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ABSTRACT

We report our results for the temperature dependence of the Hall coefficient and in-plane
resistivity for the asymmetric-donor-based quasi-2D molecular crystal t-(P-S,S-DMEDT-TTF),
(AuBr2)1(AuBr2)y (y = 0.75). Using a recent “geometrical representation” of the weak-field 2D
Hall conductivity developed by N.P. Ong [Phys. Rev. B 43, 193 (1991)], we model the tempera-
ture dependence of these electronic transport properties in terms of the temperature dependence
of the scattering path length and its anisotropy along the 2D Fermi surface.

EXPERIMENT

The charge-transfer salt (P-S, S-DMEDT-TTF)2(AuBr2);(AuBrj)y has a tetragonal crystal
structure with unit cell dimensions a = 7.3546(6) A and ¢ = 67.977(7) X and molecules that pack
in a 7-type molecular arrangement [1]. Elemental analysis indicates that y = 0.75. The molecular
structure of the asymmetric donor is shown in Fig. 1. In the t-phase structure, the large, planar
donors do not stack, but instead arrange themselves edge to edge with the long axis parallel to
the c-axis. There are intermolecular S---N and S---S contacts forming a 2D conducting grid
parallel to the ab-plane. This salt is expected to be a 2D metal (for y < 1) with a band structure
similar to other t-phase salts such as T-(EDOVDT-TTF)2(13)1(I3)y [2]. Measurements of the in-
plane and out-of-plane conductivity for this [1] and other T-phase salts [2] are consistent with 2D
metallic conductivity in the ab plane and a diverging resistivity out of the plane. _

The thinnest platelets were a light, translucent brown, while thicker platelets were an opaque
black. Intermediate thickness (1032 pm and 1512 pm) black platelets with flat surfaces were se-
lected. Most of the platlets exhibited macroscopic twinning, forming triangle and pyramid pat-
terns visible under an ordinary optical microscope. Triangular shaped regions free of visible
twins were cleaved and trimmed so that the long axis ran parallel to the twin boundary edge.
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Electrical contact to the sample was made by repeatedly evaporating a thin film of Au
through a shadow mask onto the sample so that the current contacts at the far ends of the sample
wrap around the longitudinal axis of the sample and completely cover the end faces (this helps
provide a uniform current distribution). 20 tm Au wires were attached to the Au contacts with
Ag paint. For the resistivity sample, voltage contacts also wrap completely around the longitudi-
nal axis. For the Hall sample, the voltage contacts partially wrap around the longitudinal axis,
covering the thin side face and part of the top and bottom faces. Two sets of Hall contacts were
included on the Hall sample to check for any systematic errors. Both pairs of Hall voliage con-
tacts gave identical results within the scatter of the data. While the longitudinal resistance was
also measured for both sets of contacts on the Hall sample, the absolute value of the resistivity
for the Hall effect sample is susceptible to systematic errors due to the contact geometry. Sample
dependences due to variations in AuBrp concentration y or crystal defects (microcracks, etc) will
also introduce systematic errors. In this experiment, the resistivities scale between the two sam-
ples between 10 K and 200 K but the absolute value of the resistivity for the Hall effect sample is
approximately three times larger.

The direction of the § tesla magnetic field and current were varied to eliminate spurious con-
tributions to the Hall effect from the longitudinal resistance, transverse magnetoresistance and
therrnoelectric effects; the poorer signal to noise ratio at higher temperatures results from the in-
creasing longitudinal resistaice, the decreasing Hall resistance and temperature instabilities.

The temperature dependence of the resistivity for currents in the ab plane (2D plane) is
shown (for the resistivity sample) in Fig 2. The resistivity drops to approximately 1/10 of its
room temperature value between 100 and 10 K, then begins to increase again with decreasing
temperature down to at least 0.7 K. The rise in resistivity below 10 K is not understood, but may
be indicative of electron localization or an incipient metal-insulator transition.

The temperature dependence of the Hall coefficient for currents in the 2D conducting plane
(ab plane) and magnetic field applied normal to the 2D plane is shown in Fig. 3. The Hall coef-
ficient is small, negative and apparently temperature independent above 200 K, but quickly di-
verges in magnitude with decreasing temperature down to 10 K. The magnitude of the Hall coef-
ficient at 1.2 K (not shown) is 1/2 of its value at 10 K.

