A service-oriented national e-thesis information system and repository

Nikos Houssos
Panagiotis Stathopoulos
Ioanna Sarantopoulou
Dimitris Zavaliadis
Evi Sachini

National Documentation Centre (EKT)
The Hellenic National Archive of Doctoral Dissertations (HEDI) - Introduction
System overview and architecture
Design choices and technical challenges
Repositories interoperating in a SOA environment
By law - all theses awarded by Greek Universities
Theses of Greek scholars for PhDs obtained in foreign universities
In operation at EKT (print archive) since 1985: submission of theses by universities to EKT, centralised cataloguing in UNIMARC
Open online access to metadata and full-text since late 90’s – Z39.50 compliant bibliographic system (ARGO - http://argo.ekt.gr)
24000 theses in total (since 1901)
25% theses not yet digitized
1200-1400 arriving every year
HEDI – Goals for new version

- Make theses available through DSpace
- Develop administration application to support and monitor workflows for processing incoming material
- Create separate authority servers
- Migrate to an open source software infrastructure from operating system to repository software platform
- Make the whole system work with individual components in a SOA configuration
System architecture and overview

- Back-end digital content processing
- Theses admin system
- Authorities Server
- External systems (e.g. DART Europe)
- OAI-PMH interface
- DSpace Repository
- SOAP
- Z39.50 interface
- ARGO System
- UNIMARC records
- Z39.50 Extended Service
- EKT digitization expert
- Submitted material, electronic and print
- EKT librarian
- Internet user
- Access / download / transformation of bibliographic records
- Open access to theses
- User-friendly environment
- EKT digitization expert
- REST
- Theses admin system
- Submitted material, electronic and print
- EKT librarian
- Internet user
- Access / download / transformation
- EKT digitization expert
- REST
- Theses admin system
- Submitted material, electronic and print
- EKT librarian
- Internet user
- Access / download / transformation
- EKT digitization expert
- REST
- Theses admin system
- Submitted material, electronic and print
- EKT librarian
- Internet user
- Access / download / transformation
The administration application functions

- Record incoming material and monitor its status throughout its lifecycle – both for print and electronic material
- Support and monitor internal workflows for processing digital content
- Reporting on aspects like throughput of internal workflows, numbers of material in each processing state, etc.
- Cataloguing and export in UNIMARC
- Production of appropriate UNIMARC and DC records and update of both ARGO and DSpace repository
Benefits of introducing DSpace

- User friendly interface, much better browsing facilities
- Easier compatibility with aggregators / harvesters (OAI-PMH), persistent identifier systems, search engines, web 2.0 systems, etc.
The DSpace e-thesis repository

- Available at http://phdtheses.ekt.gr
- Contributor to DART Europe via OAI-PMH harvesting
- Main customisations:
 - Web services for CRUD operations to metadata records
 - Service for uploading digital material to DSpace
 - Custom application profile based on ETD-MS
 - Frascati-based classification based initially on department / lab / research group information
 - Enhance search to support stress independent search
 - Various UI customisations
Implementation technologies

- Groovy / Grails – great web applications framework, great integration with Java and Spring
- Lightweight workflow management engine built in-house
 - Models workflows as finite state machines
 - Uses Spring dependency injection for configuration
- SOAP and REST web services
- Ruby implementation of the Z39.50 Database Update Extended used to update ARGO
- Custom solution based on Spring framework to upload digital file(s) to DSpace
<table>
<thead>
<tr>
<th>Database</th>
<th>Hellenic Ph.D. Dissertations Thesis (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query</td>
<td>Author="ονυμ", Structure="Phrase", Truncation="Right"</td>
</tr>
<tr>
<td>Hits</td>
<td>2</td>
</tr>
</tbody>
</table>

Mark All

<table>
<thead>
<tr>
<th>Hit 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Record Identifier: 001473</td>
</tr>
<tr>
<td>Title: ΠΑΡΑΓΩΓΗ ΠΟΛΥΜΕΡΩΝ ΕΔΑΦΟΘΕΛΗΤΙΣΤΙΚΩΝ ΚΑΙ ΓΕΩΡΓΙΚΩΝ ΕΦΑΡΜΟΓΕΣ</td>
</tr>
<tr>
<td>Author: Σάχινα, Παραζέκης Κωνσταντίνος (070) Εθνικό Μετσόβιο Πολυτεχνείο (ΕΜΠ). Τμήμα Χημικών Μηχανικών (295)</td>
</tr>
</tbody>
</table>

