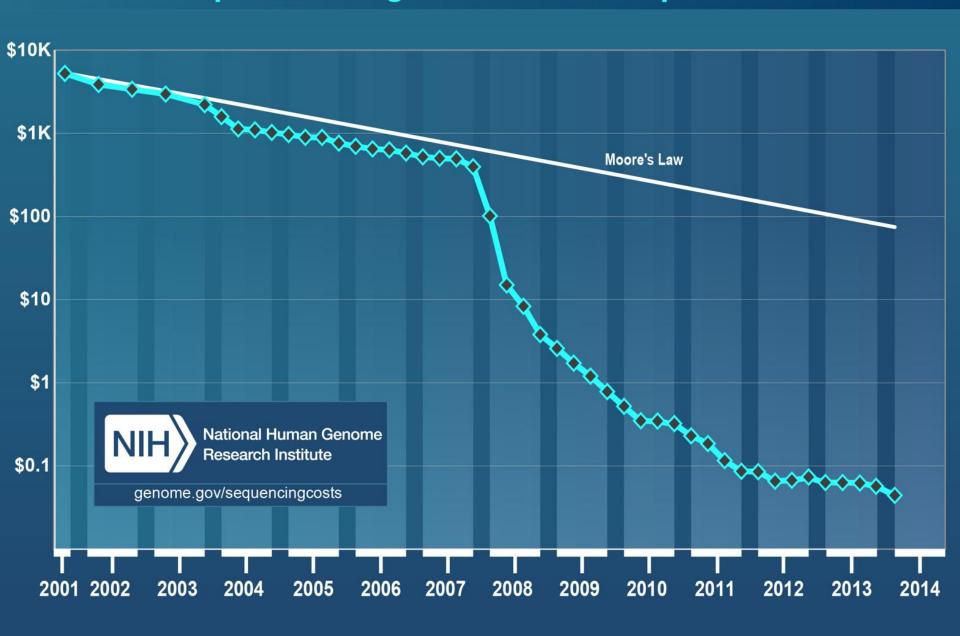
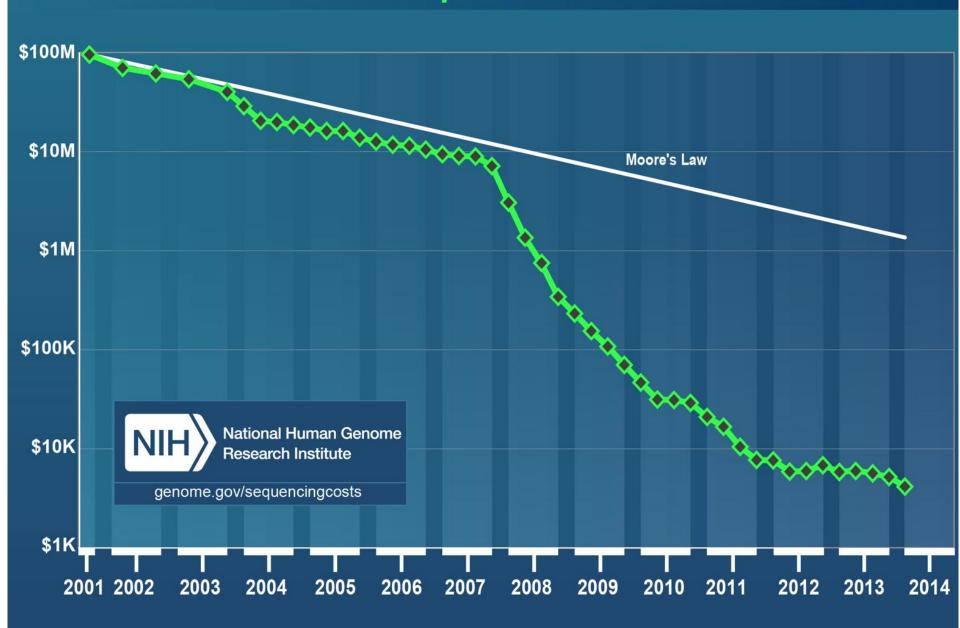


Professor of Bioinformatics
Department of Electrical and Computer Engineering, University of Thessaly

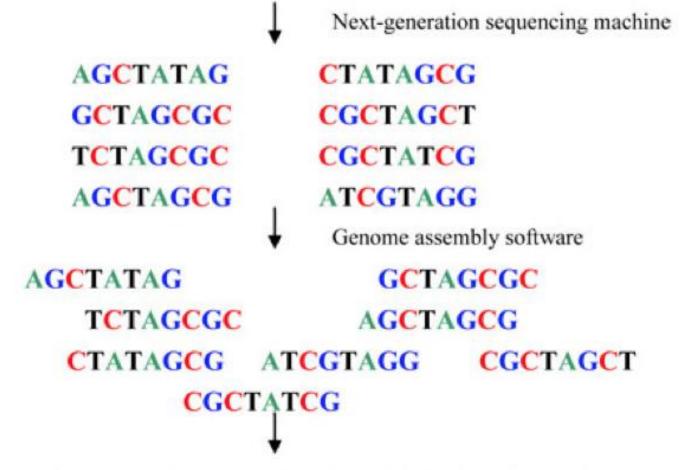
What is Bioinformatics?


