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Summary

Homeostasis is a key feature of cellular lifespan. Mainte-
nance of cellular homeostasis influences the rate of aging and is
determined by several factors, including efficient proteolysis of
damaged proteins. Protein degradation is predominately cata-
lyzed by the proteasome. Specifically, the proteasome is respon-
sible for cell clearance of abnormal, denatured or in general
damaged proteins as well as for the regulated degradation of
short-lived proteins. As proteasome has an impaired function
during aging, emphasis has been given recently in identifying
ways of its activation. A number of studies have shown that the
proteasome can be activated by genetic manipulations as well
as by factors that affect its conformation and stability. Impor-
tantly the developed proteasome activated cell lines exhibit an
extended lifespan. This review article discusses in details the
various factors that are involved in proteasome biosynthesis
and assembly and how they contribute to its activation. Finally
as few natural compounds have been identified having protea-
some activation properties, we discuss the advantages of this
novel antiaging strategy. � 2008 IUBMB
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PROTEASOME, A KEY COMPONENT FOR PROTEIN
DEGRADATION AND MAINTENANCE OF CELLULAR
HOMEOSTASIS

Homeostasis is a key feature that determines organismal life-

span. Maintenance of homeostasis is influenced by several intra-

cellular functions, which, in turn, determine the quality and the

extent of cellular and organismal lifespan (1). Efficient protein

degradation is one of the major factors that contribute to the

retention of cellular homeostatic balance.

Protein degradation is predominately catalyzed by the protea-

some. The proteasome is responsible for cell clearance of

abnormal, denatured or in general damaged proteins as well as,

for the regulated degradation of short-lived proteins (2, 3). The

20S proteasome, a 700 kDa multisubunit enzyme complex, is a

barrel-shape stack of four heptameric rings localized in both

cytoplasm and nucleus. The two outer a-subunits rings (a1–7)
embrace two central head-to-head oriented rings containing

b-subunits (b1–7). The internal chamber that is composed by

b-subunits hosts the proteolytic active sites. Three of the b-sub-
units, b1, b2, and b5, are responsible for the proteasome hydro-

lyzing activities that cleave peptide bonds on the carboxyl site

of acidic (peptidylglutamylpeptide hydrolyzing activity, PGPH),

basic (trypsin-like activity, T-L), and hydrophobic (chymotryp-

sin-like activity, CT-L) amino acids, respectively (3).

Capping of each side of 20S particle by 19S regulatory com-

plexes gives rise to 26S proteasome that is responsible for the

ATP/ubiquitin-dependent protein degradation. The 19S particle

is composed of two subcomplexes, namely the lid and the base.

The lid covers the base and it is involved in the recognition and

ubiquitin chain processing of substrates before their transloca-

tion and degradation. The base is consisted of six ATPase subu-

nits involved in the unfolding and further translocation of the

substrate (4). The target protein is first labeled via covalent

attachment of multiple ubiquitin molecules before the degrada-

tion by the 26S complex. Three steps are involved in the conju-

gation of ubiquitin to the substrate. Ubiquitin is activated by

E1, the ubiquitin-activating enzyme, and then transferred by an

E2 enzyme, the ubiquitin-carrier protein or ubiquitin-conjugat-

ing enzyme, to a member of the ubiquitin-protein ligase family,

E3, to which the target protein is specifically bound. This

enzyme catalyzes the repeated conjugation of ubiquitin to the

substrate prior of the 26S complex-mediated degradation (2).

Proteasome has also been implicated in antigen presentation

process and immune response, mainly through immunoprotea-

somes. In this proteasome type, the constitutively expressed b1,
b2, and b5 subunits are substituted during de novo proteasome

biosynthesis by b1i, b2i, and b5i subunits respectively. As a

result, although these particles digest proteins at rates similar to
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those for constitutive proteasomes, they generate a higher frac-

tion of peptides with the appropriate C-termini and length to

serve in antigen presentation. In immunoproteasomes, PA28/

11S activator can replace the 19S complex (5). Finally addi-

tional tissues may also have their own type of proteasomes as it

was recently shown in cortical thymic epithelial cells (6).

Proteasome biogenesis involves the following accurately or-

dered multistep events: (a) The biosynthesis of a- and b- subu-
nits, (b) The organization of a-subunits in seven-member rings

under the supervision and assistance of proteasome assembling

chaperones, 1, 2, and 3 (PAC1–3), (c) The association of pre-

cursor b-subunits with UMP1/POMP accessory protein that in

conjunction to the a-subunits rings gives rise to half protea-

somes, (d) The dimerization of half proteasomes, and (e) The

production of mature 20S proteasomes (7, 8). As these steps of

assembly and maturation are highly organized, they underlie the

complexity of proteasome regulation.