Hit 2

| **Record Identifier:** 002828 |
| **Title:** ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΧΕΣΗΣ ΑΝΑΜΕΣΑ ΣΕ ΑΒΕΒΑΙΟΤΗΤΑ, ΑΓΧΟΣ ΚΑΙ ΚΑΤΑΘΛΙΨΗ, ΚΑΙ ΤΡΟΠΟ ΜΕΤΕΠΦΡΑΓΜΑΤΙΚΗΣ ΑΝΤΙΜΕΤΟΨΗΣ |
| **Author:** Σάχινα-Καρδαζή, Αννα Α (070) Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ), Σχολή Επιστημών Υγείας. Τμήμα Νοσηλευτικής (295) |
Title: PRODUCTION OF POLYMERIC SOIL-CONDITIONERS AND AGRICULTURAL APPLICATIONS

Author: ΖΑΧΗΝΗ, ΠΑΡΑΣΚΕΥΗ ΚΩΝΣΤΑΝΤΙΝΟΣ (ΟΤΟ)
 Εθνικό Μετσόβιο Πολυτεχνείο (ΕΜΠ), Τμήμα Κηπουρικής Μηχανικών (295)

Material: 429 σ.

Subjects: APPLICATION OF SOIL CONDITIONERS
 CROSS LINKING OF POLYSTYRENE
 POLYMERIC SOIL CONDITIONERS
 SOIL CONDITIONERS
 διαστρατική απόσταση
 επιχείρηση
 επιπέδων εδαφικών
 εδαφικών εδαφικών
 ΠΟΛΥΜΕΡΙΚΗ ΑΠΟΣΤΑΣΗ
 ΕΠΙΧΕΙΡΗΣΗ
 ΕΠΙΧΕΙΡΗΣΗ
 ΠΟΛΥΜΕΡΙΚΗ ΑΠΟΣΤΑΣΗ
Saving records in ISO2709 or MARCXML format

1. Select the saving format of marked records
 - ISO2709
 - MARCXML

2. Select the saving character set of marked records
 - ANSEL
 - ISO 5428
 - ELOT 928
 - UTF-8
 - Windows: Western
 - Windows: Central Europe
 - Windows: Greek
 - Windows: Cyrillic

Save Return
<table>
<thead>
<tr>
<th>Record Label</th>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>001473</td>
<td></td>
</tr>
<tr>
<td>005</td>
<td>20000121191628.0</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>19911231j19881101</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>gre</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>1_</td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>429 o.</td>
<td></td>
</tr>
<tr>
<td>314</td>
<td>_</td>
<td></td>
</tr>
<tr>
<td>320</td>
<td>_</td>
<td></td>
</tr>
<tr>
<td>328</td>
<td>_</td>
<td></td>
</tr>
</tbody>
</table>

In this study we have investigated the possibility of the production of modified polystyrene polymers, as well as their application for the improvement of soil structure and the increase of crop yield (soil conditioners, S.C.). Their effect in the microbial population of the soil (especially in the class of rhizobia, which are responsible for biological nitrogen fixation in legumes) has also been studied mainly in terms of toxicity. In conclusion, we could say that the materials prepared present considerable swelling in water, favour plant growth and have no negative effect on the microbial population of the soil.

5TH INTERNATIONAL CONFERENCE ON OPEN REPOSITORIES, Madrid, July 2010
Welcome to the National Archive of PhD Theses

The National Archive of PhD Theses contains the PhD theses from all Higher Education Institutions in Greece as well as PhD theses completed by Greek scholars abroad. The National Documentation Centre (EKT) is the organization responsible for the collection, development and maintenance of the National Archive of PhD Theses. The digital repository contains currently, more than 18,000 PhD Theses, available to the end-users for searching or browsing.