 Bioinformatics is generally defined as the analysis, prediction, modeling and storage of biological data with the help of computers

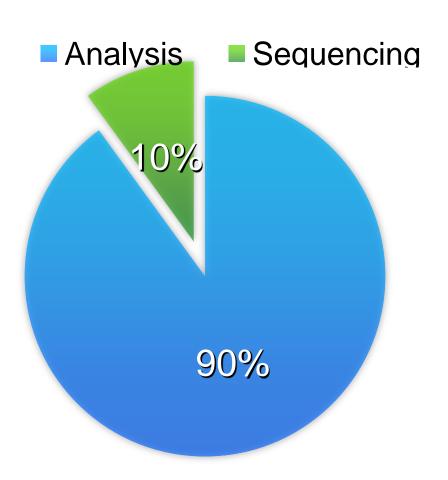

ATCCATATCTAATCTTACTTATATGTTGTGGAAATGTAAAGAGCCCCATTATCTTAGCCTAAAAAAACCTTCTCTTTGGAACTTTC AATACGCTTAACTGCTCATTGCTATATTGAAGTACGGATTAGAAGCCGCCGAGCGGGGGGACAGCCCTCCGACGGAAGACTCTCCTC GCGTCCTCGTCTTCACCGGTCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAGATTCTACAATACT TTTTATGGTTATGAAGAGGAAAAATTGGCAGTAACCTGGCCCCACAAACCTTCAAATTAACGAATCAAATTAACAACCATAGGATG CTGCATAACCACTTTAACTAATACTTTCAACATTTTCAGTTTGTATTACTTCTTATTCAAATGTCATAAAAGTATCAACAAAAAAT TAATATACCTCTATACTTTAACGTCAAGGAGAAAAACTATAATGACTAAATCTCATTCAGAAGAAGTGATTGTACCTGAGTTCAA TAGCGCAAAGGAATTACCAAGACCATTGGCCGAAAAGTGCCCGAGCATAATTAAGAAATTTATAAGCGCTTATGATGCTAAACCGG TTGTTGCTAGATCGCCTGGTAGAGTCAATCTAATTGGTGAACATATTGATTATTGTGACTTCTCGGTTTTACCTTTAGCTATTGAT CGATTTGCCGTTGGACGGTTCTTATGTCACAATTGATCCTTCTGTGTCGGACTGGTCTAATTACTTTAAATGTGGTCTCCATGTTG ACTCTTTTCTAAAGAAACTTGCACCGGAAAGGTTTGCCAGTGCTCCTCTGGCCGGGCTGCAAGTCTTCTGTGAGGGTGATGTACCA GGCAGTGGATTGTCTTCTTCGGCCGCATTCATTTGTGCCGTTGCTTTAGCTGTTGTTAAAGCGAATATGGGCCCTGGTTATCATAT CAAGCAAAATTTAATGCGTATTACGGTCGTTGCAGAACATTATGTTGGTGTTAACAATGGCGGTATGGATCAGGCTGCCTCTGTTT GTGAGGAAGATCATGCTCTATACGTTGAGTTCAAACCGCAGTTGAAGGCTACTCCGTTTAAATTTCCGCAATTAAAAACCATGAA agctgcaaatgttttagctgccacgtacggtgttgttttactttctggaaaagaaggatcgagcacgaataaaggtaatctaagag TCATGAACGTTTATTATGCCAGATATCACAACATTTCCACACCCTGGAACGGCGATATTGAATCCGGCATCGAACGGTTAACAAAG CTAGTACTAGTTGAAGAGTCTCTCGCCAATAAGAAACAGGGCTTTAGTGTTGACGATGTCGCACAATCCTTGAATTGTTCTCGCGA ATTCACAAGAGACTACTTAACAACATCTCCAGTGAGATTTCAAGTCTTAAAGCTATATCAGAGGGCTAAGCATGTGTATTCTGAAT TAAGAGTCTTGAAGGCTGTGAAATTAATGACTACAGCGAGCTTTACTGCCGACGAAGACTTTTTCAAGCAATTTGGTGCCTTGATG GAGTCTCAAGCTTCTTGCGATAAACTTTACGAATGTTCTTGTCCAGAGATTGACAAAATTTGTTCCATTGCTTTGTCAAATGGATC rggttcccgtttgaccggagctggctgggtggttgtactgttcacttggttccagggggcccaaatggcaacatagaaaaggtaa AAGCCCTTGCCAATGAGTTCTACAAGGTCAAGTACCCTAAGATCACTGATGCTGAGCTAGAAAATGCTATCATCGTCTCTAAACCA GCATCACAAAATACGCAATAATAACGAGTAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATA TTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGG CCTATTCTTGACATGATATGACTACCATTTTGTTATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTCATTTGCGAAG AACCCTTTGTCCTACTGATTAATTTTGTACTGAATTTGGACAATTCAGATTTTAGTAGACAAGCGCGAGGAGGAAAAGAAATGACA AAATTCCGATGGACAAGAAGATAGGAAAAAAAAAAAGCTTTCACCGATTTCCTAGACCGGAAAAAAGTCGTATGACATCAGAATGA ATTTTCAAGTTAGACAAGGACAAAATCAGGACAAATTGTAAAGATATAATAAACTATTTGATTCAGCGCCAATTTGCCCTTTTCCA TCCATTAAATCTCTGTTCTCTCTTACTTATGATGATTAGGTATCATCTGTATAAAACTCCTTTCTTAATTTCACTCTAAAGCAT CCATAGAGAAGATCTTTCGGTTCGAAGACATTCCTACGCATAATAAGAATAGGAGGGAATAATGCCAGACAATCTATCATTACATT GCGGCTCTTCAAAAAGATTGAACTCTCGCCAACTTATGGAATCTTCCAATGAGACCTTTGCGCCAAATAATGTGGATTTGGAAAAA TATAAGTCATCTCAGAGTAATATAACTACCGAAGTTTATGAGGCATCGAGCTTTGAAGAAAAAGTAAGCTCAGAAAAACCTCAATA AGGACTTGAAGCCCGTCGAAAAAGAAAGGCGGGTTTGGTCCTGGTACAATTATTGTTACTTCTGGCTTGCTGAATGTTTCAATATC acttggcaaattgcagctacaggtctacaactgggtctaaattggtggcagtgttggataacaatttggattgggtacggtttcgt m

