5ο ΠΑΝΕΛΛΗΝΙΟ
ΕΠΙΣΤΗΜΟΝΙΚΟ ΣΥΝΕΔΡΙΟ
ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

Θεσσαλονίκη, 26 - 28 Μάιου 2005
Συνεδριακό Κέντρο 'Νικόλαος Γερμανός', HELEXPO

Χορηγοί

Τμήμα Χημικών Μηχανικών ΑΠΘ
Τμήμα Χημικών Μηχανικών ΕΜΠ
Τμήμα Χημικών Μηχανικών ΠΠ
Επιτροπή Ερευνών ΑΠΘ
Τεχνικό Επιμελητήριο Ελλάδος
Υπουργείο Μακεδονίας - Θράκης
Υπουργείο Εθνικής Παιδείας & Θρησκευμάτων
ΠΕΡΙΛΗΨΗ
Μικροφασικά διαχωρισμένα συμπολυμερή κατά συστάδες πολυστυρενίου-
πολυ(αιθυλενοξειδίου) με ποικίλα συστάσεων, που συντέθηκαν με την τεχνική του αιοντικού
πολυμερισμού σε συνήθεις υπερηφυλικού κενού, χρησιμοποιήθηκαν σαν μήτερε για την
παρασκευή νανοδομημένων υβριδικών στερεών ηλεκτρολυτών. Ιόντα λιθίου, προερχόμενα
από υπερχλωρικά άλατα, αποτελούν το ενεργό συστατικό, που συντελεί στην ιοντική
αγωγόμετρα των υβριδικών αυτών υλικών. Για την καλύτερη κατανόηση της συμπεριφοράς
των υλικών χρησιμοποιήθηκαν επίσης υπερχλωρικά άλατα του νατρίου, του καλίου και του
ρουμιδίου. Τα υβριδικά υλικά παρασκευάστηκαν με μεθόδους υγρής χημείας, που
περιλαμβάνουν συνδιάλυση των ανόργανων και οργανικών συστατικών σε κοινό διάλυτο και
τελική απομάκρυνσή του. Τα υλικά μελετήθηκαν σε αμιγή στερεή μορφή ή σε μορφή λεπτών
υμενών με υπέρυθρη φασματοσκοπία, φασματοσκοπία Raman και διαφορική θερμομετρία
σάρωσης (DSC). Με τη βοήθεια των παραπάνω μεθόδων έγινε διερεύνηση των
αλληλεπιδράσεων μεταξύ των συστατικών τους καθώς και αποτύπωση της ιοντικής
κατάστασης της συστάσεως του πολυ(αιθυλενοξειδίου) που συμμετέχει στην αγωγόμετρα,
όπως να διευκρινιστούν οι βασικοί μηχανισμοί και ιδιότητες που διέπουν τη
συμπεριφορά τους.

ΕΙΣΑΓΩΓΗ
Τα υβριδικά σύμπλοκα πολυμερών/ανόργανων αλάτων παρουσιάζουν εξαιρετικό ενδιαφέρον
tα τελευταία χρόνια καθώς βρίσκουν εφαρμογή ως στερεά πολυηλεκτρολύτες σε προηγμένες
ηλεκτροχημικές συσκευές, μπαταρίες, κελλία καυσίμων, φωτοηλεκτροχημικά ηλιακά κελλία,
χημικούς αισθητήρες, κ.α.1,2,3 Τα πολυμερή που χρησιμοποιούνται στα σύμπλοκα αυτά πρέπει
να περιέχουν άτομα δότες ηλεκτρονίων, όπως οξυγόνο, άζωτο ή θείο. Η συνδιαλύση τους με
άλατα οδηγεί στη δημιουργία στερεών πολυμερικών ηλεκτρολυτών με σχετικά υψηλή ιοντική
αγωγόμετρα.4 Η πληθώρα των εφαρμογών τους οδηγεί στην ανάγκη για θεμελιώδη
κατανόηση των παραγόντων που ελέγχουν την ιοντική αγωγόμετρα με στόχο την βελτίωση
της. Οι ιδιότητες των στερεών ηλεκτρολυτών πρέπει να λαμβάνουν υπόψη τους την υψηλή
ιοντική κινητικότητα. Είναι γνωστό ότι η αγωγόμετρα εμφανίζεται κυρίως στην άμορφη φάση
tων πολυμερικών ηλεκτρολυτών5, με τις αλληλεπιδράσεις κατιόντων-ανιόντων και κατιόντων-
πολυμερούς6 να παίζουν ρόλο στο μηχανισμό μεταφοράς των ιόντων. Επίσης, η μεταφορά των
ιόντων συνδέεται μέσα με τις τοπικές κινήσεις της πολυμερικής αλυσίδας7 και συνεπώς η
ψηλή τοπική ευκνησία είναι βασική απαίτηση. Ο στόχος αυτός επιτυγχάνεται με την χρήση πολυμερών με χαμηλή θερμοκρασία υαλόδους, μετάπτωσης και με χαμηλό βαθμό κρυσταλλικότητας.