Search for

or browse

Discipline Date Author Country Language Degree Grantor

This website has been developed using the Free/Open Source Software DSpace. Copyright © EKT
<table>
<thead>
<tr>
<th>Date</th>
<th>Title</th>
<th>Author</th>
<th>Full Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>Συγκρητική μελέτη της επεξεργασίας προτύπων διαλογισμών οργανικών ενώσεων με προχωρημένες οξειδωματικές μεθόδους συντροφιάσης</td>
<td>Βασιλάκη Μαρία - Σταυρίδη</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>Εντοπισμός και επιδόσεις βλάβης σε δομικά στοιχεία με τη χρήση ευφυών υλικών</td>
<td>Τσαντάκη Χρυσή</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>Πλαθών διαχείριση και διαλαμβανόμενα πολυμέσων βάσει σημαντικής</td>
<td>Ανδρούλη Κων./</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>Μεθοδολογία μοντέλαποθήκης και μελέτη πωτολογικής νοημοσύνης ομάδας ευρήματος σχημάτων</td>
<td>Δομπριάν Ελένης</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>Transmit beamforming to multiple co-channel multicast groups</td>
<td>Καραμπέλη Ελευσίνα</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>Pattern recognition approaches in DNA microarray analysis</td>
<td>Μπαντεριώτης Νικόλας</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>Ανάλυση των εξελικτικών συγκοινωνίας στην Ελλάδα</td>
<td>Σωτηρίδης Νικόλας</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>Γενεσικοί αλγόριθμοι στο παγκόσμιο Cournot</td>
<td>Παπαδόπουλος Μιχαήλ</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>Βελτίωση ποιότητας δεδομένων και οικονομική αξιολόγηση απομόνωσμα εκκρεμής ηλεκτρικής ενέργειας που βασίζεται σε αντανάκλαση λαμβάνει ενέργεια</td>
<td>Κατσικίδης Ιωάννης</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>Ελεγκτική ανάλογης ενέργειας στα συστήματα ηλεκτρικής ενέργειας αναπτύσσοντας προηγμένοι ουσιαστικά μοντέλα ασβέστης κάστου κατασκευής και λειτουργίας μεταφορών</td>
<td>Αμαρακής Ελευθέριος</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>Βελτίωση των ελάχιστων ορίων ανάλογης ενέργειας με ακίνητα Χ</td>
<td>Κωστοπούλους Παύλος</td>
<td></td>
</tr>
</tbody>
</table>
Study of In2O3 and ZnO thin films for selective gas sensors applications: growth effect on the films structure factor in metal oxide thin films sensing applications

Abstract

The goal of this thesis is the study In2O3 and ZnO thin films for selective gas sensors applications with focus on growth effect on the films structure and surface topology as essential factor in metal oxide thin films. One of the main problems in the field of metal oxide thin film sensors is the impossibility to elaborate a unitary methodology for reproducibility of sensor response in correlation with the surface characteristics. For this, the systematic study of surface characteristics affects on metal oxide thin films sensing involved phenomena plays a major role. Using DC magnetron sputtering and pulsed laser deposition, nanostructured In2O3 and pure or doped ZnO thin films were grown and fully characterized. The study was focused on the morphology of the film and how this affects the photoreduction with UV light and the oxidation by oxidizing gas (ozone) exposure in order to optimize the film properties for gas sensing applications. For this purpose, different series of samples were grown. In2O3 series by DC magnetron sputtering varying the following growth parameters: thickness, growth temperature and total pressure and oxygen-argon ratio during the deposition. Pure ZnO series by DC magnetron sputtering from metallic and ceramic targets varying the following growth parameters: thickness for different constant growth temperatures, temperature for constant thickness, total pressure and oxygen-argon ratio during the deposition. 2% Al doped ZnO by DC magnetron sputtering varying the following growth parameters: thickness and oxygen-argon ratio during growth. In doped ZnO thin films by DC magnetron sputtering varying the following growth parameters: thickness and oxygen-argon ratio during growth. Pure ZnO series by PLD varying the following growth parameters: thickness and substrate temperature with focus on very thin films (40nm and 100nm series at different growth temperatures). All films were fully characterized with respect to their structural and surface topology (for understanding and optimization of the influences of the growth conditions on the surface properties), optical/electrical response (for understanding and optimization of the photoreduction and oxidation processes) and sensing behavior. Detailed surface characterization of each film surface was performed and results were collected for further correlation between surface properties and sensing response. Graphical correlations between surface parameters and sensor response ratios were done for each material studied.