AATACGCTTAACTGCTCATTGCTATATTGAAGTACGGATTAGAAGCCGCCGAGCGGGCGACAGCCCTCCGACGGAAGACTCTCCTC GCGTCCTCGTCTTCACCGGTCGCGTTCCTGAAACGCAGATGTGCCT<mark>CGC</mark>GCCGCACTGCT<mark>CGG</mark>AACAATAAAGATTCTACAATACT TTTTATGGTTATGAAGAGGAAAAATTGGCAGTAACCTGGCCCCAGAAACCTTCAAATTAACG CTGCATAACCACTTTAACTAATACTTTCAACATTTTCAGTTTGTATTAC TAATATACCTCTATACTTTAACGTCAAGGAGAAAAACTATA**ATGACTAAA** TAGCGCAAAGGAATTACCAAGACCATTGGCCGAAAAGTGCCCGAGCATAATTAAG CGA Genes ACT AAGGTTTGCCAGTGCTCCTCTGGCCGGGCTC Regulatory motifs GGC GTG GTTCAAACCGCAGTTGAAGGCTACTCCGTT Encode Control AGC TATCTAACAAGTTTGAAACCGCCCCAACCA proteins AGC gene expression CCAATAAGAAACAGGGCTTTAGTGTTGACGATG CTAGTACTAGTTGAAGAGTCTCT ATTCACAAGAGACTACTTAACAAC TGGTTCCCGTTTGACCGGAGCTGGCTGG TTGGCAAGTTGCCAACTGACGAGATGCAGTAAAAA AGACAAGCGCGAGGAGGAAAAGAAATGACA CCATAGAGAAGATCTTTCGGTTCGAAGACATTCCTACGCATAX NAAGAATAGGAGGGAATAATGCCAGACAATCTATCATTACATT TCAATGAGACCTTTGCGCCAAATAATGTGGATTTGGAAAAA ACTTGGCAAATTGCAGCTACAGGTCTACAACTGGGTCTAAATTGGTGGCAGTGTTGGATAACAATTTGGATTGGGTACGGTTTCGT