Το πολυ(αιθυλενοξειδίο) (PEO) με άλατα λιθίου είναι ευρέως χρησιμοποιούμενο συστήματα ως στερεοί ηλεκτρόλυτες, όμως οι αγωγιμότητές τους σε θερμοκρασίες διαματίων είναι σχετικά χαμηλές. Αυτή της παρατηρούμενης συμπεριφοράς είναι ότι το PEO είναι ημικρυσταλλικό, ενώ οι φορείς φορτίου μπορούν να κινηθούν μόνο μέσα στην άμορφη φάση, και το ότι η αγωγιμότητα καθορίζεται από την συγκέντρωση των ελεύθερων ιόντων, ενώ ο βαθμός διάσπασης των ιοντικών ζευγών μειώνεται καθώς η συγκέντρωση του άλατος αυξάνεται και η σύμπλεξη των μονόδοντων PEO με τα ιόντα λιθίου εμποδίζει την κίνηση των ιοντικών ιόντων. Τα συμπολυμερή πολυ(στυρενίου-β-αιθυλενοξειδίου) (SEO) έχουν μικρότερο βαθμό κρυσταλλικότητας από το ομοιομερές PEO και αυτο-οργανώνονται σε κλίμακα νανομετρών, οπότε και αναμένονται μεγαλύτερες τιμές αγωγιμότητας για τα υβριδικά υλικά που αναπτύχθηκαν στην εργασία αυτή.

ΠΕΡΙΛΗΨΗ ΜΗΡΟΣ
Τα συμπολυμερή πολυ(στυρενίου-β-αιθυλενοξειδίου) (SEO) παρασκευάστηκαν με την μέθοδο του ανιονικού πολυμερισμού με την τεχνική υψηλού κενού, με διαφορετικές αναλογίες της κάθε συστάδας. Μετά τον καθαρισμό των αντιδραστηρίων (διαλύτες και μονομερή), πολυμεριστικές πρότο το σταθερό χημικοσυμπλέγματος p-βουτυλολίθιο ως απαρχή και στη συνέχεια προστέθηκε το αιθυλενοξειδίο συνδεόμενο από φωσφαζήν, ως επιταχυντής του πολυμερισμού. Ο πολυμερισμός θερμοπληκτήκηκε με την προσθήκη μεθανόλης. Τα πολυμερή χαρακτηρίστηκαν με χρωματογραφία αποκλεισμού μεταβολών (SEC), με πυρηνικό μαγνητικό συντονισμό (NMR) και με φασματοσκοπία υπερύθρου (FT-IR), και τα χαρακτηριστικά τους παρουσιάζονται στον πίνακα 1.

Πίνακας 1. Μοριακά χαρακτηριστικά των συμπολυμερών που χρησιμοποιήθηκαν

<table>
<thead>
<tr>
<th>Πολυμερές</th>
<th>Μw</th>
<th>I (Mw/Mn)</th>
<th>Σύσταση (%αλ. β) NMR</th>
<th>Μορφολογία στην στερεοκατάσταση</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEO-2</td>
<td>31900</td>
<td>1,01</td>
<td>75% PS</td>
<td>Κύλινδροι PEO</td>
</tr>
<tr>
<td>SEO-3</td>
<td>20100</td>
<td>1,01</td>
<td>48% PS</td>
<td>Φύλλα</td>
</tr>
</tbody>
</table>

Σε διάλυμα των συμπολυμερών σε THF (5% κ.β.) προστέθηκε ποσότητα διαλύματος υπερχλωρουκών αλάτων Li⁺, Na⁺, K⁺ και Rb⁺ ώστε να σχηματιστεί η επιθυμητή αναλογία EO:ιόν (12:1, 8:1, 4:1, 2:1 και 1:1). Τα υλικά μελετήθηκαν σε αμιγή στερεή μορφή ή σε μορφή λεπτών υμείων με φασματοσκοπία IR (Mid και Far) και Raman καθώς και με DSC.

ΑΠΟΤΕΛΕΣΜΑΤΑ ΚΑΙ ΣΥΖΗΤΗΣΗ
Η δονήτικη φασματοσκοπία είναι ένα εξαιρετικά χρήσιμο εργαλείο έρευνας των συστημάτων PEO-αλάτων και συνεπώς έχει ευρέως χρησιμοποιηθεί στη μελέτη αυτών, καθώς δίνει πληροφορίες για τις αλληλεπιδράσεις ανίοντος-κατιόντος και για τις αλλαγές στη τοπική δομή του πολυμερούς.

Ενδεικτικά παρουσιάζονται στο σχήμα 1 τα φάσματα IR του SEO-3 με LiClO4 σε διάφορες αναλογίες EO:Li. Στα φάσματα του μέσου υπέρθρου, παρατηρούνται οι συχνότητες δόνησης του δεσμού C-O-C στους 1061 cm⁻¹, 1114 cm⁻¹ και στους 1147 cm⁻¹ για το καθαρό συμπολυμερές. Οι τρεις αυτές κυρίως είναι καλά καθορισμένες και ευκάλυπτες γεγονός που καταδεικνύει την καλά καθορισμένη κρυσταλλική δομή του. Με την προσθήκη του άλατος οι ταινίες των κυρίως φαρδαίνουν και αλληλεπικαλύπτονται, ενώ ταυτόχρονα εμφανίζεται μια
μετατόπιση του μεγίστου της κορυφής προς μεγαλύτερα μήκη κύματος. Οι αλλαγές αυτές φανερώνουν την σύμπλεξη των ιόντων Li με τα οξυγόνα του αιθυλενοξειδίου, την χαλάρωση του δεσμού C-O-C και την μείωση της κρυσταλλικότητας του PEO.