5TH INTERNATIONAL CONFERENCE ON OPEN REPOSITORIES, Madrid, July 2010
Browse by "Discipline"

Natural Sciences (3115)
- Mathematics (207)
- Computer and Information Sciences (428)
- Physical Sciences (507)
- Chemical Sciences (674)
- Earth and Related Environmental Sciences (341)
- Biological Sciences (461)
- Other Natural Sciences (3)

Engineering & Technology (2658)
- Civil Engineering (551)
- Electrical Engineering, Electronic Engineering, Information Engineering (1008)
- Mechanical Engineering (266)
- Chemical Engineering (641)
- Materials Engineering (6)
- Environmental Engineering (150)
- Other Engineering and Technologies (6)

Medical & Health Sciences (6517)
- Basic Medicine (590)
- Clinical Medicine (1866)
- Health Sciences (388)
- Medical Biotechnology (1)
- Other Medical Sciences (14)

Agricultural Sciences (752)
- Agriculture, Forestry, and Fisheries (349)
- Animal and Dairy Science (84)
- Veterinary Science (184)
- Agricultural Biotechnology (42)
- Other Agricultural Sciences (69)

Social Sciences (1819)
- Psychology (115)
- Economics and Business (210)
- Educational Sciences (366)
- Sociology (160)
- Law (176)
- Political Science (273)
- Social and Economic Geography (154)
- Media and Communications (62)
- Other Social Sciences (0)

Humanities (1072)
- History and Archaeology (273)
- Languages and Literature (332)
- Philosophy, Ethics and Religion (386)
- Arts (32)
- Other Humanities (17)
Online reading

- An alternative way to present content opening a range of possibilities
- Better promotion of the overall system - back links to repository
- Put burden on digital content handling
- Using Internet Archive Book Reader
- On-going work
 - Full-text search with hit highlighting
 - Bookmarking
 - Detailed access statistics – navigation / bookmarking
Suchea Mirela - Petruta (2009, University of Crete (UOC)), Study of In2O3 and ZnO thin films for selective gas sensors applications: growth effect on the films structure factor in metal oxide thin films ...

University of Crete Chemistry Department

Study of In2O3 and ZnO thin films for selective gas sensors applications: Growth effect on the films structure and surface topology as essential factor in metal oxide thin films sensing applications

Ph.D. Thesis
Mirela Petruta Suchea

Πανεπιστήμιο Κρήτης Ταμείο Χημείας
University of Crete Chemistry Department

Study of In2O3 and ZnO thin films for selective gas sensors applications: Growth effect on the films structure and surface topology as essential factor in metal oxide thin films sensing applications

Ph.D. Thesis
Mirela Petruta Suchea

Πανεπιστήμιο Κρήτης Ταμείο Χημείας
University of Crete Chemistry Department

Study of In2O3 and ZnO thin films for selective gas sensors applications: Growth effect on the films structure and surface topology as essential factor in metal oxide thin films sensing applications

Ph.D. Thesis
Mirela Petruta Suchea

Πανεπιστήμιο Κρήτης Ταμείο Χημείας
Thermionic and field emission between bulk and surface electronic states with possible reflections at the surface

Generation and recombination in the bulk

Both majority and minority carrier transport in the bulk

Thermionic and field emission between electrode contacts and the bulk

In the case of strong inversion, the analysis is quite analogous to that used in semiconductor device physics. Even if the coupling is well described, the calculation is not simple and the system can probably be simulated only numerically.

The analysis of changes in charge carrier mobility near the surface is typically complicated. The effect of surface roughness on the effective mobility of surface excess charge due to band bending near the surface has been evaluated by Greene et al. [12]. A similar analysis, giving account of the same expressions valid only for depletion and strong accumulation, can be found in reference 13.

Later, more simple approximate expressions have been derived by Quandt et al. [14]. For scattering by fixed surface charges under strong inversion, it may be also possible to adopt an approach developed for MOSFET transistors [15].