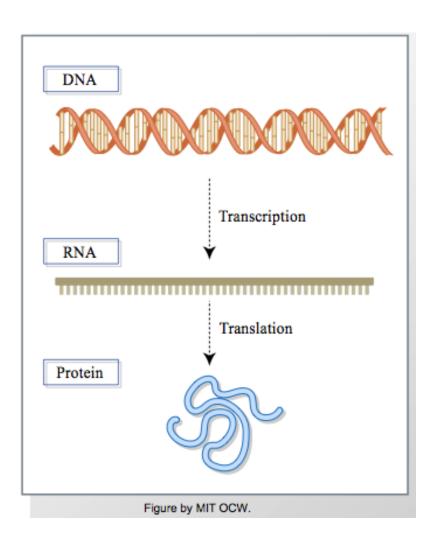
Cost per Raw Megabase of DNA Sequence



Cost per Genome

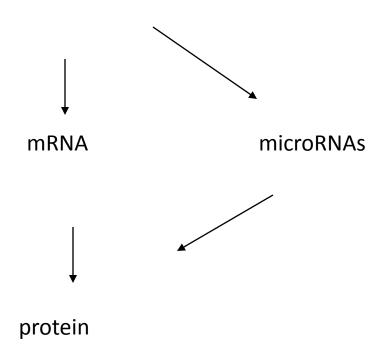


Unknown Genome: AGCTATAGCGCTATCGTAGCTAGCGCTAGCT

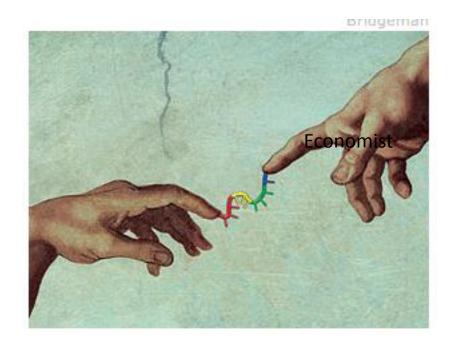


Reconstructed genome : AGCTATAGCGCTATCGTAGCTAGCGCTAGCT

COSTS

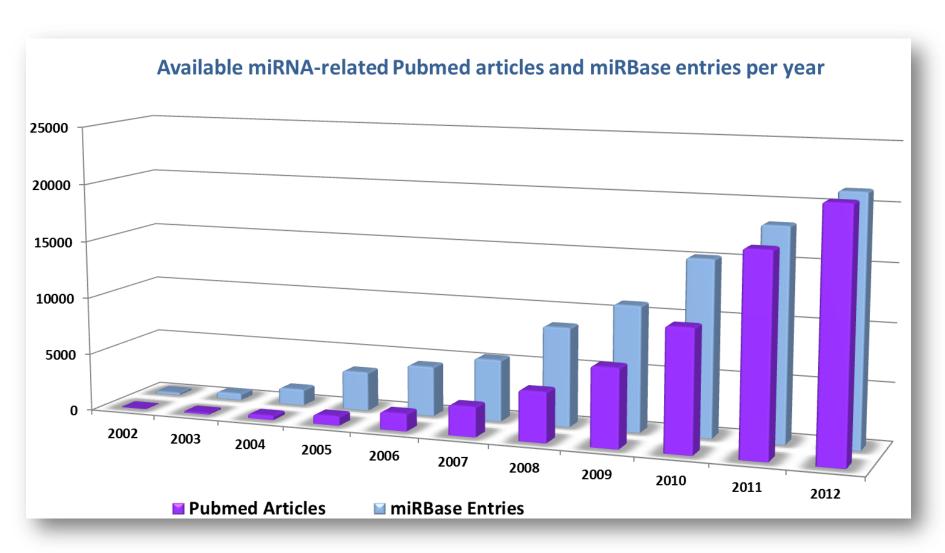


Central Dogma changes #1


DNA

microRNAs bind the 3'UTR of mRNAs and repress translation

The RNA revolution: Biology's Big Bang



Jun 14th 2007 From The Economist:

What physics was to the 20th century, biology will be to the 21st

—and RNA will be a vital part of it

Superlinear Increase of known miRNAs and relevant Research

Software

Username *

Password *

Remember me next time

Login

Forgot your password?

- Sign up for free!
- or take a tour

Available features for registered users:

- · Download databases
- History
- Bookmarks

Login is not required to access the site!

HOME

SOFTWARE

PUBLICATIONS

CONTACT

WEB SERVICES

Web Services at DIANA-LAB

DIANA-LAB enables access to the tools and data resources via Web Service Technologies. REST services are now provided for mirPath, microT v4, microT-CDS and Tarbase v6.0. All REST Services can be accessed directly from the website, programmatically, by downloading our DIANA Taverna Pluq-in. Our REST Services have also been deposited in the BioCatalogue repository, where detailed information for their usage is provided (here).

SOFTWARE TO DOWNLOAD

DIANA Taverna Plug-in

WEB APPLICATIONS

microT-CDS

Search for targets of annotated miRNAs based on microT-CDS algo.

