotic
series �9�

��2q + 1,nb − �� �
1

�2q�! �2q − 1�!
�nb − ��2q +

�2q�!
2�nb − ��2q+1

+ 

k=1

m

B2k
�2k + 2q − 1�!

�2k� ! �nb − ��2k+2q� . �A11�

Apart from the second term, the asymptotic series for
� �2q+1, nb−�� contains only even powers and is easily
written in terms of the energy Eb. Switching to energies in-
stead of quantum numbers results in the approximation
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��2q + 1,nb − �� �
�− 2Eb�q

2q
+

1

2
�− 2Eb�q+ 1

2 + O��− 2Eb�q+1� .

�A12�

The value of nb must be such that the error remains suffi-
ciently small in the worst case q=1 �nb=�+5 is a reasonable
choice�. Setting the expression �A12� in Eq. �A9� we make
use of Eqs. �A6� and �A7� in order to evaluate the sum over
q. The second term of �A12� results in an expression equal to
half the first term of the summation �A9�. Thus, in order to
keep things simple, we redefine the original summation so
that it contains half of the state nb, the other half being in-
cluded in the summation of the lower Rydberg states, spe-
cifically



n=nb

�

�nb

n

En − z0
e−iEnt � E1�i�Eb − z0�t�e−iz0t − E1�− iz0t�e−iz0t,

�A13�

where �nb=1− 1
2�nb. Unfortunately, the region of validity of

the expansion �A2� is not indicated in the mathematical

handbooks. Numerical computation shows that �A13� is a
good approximation for Re z0�0 and for times

Re�z0�t = O�1� . �A14�

Thus, for not too large values of t, the sum of the upper
Rydbergs results into the two exponential integrals the sec-
ond of which cancels a similar term arising from the integra-
tion over the continuous spectrum. The result is identical to
the one obtained by treating the infinity of the upper states as
an appendage of the continuous spectrum, i.e., the summa-
tion is replaced by an integration according to the usual
recipe



n


nf�n� � � 
nf�n�dn =� f�E�dE , �A15�

where 
n=�En /�n. In the above treatment this procedure is
justified and the approximations made are explicitly stated.
Moreover, correction terms may be employed whenever they
are needed.
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