If no Fermi level pinning is present at the surface, the screening length is given by the bulk intrinsic Debye length [12], given by:

\[\lambda_D = \left(\frac{2 \pi}{\sqrt{\pi}} \right) \left(\frac{1}{\epsilon_0} \right)^{1/2} \]

where \(\epsilon \) and \(\epsilon_0 \) are the specific and vacuum permittivity, \(\kappa \) is Boltzmann constant, \(T \) is the temperature, \(q \) is the electron charge and \(N \) are the densities of free electrons and holes respectively. In case of Fermi level pinning by "metal" and surface states, the scattering potential in the bulk will be a quadrupole potential decreasing as \(r^{-3/2} \).

The screening in the surface plane is given by the 2D screening length [16] given by:

\[\beta = \frac{1}{\lambda_D} \]

where \(\lambda_D = 4 \pi \sqrt{\mu q E} \) is the Bohr radius, \(\mu \) being the effective mass and \(E \) is the thickness of the 2D system. The surface screening length is then of the order of a few nanometers.

This information is very useful and applies quite well locally in a very narrow region or for epitaxial growth, but it becomes practically impossible to be used for the explanation of the behavior of real polycrystalline films.

Conduction mechanisms

The oldest models, regarding conduction mechanism in polycrystalline films, are based on the grain boundary conduction model developed by Peetz [17] in 1956, which is based on the assumption that the conductivity behavior in polycrystalline films simply approaches that of semiconductors with predominant grain boundary conduction mechanism. The carrier mobility in these films is limited by scattering at the surface and the grain boundaries as well as by normal bulk processes. A model of intergran boundary affected by the diffusion of an active gas has been used by Seager and Ginley [18] to explain the changes of conductivity seen in polycrystalline silicon. As found out, diffusion of oxygen on the grain boundaries promoted in these regions significant changes in the density of defect states, resulting in a decrease of conductivity. This model, described extensively by

Seager and Cazan in the case of polycrystalline silicon [19], has been adopted until now as the basic approach to explain the conduction mechanism in polycrystalline metal oxide films. The validity of this model has been confirmed in polycrystalline metal oxide films by experimental results related to the dependence of the conductivity on the temperature and material, but it cannot explain experimental results when the films are used as sensing layers or when photocurrent is involved.

The main features of this conduction model are: conduction from grain to grain disturbed by surface barriers which are strongly influenced by chemisorbed oxygen.

The formation of potential barriers at the grain boundaries was proposed by Petritz [17] in 1960, in addition to the normal lattice discontinuity caused by the boundaries. Other models have also been proposed to explain the transport behavior due to the grain boundaries, as that of Volger [20] and Berger [21]. Since then, this subject has been reviewed in detail by Kiesers [22], while more recent works have appeared using different approaches like the ones of Gerbase [23,24], Bánás and Weimar [25].

Petritz theory constitutes the basic theoretical analysis of transport mechanisms in polycrystalline semiconducting films. According to this model, grain boundary potential barriers are formed in an n-type semiconductor when the grain boundary region has a lower chemical potential (Fermi level, \(E_F \)) for majority carriers, than the grain core due to the density of states in this region. These potential barriers may appear due to the tendency of grains boundaries to act as diffusion whirlpools for impurities. Therefore, these defects states can be treated as trapping centers for majority carriers, resulting in a reduction of their concentration in the boundary region. This in turn causes a flux of majority carries into the boundary region, creating a space charge build up at these boundaries, which prevents further flux of majority carriers and therefore forms a depletion region for them. This can be presented in a band diagram by an upward bending of the conduction and valence band edges. For a p-type semiconductor respectively, the band edges bend down, toward the Fermi level.