TarBase v7.0 - NEW!

A database of published exp. validated miRNA: gene interactions.

mirPath

A miRNA pathway analysis Web server.

LncBase

Elaborated info for predicted & exp. verified miRNA-IncRNA interactions.

Automated Pipelines

Pipelines to analyse user data from small scale & high-throughput experiments.

MR-microT (beta) - NEW!

Near-real time miRNA target prediction on the Cloud.

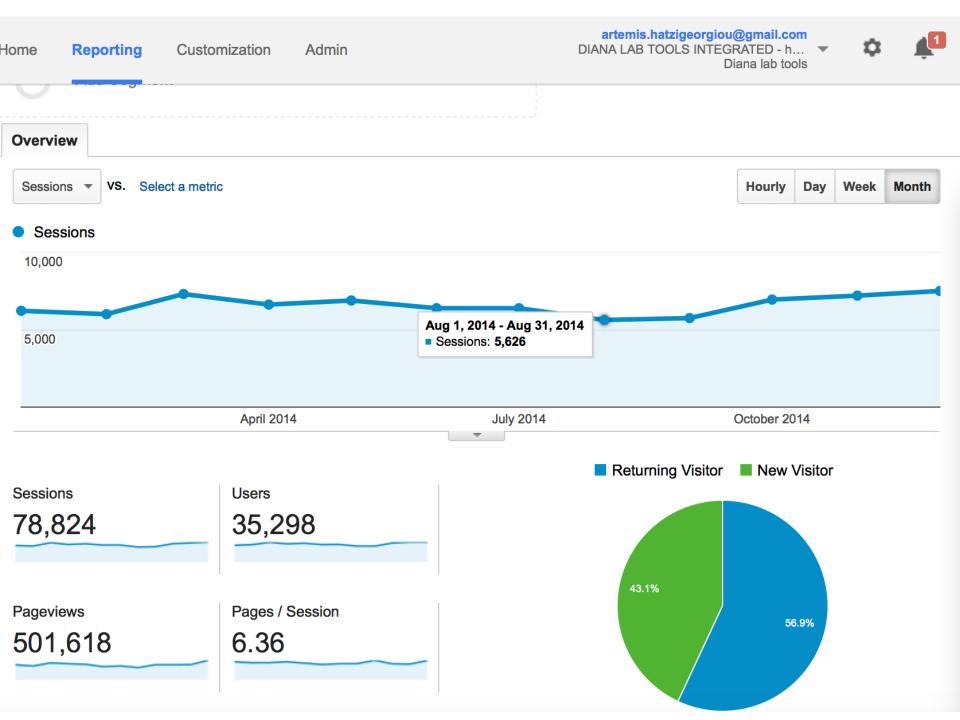
mirPub - NEW!

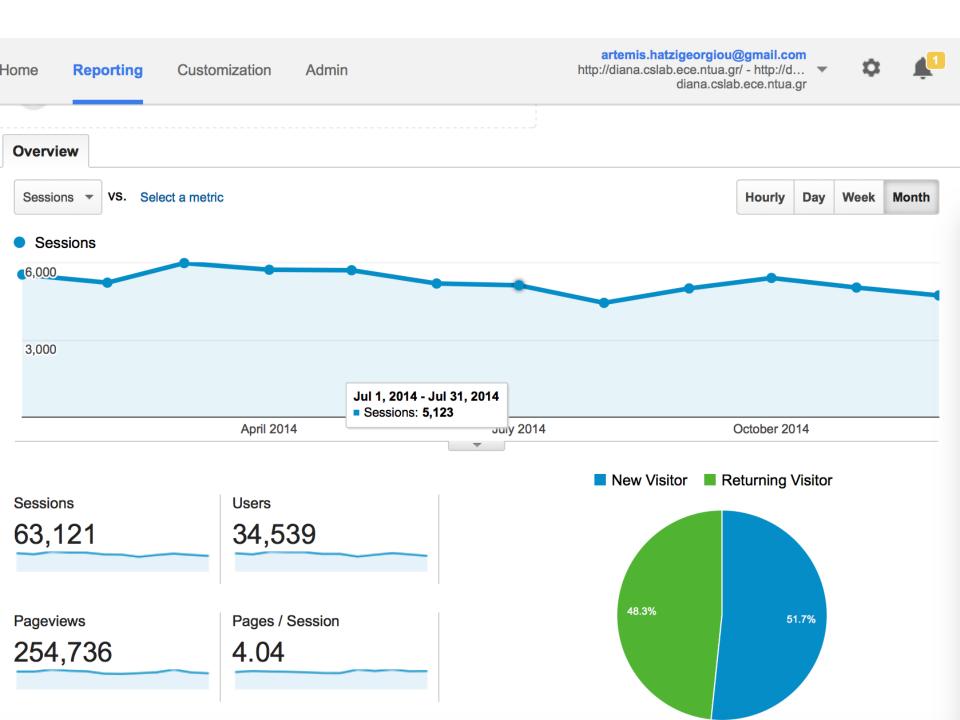
Search for miRNA-related publications.