ANALYSIS AND DISCUSSION

The divergence of the Hall coefficient between 10 K and 200 K can not be described by tem-
perature-independent models of the Hall effect such as the free-electron model or band structure

calculations that assume an isotropic electron-phonon scattering time. Since only one band _
crosses the Fermi surface (FS), a two-band model is also inappropriate. Even for a single band,

however, the magnitude of the Hall conductivity is known to be sensitive to the local FS
curvature [3] and to variations in the electron-phonon scattering time along the Fermi surface [4].

In principle, the unusual temperature dependence of the weak-field Hall coefficient Ryyg(T)
and resistivity p(T) observed here can be described in terms of the curvature of the Fermi surface
x, the Fermi velocity vk, and the scattering time Tk at each point k on the Fermi surface
(hv, = Jde, [ok). We show here that by employing a recently developed geometrical
interpretation of the weak-field Hall conductivity in 2D metals [5], we can use measurements of
p(T) and Ryq1i(T) to (1) separate the distinct contributions of negative FS curvature, anisotropy
in the scattering path length I(k) and the ratio of the FS area to FS circumference and (2) model
the temperature dependence of p(T) and Ry4J)(T) in terms of the temperature dependence of the
anisotropy in the scattering path length over the FS.
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Fig. 2. The temperature dependence of the measured in-plane resistivity pxx (left-hand scale)
and calculated minimum scattering path length /g over the Fermi surface (right-hand scale).
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Fig. 3. The temperature dependence of the Hall coefficient Ryg(T) for magnetic field normal to
the 2D plane (left-hand side) and the calculated anisotropy A in the scattering path Ik over the
Fermi surface, where A(T)=v7A(T)+¥EA%(T) and A =(Imax-lo)/lo (right-hand side).
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To begin, we need to convert the measured longitudinal resistivity p(T) and Hall resistivity
PHall to the corresponding calculated conductivities (note that the Hall resistivity and Hall
coefficient are related by R,,,(T)= B¢ p,,(T)). In general, resistivity p and conductivity o in
3D are nine-element second-rank tensors. If the coupling between in-plane and out-of-plane
effects is small enough to be neglected—that is, if an electric field applied normal to the xy plane
along the z axis (parallel to thc applied magnetic field B) produces a current only along the z
axis—then Oxz = 6zx = Oyz = Ozy = 0. In this case, the relation between element pij and its
inverse Gjj can be written [6] as

= (0, )/lot; p, = (0 )lokip. = Yo, (1a)
==(o, ) )
ol = (0.0, - 0,5, (1)

If the magnetic field is applied along an axis of greater than 2 fold symmeltry, then Oxx = Oyy
and Gyy = -Oyx (in the 2D weak field limit, Oxy = -Oyx is always true [5]). In this case, Eqgs. (1)
for the in-plane longitudinal and Hall resistivities reduce to [6]-

P =(0.)/(ck+0%) =10, (2a)
Py == ,’/(G'i,+0’:,)~-— x:/oi : (2b)

where the second approximate equalities are for pxx and pxy in the weak-field limit.

For 2D metals in the weak-field, semi-classical limit, Ong [5] has shown that the Hall con-
ductivity crm has a simple errcscntatlon in terms of the scattering path length vector
I(k)=v,7,. Spcmﬁcally,

=(e*/h)A[(n1}) (3a)
A =(B/B)-} §di xI (3b)

where the “Stokes area” A] is the area swept out by the vector I(k) as k moves around the Fermi
surface (FS) and I, = wlh/(eB) is the magnetic length. The temperature-independent anisotropy

of vk can be determined from band structure calculations, since %v, = Je, /Jk. For electron-
phonon scattering, Tk is expected to be isotropic for T > TDepye but become anisotropic for 7' <
Tpebye. Hence the anisotropy in the scattering path length vector I(k) is T dependent.

Since 1-(P-S,S-DMEDT-TTF)(AuBrg)1(AuBry)y is tetragonal (4 fold symmetric for Blic),
Oxx = Jyy. For a single-band FS in the weak-field, semiclassical 2D limit [5],

o =0y =51,5/(2n) (4a)
I, =4 §lds (4b)
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where § is the FS circumference and lav is the average of Ik (/k= li(k)})over the entire FS.
Substituting into the weak-field limit of Eq. (2b) and re-expressing in terms of the “Hall factor”r,

r=(B/ne)" p, =T Af(nl%) (5a)
F=4nA,/S? ~(5b)
A =27ny, (5¢)

where I" is a geometric constant relating the FS area Agg to the FS circumference S and npp is the
2D carrier density [5]. The Hall factor r is related to the Hall coefficient Ry4(T) by

RN _ Rl _ ﬁL(T_)L
= = = (6a)

R™ > R LD (Y/ne) 5
Py = (Mo ffuyer) (6b)

where fjayer is the thickness of each 2D metallic layer. Here, flayer = /2.