The accumulated negative charge near a joint force the energy bands to be bend upwards by an amount of \(E_F \). Since the Fermi energy, at equilibrium, must be continuous over the grain boundary, the height of the potential barrier, \(\Phi_{bd} \), will be given by the difference of the Fermi's grain-boundary energies. Majority carriers can cross over a grain boundary potential barrier, following two different mechanisms. One is the thermal emission over the barrier and the other is the quantum-mechanical tunneling. For the evaluation of electrical characteristics of semiconducting films, most models compare the behavior of the films to that of the bulk crystal. If the bulk crystal was perfect, the conduction carriers would flow unimpeded in a perfect periodic potential. In a real bulk crystal lattice, variations, impurities and defects can cause deviations from the ideal behavior, an approach that can be used in polycrystalline thin film analysis, which, however, may result in quite inexact results. The carrier mobility is related directly to the mean free time between collisions, which in turn is determined by the various scattering mechanisms. For bulk crystal behavior in semiconductors, two scattering processes are important lattice scattering and ionic impurity scattering. In polycrystalline semiconducting films, however, the effect of the grain boundaries should be also considered as an additional scattering mechanism for the carriers. The carriers collide at the grain boundaries and in a steady state, have an effective mean free path \(\lambda_{bd} \) constrained by the size of the grains, and a mean
Conduction mechanisms

The oldest models, regarding conduction mechanism in polycrystalline films, are based on the grain boundary conduction model - developed by Petritz [17] in 1956, which is based on the assumption that the conductivity behavior in polycrystalline films closely approaches that of semiconductors with predominant grain boundary conduction mechanism. The carrier mobility in these films is limited by scattering at the surface and the grain boundaries as well as by normal bulk processes. A model of intergrain boundaries affected by the diffusion of an active gas has been used by Seager and Ginley [18] to explain the changes of conductivity seen in polycrystalline silicon. As found out, diffusion of oxygen down the grain boundaries promoted in these regions significant changes in the density of defect states, resulting in a decrease of conductivity. This model, described extensively by Seager and Castner for the case of polycrystalline silicon [19], has been adopted until now as the basic approach to explain the conductivity mechanism in polycrystalline metal oxide films. The validity of this model has been confirmed in polycrystalline metal oxide films by experimental results related to the dependence of the conductivity on the temperature, but it cannot explain experimental results when the films are used as sensing layers or when photoreduction is involved. The main features of this conduction model are: conduction from grain to grain, disturbed by surface barriers which are strongly influenced by chemisorbed oxygen. The formation of potential barriers at the grain boundaries was proposed by Petritz...
Design choices and technical challenges

(1)

- Adoption of a SOA approach with DSpace being an crucial distinct part of the overall architecture
- Continuation of UNIMARC cataloguing – support of the ARGO bibliographic portal
- Adoption of software stacks consisting of open source or home grown components
Design choices and technical challenges (2)

- Support of distributed transactions
 - System should gracefully recover from update failures
 - Ad hoc implementation of transaction behaviour
- Cleaning and enhancing metadata records for theses
- Data migration
The underlying infrastructure

- Gradual migration of modules in parallel with the software development process
- From closed source software, & proprietary hardware to a fully open source stack using a virtualisation platform over commodity hardware.
 - From Filenet, Oracle 9, and 2 proprietary Operating Systems to DSpace, PostgreSQL, and the CentOS distribution
 - End result: Fully open source, fully virtualised.
- Virtualisation: computing and storage resources allocated, are flexible and dynamic.
 - Includes each VM memory, number of processors, disk space, without reboot for many of them
 - Resource pool of up to 48 processors and 160GB memory to be allocated for the servers comprising the system, TBs of disk space
Resources allocated based on observed performance
- No overdimensioning, need to have resources when needed
- “monitor and control” loop (broadly based on IT Service Lifecycle definition)

Monitoring system for the full range of each of the platform elements, tiers, software modules in all levels:
- From hosts to NFS fileshares and DBs and random’s pages content sensitive monitoring
- SOA puts stress on that, large number of elements that must be monitored
- Virtualization: added value, “Green” Hedi system, can check at http://code.google.com/p/e-vigr/ (OK it’s the whole platform not just HEDI!)
Further work

- Application of automated metadata extraction from full-text theses to assist cataloguing
- Integration of digital content back-end processing workflows – full migration from a commercial to an open source environment
- Automation of the procedure of digital file quality checking
- Interconnection with CRIS systems linking theses with authors, organisations and projects which have specifically funded PhD theses
Thank you

- More information:
 - Nikos Houssos / nhoussos AT ekt.gr
 - Panagiotis Stathopoulos / pstath AT ekt.gr