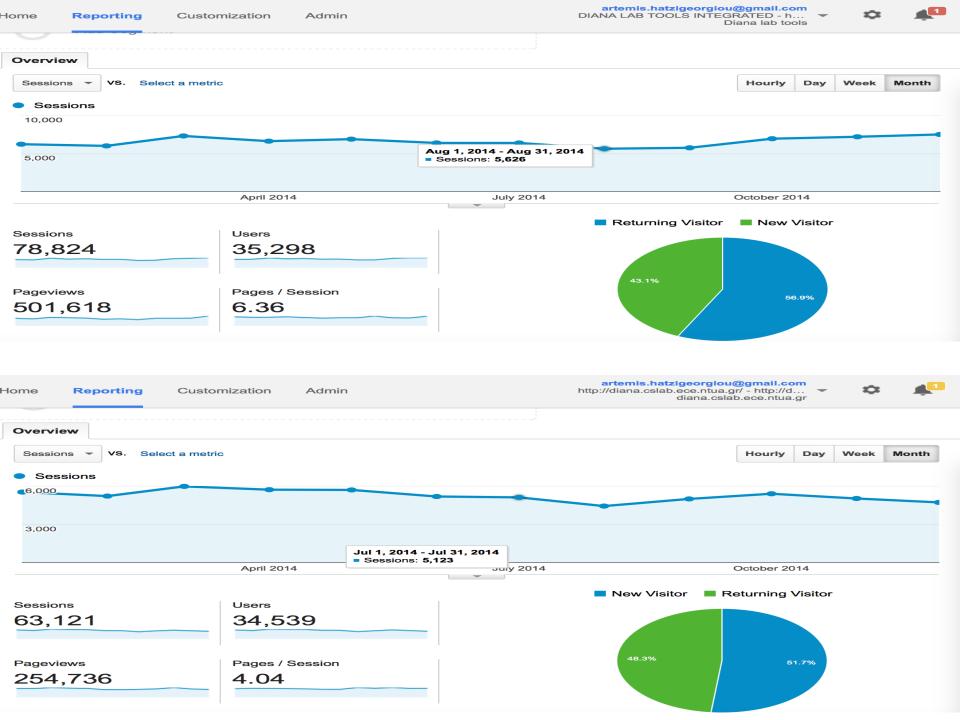
Tarbase v6.0

Older version of TarBase database.

microT v4


Older version of microT application & algorithm.


OTHER WEB APPLICATIONS


DIANA microT v3.0

DIANA mirExTra

DIANA miRGen 2.0

How much are we cited each year?

Around 40,000 users visited

Microrna.gr

in 2013

How much are the relevant papers cited in 2014?

- a) 40 times
- b) 350 times
- c) 2000 times

Documents

Citations

Sort on: Date (newest) Citation count (descending)			<2011	2011	2012	2013	2014	Subtotal	>2014	Total
		Total	696	213	319	327	350	1209	9	1914
1 DIANA-microT web server v5.0: service integration into miRNA	2013					1	16	17	2	19
2 DIANA-LncBase: Experimentally verified and computationally p	2013					6	18	24		24
3 DIANA miRPath v.2.0: Investigating the combinatorial effect	2012				2	21	34	57	1	58
4 Functional microRNA targets in protein coding sequences	2012				5	10	23	38		38
5 TarBase 6.0: Capturing the exponential growth of miRNA targe	2012				13	49	60	122	2	124
6 DIANA-microT Web server upgrade supports Fly and Worm miRNA .	2011				10	9	11	30		30
7 The DIANA-mirExTra web server: From gene expression data to	2010		6	6	8	11	6	31		37
8 miRGen 2.0: A database of microRNA genomic information and r	2009	×	5	13	10	15	11	49		54
9 DIANA-microT web server: Elucidating microRNA functions thro	2009		31	38	59	48	50	195	1	227
10 DIANA-mirPath: Integrating human and mouse microRNAs in path	2009		18	18	43	37	34	132		150
11 The database of experimentally supported targets: A function	2009		56	46	54	34	24	158	2	216
12 miRGen: A database for the study of animal microRNA genomic	2007		87	28	30	25	19	102		189
13 TarBase: A comprehensive database of experimentally supporte	2006		181	27	33	31	18	109		290
14 A combined computational-experimental approach predicts huma	2004		312	37	52	30	26	145	1	458
Display 25 results	Display 25 results									/1 >

Software

Username *

Password *

Remember me next time

Login

Forgot your password?