Στα φάσματα του άπα υπερθύρου μπορεί να παρατηρηθεί η δόνηση έκτασης του Li-O. Στο καθαρό συμπολυμερές δεν παρουσιάζεται αντίστοιχη κορυφή, ενώ όσο αυξάνεται η συγκέντρωση του άλατος σχηματίζεται η κορυφή της δόνησης αυτής στους 417 cm⁻¹. Οι ταινίες που εμφανίζονται σε μικρότερα μήκη κύματος υποδηλώνουν την συσσωμάτωση των ιόντων Li της οποία παρουσιάζεται πάνω από μια συγκέντρωση άλατος.¹⁰

Στο σχήμα 1 παρουσιάζονται οι μετρήσεις του συστήματος SEO-3 με LiClO₄ με διάφορες αναλογίες EO:Li. Οι θερμοκρασιακές περιοχές σάρωσης με το DSC ήταν από -10°C έως 150°C. Η θερμοκρασία κρυστάλλωσης του καθαρού SEO-3 είναι 49°C, ενώ το SEO-2 δεν εμφανίζει κρυσταλλικότητα. Μελετώντας το σύστημα SEO-3 με ιόντα Li παρατηρείται ότι η προσθήκη άλατος μειώνει την κρυσταλλικότητα του συστήματος τόσο πολύ που το υβριδικό υλικό μπορεί να θεωρηθεί άμορφο. Με περαιτέρω αύξηση του άλατος επανεμφανίζεται η κρυσταλλικότητα με μεγαλύτερες θερμοκρασίες κρυστάλλωσης και όσο αυξάνεται η συγκέντρωση του άλατος τόσο αυξάνεται και το σημείο τίτλου. Πιθανός με την προσθήκη του άλατος να δημιουργείται μια διαφορετική κρυσταλλική φάση από αυτή του καθαρού συμπολυμερούς. Αντίθετα, στο σύστημα SEO-2 με ιόντα Li, με την προσθήκη του άλατος εμφανίζεται ένα είδος κρυσταλλικής φάσης ενώ το καθαρό πολυμερές είναι άμορφο στην εξεταζόμενη θερμοκρασιακή περιοχή.

!Image

Σχήμα 1. Φάσματα διαπρατήτητας IR (Far και Mid) (αριστερά) και φάσματα DSC (δεξιά) του SEO-3 με LiClO₄ σε διαφορετικές συγκεντρώσεις EO:Li.

Η σύμπλεξη των ιόντων Li⁺ με την φάση του πολυ(αιθυλενοξειδίου) (PEO) οδηγεί στην εμφάνιση ιοντικής αγωγιμότητας μόνο μέσα στα φύλλα PEO όσον αφορά το SEO-3, ή μέσα στους κυλίνδρους του PEO όσον αφορά το SEO-2 (σχήμα 2). Κατά ανάλογο τρόπο, ανάλογα με την μικροδομή του πολυμερούς μπορεί να περιοριστεί η ιοντική αγωγιμότητα στις επιθυμητές διευθύνσεις μέσα σε ένα υλικό.
ΣΥΜΠΕΡΑΣΜΑΤΑ
Επιτεύχθηκε η σύνθεση στερεών πολυμερικών ηλεκτρολυτών βασισμένων σε συμπολυμερή κατά συστάδες (πολυστυρενίου και πολυ(αιθυλενοξειδίου)). Στα φάσματα IR (Mid και Far) παρατηρούνται οι χαρακτηριστικές κορυφές των συστατικών και η μεταβολή τους με την συγκέντρωση του άλατος. Επίσης, είναι εμφανής η σύμπλεξη των κατιόντων Li και Na στη φάση του πολυ(αιθυλενοξειδίου), γεγονός που καταδεικνύει την επιτυχή σύνθεση των υβριδικών υλικών. Μετρήσεις DSC έδειξαν ότι η προσθήκη αλάτων λιθίου και νατρίου αρχικά μειώνει την κρυσταλλικότητα της συστάδας πολυ(αιθυλενοξειδίου), ενώ σε μεγάλες συγκέντρωσεις άλατος παρατηρείται δημιουργία διαφορετικής κρυσταλλικής φάσης με υψηλότερο σημείο τήξεως, ακόμα και στην περίπτωση του SEO-2 όπου το καθαρό πολυμερές δεν εμφανίζει κρυσταλλικότητα. Τα σημεία τήξεως, T_m, βρέθηκαν ανάμεσα στις αντίστοιχες τιμές T_m των καθαρών συστατικών (πολυ(αιθυλενοξειδίου) και υπερχλωρικών αλάτων).

ΒΙΒΛΙΟΓΡΑΦΙΑ