It remains to (1) calculate n3p, I' and Rjy from the (band-structure-derived) FS ard (2) cal-
culate Ik and /gy from the expected anisotropy of Ik over the FS. For y = 0.75, band structure
calculations [2] for the t-phase salts predict either a small area 4-pointed star FS or a large area
distorted square FS with rounded corners. As is discussed in detail elsewhere [5,7], only the
distorted square FS is consistent with the high temperature (T>200 K) limit and temperature
dependence of Ryq(T). We estimate that 0.785 < T” < 1 and that the distorted square FS occupies
929% of the first Brillioun zone (BZ) for y = 0.75. This corresponds to a R,’,’:,",T3 =-6.25x107
cm3/C (3D), close to the measured value of "R,,,,,(T)L.moK = ~5x10cm3/C. 1f we assume that
TDebye = 200 K, then -5 x 10-3 cm3/C corresponds to the temperature-independent isotropic ©
limit [5}for Ryjqi(T).

As the temperature decreases, scattering becomes more intense on the low curvature ‘flat’
sides than at the high curvature corners of the distorted square FS [4, 5, 8] . Because of the prox-
imity of the flat sides to the BZ boundary and transformation of the FS shape from distorted
square FS to 4-pointed star FS for a small increase in energy (small decrease in y), the magnitude
of vk is larger at the FS corners than on the sides. This ‘anomalous’ variation in vk along the FS
gives rise to an anisotropic scattering path length Ik that is longer at the corners than on the sides
of the FS. Most importantly, the anisotropy in Ik increases as T decreases. If we assume a
Gaussian variation in Ik with Ik = g on the FS sides and reaching a maximum Ik =lgp + Al =
!max at the corners, then

L,(T)=b(1+ 5 nA(T)) ~ &, (7a)

A= (Imu - lo)/lo (7b)

where 11<<1 and A is a measure of the anisotropy of Ik over the FS [5, 7].

We can calculate p3p by substituting Eq. (7a) into Eq. (4a) to find 627, inverting according
to 3q. (2a) to find pZ”, then scaling by the layer thickness. Similarly, by using Eqs. (3a) and (3b)
to find 07, substituting g2 and o) into Eq. (2b) to find p2". Finally, scaling by the layer
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thickness we can calculate  and Ryg(Tl3p. The results are [5,71

(T, = (W46 i [0/ 1, (T)] = (W 46?04, [ 15(T)] (8a)
Rya(T),, = Rima). T /L, ) [14+ A(T)] = Rirs T+ A(T)] (8b)
A(T) =VEA(T)+ E2X(T). (8¢)

Thus pxx(T) is a measure of the (temperature-dependent) minimum scattering path length over
the F5 while Ry4(T) is a measure of the anisotropy in the scattering path length over the FS.
Ryai(T) will be temperature dependent if the degree of anisotropy A(T) is temperature depen-
dent, even for a single band. For T>Tpepye, Where the electron-phonon scattering time tk be-
comes isotropic (1k = 10), A(T) becomes temperature independent. Thus in the high T limit,
RHai(T) becomes temperature independent, as expected from isotropic Tk models.

In this model, the ‘anomalcus’ divergence of Ryg(T) between 10 K and 200 K simply re-
flects the unusual variation of the scattering path length over the FS. The calculated temperature
variation of lo(T) and A(T) is plotted using the right hand scales in Fig. 2 and Fig. 3, respectively.
This variation is a consequence of the (band-structure-derived) anisotropy in vk and the standard
(temperature-dependent) anisotropy in the electron-phonon scattering time tk over the FS. In the
range of temperatures, pressures and magnetic field for which quasi-2D molecular conductors
such as 1-(P-$,S-DMEDT-TTF)2(AuBr2)1(AuBra)y can be considered multilayer 2D metals, this
analysis provides an understanding of the temperature-dependence of the weak-field Hall
coefficient. Measurements of pxx(T) and R y41i(T), in tandem with high-field magnetoquantum
oscillation measurements and band-structure calculations, can now act as powerful probes of the
FS in these materials. Conversely, measurements of pxx(T) and Ry4i(T) can now be used as an
additional test of the accuracy of band-structure calculations.
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