- Sign up for free!
- or take a tour

Available features for registered users:

- Download databases
- History
- Bookmarks

Login is not required to access the site!

WEB SERVICES

Web Services at DIANA-LAB

DIANA-LAB enables access to the tools and data resources via $\frac{\text{microT-CDS}}{\text{Plug-in}}$ and $\frac{\text{Tarbase v6.0}}{\text{Envices have also been deposited in the Bio}$

SOFTWARE TO DOWNLOAD

DIANA Taverna Plug-in

WEB APPLICATIONS

microT-CDS

Search for targets of annotated miRNAs based on microT-CDS algo.

LncBase

Elaborated info for predicted & exp. verified miRNA-lncRNA interactions.

TarBase v7.0

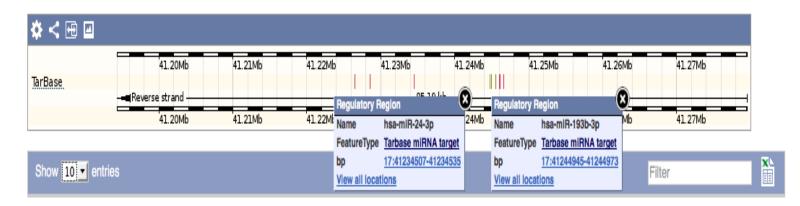
A database validated miR

Automated I

Pipelines to a small scale

Integration of Tarbase in **Ensembl**

Gene: BRCA1 ENSG00000012048


Description breast cancer 1, early onset [Source:HGNC Symbol;Acc:1100]

Location Chromosome 17: 41,196,312-41,277,500 reverse strand.

INSDC coordinates chromosome:GRCh37:CM000679.1:41196312:41277500:1

Transcripts This gene has 31 transcripts (splice variants) Hide transcript table

Regulation 0

miRBase

Interconnects also entries with external resources:

Validated targets

MIRTARBASE: hsa-let-7a-5p

TARBASE: hsa-let-7a-5p

DIANA-MICROT: hsa-let-7a-5p

MICRORNA.ORG: hsa-let-7a-5p

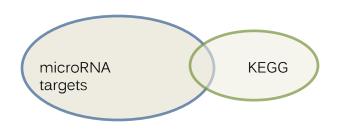
MIRDB: hsa-let-7a-5p

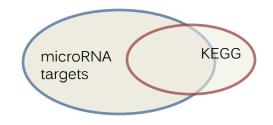
RNA22-HSA: hsa-let-7a-5p

TARGETMINER: hsa-let-7a-5p

TARGETSCAN-VERT: hsa-let-7a

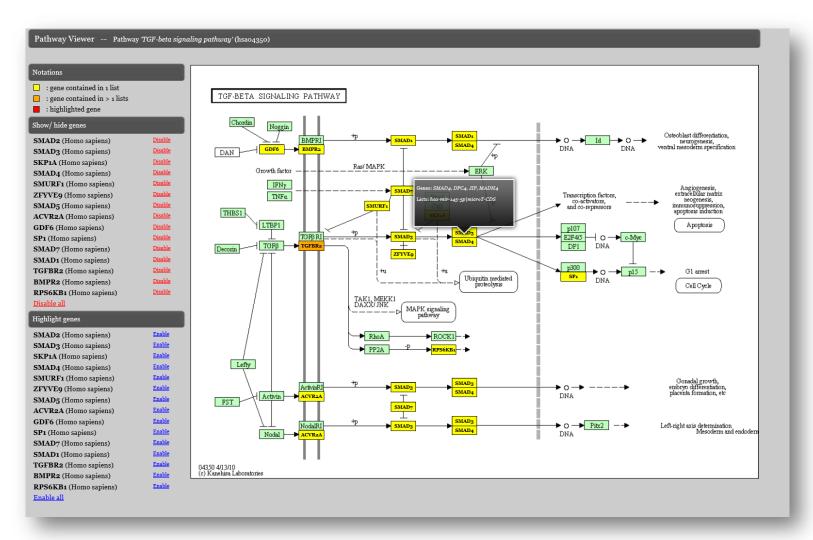
PICTAR-VERT: hsa-let-7a


DIANA-Tools


Visit us @ www.microrna.gr!