PROTEASOME HAS AN IMPAIRED
FUNCTION DURING AGING

Aging is a natural biological process that involves the grad-

ual decline of a variety of physiological functions and the even-

tual failure of homeostasis. Mammalian aging can be studied in

vitro as mitotic cells loose their proliferative capacity following

serial passaging, a process termed as ‘‘replicative senescence’’

(9). Senescent cells are characterized by several morphological

and biochemical alterations when compared with their young

counterparts, including changes in proteasome function. Specifi-

cally, a number of studies have shown an �50% decline of pro-

teasomal activities in several aged tissues in humans (muscle,

lens, lymphocytes, and epidermis) as well as in other mammals

such as mice, rats, and bovines (liver, spinal cord, lens, heart,

and retina; 10). A similar decline of proteasome activities has

also been revealed in human primary cultures undergoing repli-

cative senescence (10), whereas proteasome inhibition in young

cells induces premature senescence (11). Earlier work has attrib-

uted the observed decrease of proteasome function to the accu-

mulation of damaged proteins, such as lipofuscin, during aging

and senescence (12). To understand the molecular basis of these

findings, work in our laboratory has determined that the

decreased function of proteasome in senescence is, in addition

to the accumulation of damaged proteins, primarily due to the

reduced rates of proteasome biosynthesis and assembly. More-

over, we have determined that replicative senescence is accompa-

nied with reduced levels of the b-type subunits, thus acting as the

‘‘rate-limiting’’ subunits for efficient proteasome assembly (13).

Immunoproteasomes have also been investigated during

aging. Ponnappan and coworkers (14) have recently reported

lower expression of a- and b- type proteasome subunits in T-

cells derived from old donors, while we have shown inability of

senescent human fibroblasts to induce proteasome immuno-

subunits following interferon-c treatment (15). Interestingly, in

tissues irrelevant to the immune system, like the muscle, an

age-related upregulation of immunoproteasomes in parallel to

the decreased amount of constitutive proteasomes has been

demonstrated, thereby implying for a potential compensatory

mechanism which may result in an overall proteasome function

fine-tuning (16).

Finally, work in 19S complex has identified several subunits

to be downregulated during replicative senescence (13, 17),

whereas a lower ability of proteasome activators to assemble

with 20S complex in aged rat muscle has also been reported

(16, 18). In support, recent studies in Drosophila melanogaster

have shown that aging also perturbs 26S proteasome assembly

(19). In summary, these data strongly suggest that aging has

profound effects on proteasome biosynthesis, assembly, and

function.

MEANS OF PROTEASOME ACTIVATION

Proteasome can be activated by several regulators, such as

the 19S and 11S complexes, for performing its ordinary func-

tions as described previously. However, over the last years it

became evident that proteasome, in addition to its known regu-

lators, can also be activated by genetic or other means.

Genetic Activation of the Proteasome

Goldberg and coworkers (20) were the first to demonstrate

the enhancement of CT-L and T-L proteasome activities follow-

ing b5i transfection in lymphoblasts and HeLa cells. The same

group in a follow up study has shown a similar stimulation of

T-L and PGPH activities following b1i and b1 subunit overex-

pression in HeLa cells (21). More recently, we overexpressed

the b5 subunit stably in WI38/T and HL60 cells (22). We found

that transfection of the b5 subunit resulted to upregulation of

other b-type subunits, thus implying for a common regulatory

loop, and to the recruitment of ‘‘free’’ a-type subunits to pro-

duce new and functional proteasomes. This was evident as the

developed ‘‘proteasome activated cell lines’’ exhibited increased

rates of proteolysis as well as enhanced resistance following

cell treatment with various oxidants. Importantly, a similar b5
subunit overexpression in primary human embryonic fibroblasts

(IMR90 cells) resulted in the extension of lifespan by �15–

20% (22). The observed coregulation of b-type subunits has

also been confirmed in other cell types, such as the lens epithe-

lial cells (23) or the murine neuroblastoma cells (24), following

overexpression of the b5 subunit. Moreover, it was recently

shown that restoration of the normal level of proteasome subu-

nits in aged human fibroblasts reduces the levels of various

aging biomarkers (25), thereby confirming our assumption

regarding the vital association between optimal proteasome

function and retention of cellular homeostasis. Finally, we have

recently achieved proteasomal upregulation via overexpression

of hUMP1/POMP protein (26). UMP/POMP stable clones

exhibited increased rates of proteasome assembly and function

as assayed by their enhanced recovery ability following admin-

istration of oxidative stressors.
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Proteasome Activation by Natural or
Chemical Compounds

Effects on Proteasome Conformation. Structural alterations of

proteasome subunits have been shown to affect proteasome ac-

tivity through changes of the 20S barrel conformation. Initially,

SDS and some fatty acids have been shown to stimulate protea-

some activities in the test tube (27), whereas potassium chloride

has a negative effect (28) by favoring the open or the closed

conformation of the proteasome, respectively. Proteasome-acti-

vating hydrophobic peptides have been shown to be bound as

modifiers at noncatalytic sites, thus mimicking the effect of 11S

complex by opening the a-gated pore (29). On the basis of these

studies, we have recently isolated oleuropein, the most abundant

of the phenolic compounds in Olea europaea leaf extract, olive

oil, and olives (30), and we have demonstrated that it has a

stimulatory impact on proteasome activities in vitro. The

increased activities promote cellular resistance to oxidants and

confer extension of human fibroblasts lifespan (31). Oleuropein

most likely acts through structural changes of the 20S a-gated
channels conformation in a similar manner to SDS, albeit its

effects are considerably stronger. A similar stimulatory effect

has been observed by an algae extract on human keratinocytes,

as it provides protection from UVA and UVB irradiation (32).

Effects on Expression of Proteasome Subunits. Proteasome

activation has also been achieved following treatment with vari-

ous antioxidants. Specifically, Kensler and coworkers have

shown natural antioxidants, such as dithiolethione and sulfora-

fane, to enhance mammalian proteasome expression through the

Keap1-Nrf2 signaling pathway, resulting to increased protection

against various oxidants (24, 33). Nevertheless, the correlation

between aging and Nrf2 pathway is not established, since Nrf2

knock out mice were not identified to exhibit further alterations

of lifespan following caloric restriction (34).

In Vivo Evidence of Proteasome Activation

The previously reported studies establish the beneficial

effects of proteasome activation in various in vitro systems. To

test the in vivo relevance of these findings, we have determined

proteasome biosynthesis and function in cultures derived from

skin fibroblasts biopsies of several healthy donors of various

ages including healthy centenarians. Although we observed a

proteasome function decline with the age of the donors,

importantly, we found that healthy centenarians exhibit a

more functional proteasome when compared with the elderly

(35). We hypothesize that their functional proteasome, by

providing enhanced rates of proteolysis of damaged proteins,

indirectly contributes to their longevity. In support various

studies have shown that in caloric restricted animals the pro-

teasome function is maintained or even enhanced, thus possi-

bly contributing to the observed extended lifespan of these

animals (36–38).

Figure 1. Potential steps of intervention toward proteasome activation. The Figure summarizes the various known steps of protea-

some biosynthesis and assembly. Manipulations of factors shown in yellow are known to activate the proteasome (see text for

details). Red boxes refer to entirely unexplored pathways of proteasome activation.
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CONCLUSIONS AND FUTURE PERSPECTIVES

This review highlights the different means of proteasome

activation and its beneficial effects in the maintenance of cellu-

lar homeostasis. Given these intriguing findings, a number of

arising questions regarding the identification of the molecular

pathways that result to proteasome biosynthesis and function

and their effects in several biological phenomena, such as

aging, remain to be addressed.

First, the transcription factor(s) that is (are) responsible for

mammalian proteasomes expression are essentially not known,

apart from scattered reports which have implicated NF-kB (39)

and Nrf2 (33) (Fig. 1; Induction of expression). An equally im-

portant question is to understand how the overexpression of a

single b-subunit result in the coregulated expression of other b-
type subunits (Fig. 1; Transcriptional regulation). Moreover,

future work should unravel the mechanism of recruitment of

free a-type subunits (following the overexpression of b-type
subunits) as well as the role of factors that contribute to protea-

some assembly, such as the newly identified chaperones PAC1-

3 (8) and UMP1/POMP (40) (Fig. 1; Assembly rates). Similarly,

the forces/signals that govern the assembly of half proteasomes

and their dimerization to produce active complexes (Fig. 1; As-

sembly rates) or the compensatory mechanisms that induce

immunoproteasomes expression in replacement of the reduced

constitutive complexes are still unexplored (Fig. 1; Proteasome

types). A novel protein that interacts with proteasomal ATPases,

proteasomal ATPase-associated factor 1 (PAAF1), was isolated

and shown to act as negative regulator of the proteasome activ-

ities by affecting the assembly/disassembly of the 26S complex

(41). Thus it would not be surprising if future work identifies a

similar factor with positive effect on 26S stability or regulators

of the ATPases activities (Fig. 1; Specific regulators). Some

posttranslational modifications of 20S or 19S complexes subu-

nits that affect proteasome activities and the 20S:19S stability

have been identified (42, 43), but only few of them have been

investigated during aging (44) (Fig. 1; Posttranslational modifi-

cations). Finally, the identification of natural compounds that

induce conformational (Fig. 1; Proteasome stability and struc-

tural conformation) or in general qualitative alterations in pro-

teasome complexes and that would affect its activities and func-

tions constitute a strong bet in both the proteasome and the

aging fields (Fig. 1; Induction of expression). Figure 1 recapitu-

lates these possible steps of intervention toward proteasome

activation during the assembly process. Despite the increasing

number of studies regarding proteasome activation and the

accomplished progress, many areas of proteasome regulation

are not fully elucidated. Antiaging strategies should aim on the

controlled preservation and activation of proteasome function.
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