DIANA-mirPath

Integrating human and mouse microRNAs in pathways



Small overlap – Not significant

Large overlap – Significant

Input List Name					Number of (Genes		No	nber of Genes in P	athways	
Union					1250				306		
let-7c_microT_4	let-7c_microT_4 723					166					
miR-100_microT_4					35				11		
miR-1_microT_4					562		147				
Intersection					N/A				N/A		
NLOAD RESULTS											
KEGG Pathway	Pathway ID	# of Genes (Union)	·ln(p· value) (Union)	# of Genes (let-7c_microT_4	-ln(p-value)) (let-7c_microT_4)	# of Genes (miR-100_microT_4	-In(p-value)) (miR-100_microT_e	# of Genes l) (miR-1_microT_	-In(p-value) 4) (miR-1_microT_	# of Genes 4) (Intersection)	-ln(p-valu (Intersectio
Adherens junction	hsa04520	19	19.24	6	2.06	1	0.71	13	21.79	0	-
Glioma	hsa05214	14	10.23	7	4.28	2	6.62	8	7.62	0	-
Type II diabetes mellitus	hsa04930	10	9.38	6	6.32	1	1.47	3	1	0	-
mTOR signaling pathway	hsa04150	11	8.83	5	2.78	1	1.2	7	8.48	0	-
Colorectal cancer	hsa05210	16	8.63	7	2.32	3	13.19	8	4.6	0	-
MAPK signaling pathway	hsa04010	34	8.61	22	8.89	2	1.23	13	1.59	0	-
Bladder cancer	hsa05219	10	8.27	6	5.63	1	1.36	5	4.19	0	-
Focal adhesion	hsa04510	27	7.59	16	5.71	1	0.01	16	7.54	0	-
Wnt signaling pathway	hsa04310	22	7.44	9	1.34	3	7.48	13	7.01	0	-
Prostate cancer	hsa05215	15	6.53	7	2.13	2	4.68	9	6.05	0	-
Melanoma	hsa05218	13	6.48	8	5.04	1	0.71	7	4.29	0	-
Calcium signaling pathway	hsa04020	23	6.34	15	6.56	2	2.28	7	0.24	0	-
Huntington's disease	hsa05040	7	5.88	2	0.24	0	-	5	7.27	0	-
Chronic myeloid leukemia	hsa05220	13	5.75	8	4.54	0	-	7	3.86	0	-
Pancreatic cancer	hsa05212	12	4.87	7	3.29	0	-	6	2.62	0	-
Amyotrophic lateral sclerosis (ALS)	hsa05030	5	4.75	4	6.3	1	3	1	0.21	0	-
p53 signaling pathway	hsa04115	11	4.32	9	7.75	0	-	6	3.04	0	-

Active Pathway Visualization

organism, expert database, gene, ncRNA type, accession

Examples: RNA, Homo sapiens, miRBase, HOTAIR, Escherichia*

Q

Expert databases - API - Sequence search

Downloads Help Contact

RNAcentral is a new resource that provides unified access to the ncRNA sequence data supplied by the Expert Databases. Learn more

ENA provides a comprehensive record of the world's nucleotide

sequencing information.

6,989,739 sequences (example)

Explore ENA entries

Rfam is a database containing information about ncRNA families

and other structured RNA elements.

2,493,782 sequences (example)

RNAcentral Expert Databases

Currently the RNAcentral Consortium is formed by **32** Expert Databases, **10** of which have already been integrated into RNAcentral (marked with a very below). If you run an ncRNA database and would like to join RNAcentral, please contact us.

CRW Site ♂	comparative sequence and structure information for ribosomal, intron, and other RNAs
ENA ♂	provides a comprehensive record of the world's nucleotide sequencing information
FlyBase ♂	a database of Dropsophila genes and genomes
GreenGenes	16S rRNA gene database
gtRNAdb ♂	contains tRNA gene predictions on complete or nearly complete genomes
HGNC ♂	HUGO Gene Nomenclature Committee
LncBase ♂	experimentally verified and computationally predicted microRNA targets on long non-coding RNAs

Few ... wishes

Check the citations of databases / webservers before publishing

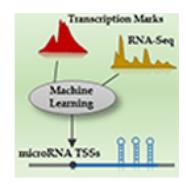
For example could be a question added to reviewers: Have the researcher cited properly the data used?

Are the data used for training – testing available?

Can the data be reproduced?

Availability of databases through time – diachronic data Credibility for diachronic databases/web services Let's make database funding ... legal

My account | Submit manuscript


Register

Subscribe

10 December 2014

ARTICLE

microTSS: accurate microRNA transcription start site identification reveals a significant number of divergent pri-miRNAs

Georgios Georgakilas, Ioannis S. Vlachos, Maria D. Paraskevopoulou, Peter Yang, Yuhong Zhang, Aris N. Economides, Artemis G. Hatzigeorgiou