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Abstract
We predict quantitatively that it is possible to use few-femtosecond positive or negative time
delays, Dt, between two XUV Gaussian few-femtosecond pulses of moderate intensities and
central frequencies w1 and w ,2 in order to control the probability of ionization at clearly defined
exit energies corresponding to the sums of photon frequencies (w w+1 1), (w w+2 2), and
(w w+ ,1 2 or w w+2 1). The phenomenon is demonstrated quantitatively by obtaining and using
nonperturbative solutions of the time-dependent Schrödinger equation for a time-dependent
scheme involving the process of two-photon resonant ionization of Helium via the s p1 2 P o1

(58.4 nm) and s p1 4 P o1 (52.22 nm) excited states. The calculations used wavefunctions which
are state-specific for the discrete spectrum, (up to the s g1 7 G1 Rydberg state), as well as for the
energy-normalized continuous spectrum, (up to 2.0 a.u. above threshold with angular momenta
ℓ=0, 1, 2, 3, 4). For this system, using Dt as a control knob, the effects on the photoelectron
spectrum of the combination of the transition amplitudes via the two paths and their interference
are determined clearly for pulses with field-cycles ranging from about 15 to about 80 cycles. The
analysis has included the comparison of the nonperturbative results, obtained by implementing
the state-specific expansion approach, with those obtained from the application of second order
time-dependent perturbation theory with two Gaussian pulses of finite duration.

Keywords: atomic processes in external fields, ultrafast time delay control, multiphoton
ionization

1. Time delay as a control parameter in a two-photon
resonant ionization process with two XUV ultrashort
pulses

Current experimental/technological work in many facilities
by large teams around the world aims at improving the per-
formance and versatility of sources of radiation pulses that
can produce ultrashort pulses at different ranges of wave-
lengths, having weak, moderate or strong intensities, say
between 1011 and 1014 W cm−2. This work involves the
production and application of either table-top, high-harmonic

generation (HHG)-based pulses, or, of well-characterized
pulses from free-electron laser (FEL), whose duration is in the
range of a few decades of femtosecond (fs) down to decades
of attosecond (as). In principle, such pulses are suitable for
use in a variety of new types of spectroscopic studies in
atomic, molecular and optical (AMO) physics.

These developments, in conjunction with corresponding
advances of theory and of many-electron methods that can
deal quantitatively with the solution of the many-electron
time-dependent Schrödinger equation (METDSE) and with its
appropriate utilization, have ushered AMO physics into a new
era of spectroscopy, where the physically relevant informa-
tion about electron dynamics with respect to ultrashort
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changes of time can be understood not only phenomen-
ologically or descriptively, but even quantitatively for real
systems.

Brief discussions on aspects of the progress that has thus
far been achieved experimentally and on prospects for
applications to various problems and areas of physics and
chemistry using such pulses and corresponding spectroscopic
techniques, were recently presented in this Journal, in a
compendium of short articles by many authors in [1]. The
generation and application of well-characterized FEL pulses
of short wavelengths, say in the extreme ultraviolet (XUV)
and beyond, is expected to open new vistas in the study of
time-resolved electron dynamics.

Of recent interest to us [2] was the quantitative study and
analysis of the absolute cross-sections of the two-XUV
photon ionization of Helium, on-and off-resonance with the
Rydberg states s p1 2 P ,o1 s p1 3 P o1 and s p1 4 P ,o1 which were
obtained by averaging the time-dependent probabilities that
emerged from the nonperturbative solution of the METDSE.
The impetus for that study came from the publication of the
first measurements of these quantities using XUV pulses
from the FEL in RIKEN, Japan [3, 4]. Among other things,
the experimental work of Fushitani et al [4] included the
investigation of aspects of the spectroscopy which is possible
when two-color fs pulses, with time delayDt, are used for the
study of the ionization of Helium. They combined an ultra-
short optical laser pulse of 268 nm (4.63 eV) with FEL pulses
of 59.7 nm (20.8 eV). The results of [2] were compared with
the experimental values and with earlier theoretical results
from perturbative as well as nonperturbative time-indepen-
dent calculations. For the conclusions the reader is referred
to [2].

In view of the developments discussed in [1–4] and in
their references, a question which is relevant to time-resolved
electron dynamics is the following:

What kind of new information can be extracted when,
instead of one, two ultrashort pulses with XUV or shorter
wavelengths are generated and used in time-dependent
spectroscopy with atoms or with their positive ions?For
example, in a recent publication co-authored by 40 scientists,
Prince et al [5] reported experimental results on the coherent
control [6] of an ionization process in Neon at the level
of only a few as time-resolution, using two XUV (63.0 and
31.5 nm) fs pulses and adjusting their phase difference, j, so
as to control the asymmetry of the photoelectron angular
distribution. The authors of [5] argued that their experimental
demonstration ‘opens the door to new short-wavelength
coherent control experiments with ultrahigh time resolution
and chemical sensitivity’, (abstract of [5]), with prospects of
new types of application, ‘in analogy to what happened in the
last few decades in the field of optical laser-based research’.
(Prince and Masciovecchio, on page 16 of [1]).

The theoretical work reported here has taken our earlier
investigations [2] to a more complex and challenging level,
by exploring quantitatively the possibility of control of a two-
photon resonant ionization process in Helium, when two

different, time-delayed XUV pulses with ultrashort duration
are used.

In the early, optical laser-based research on processes of
photodissociation and of photoionization, the underlying
principle is the presence of interference of different excitation
paths ending at the same final state in the continuum, where
the control knob is the relative phase [6]. Extensions and
time-independent many-electron computational implementa-
tions to ionization dynamics which determine the functional
dependence (sinusoidal) of the ‘interference generalized
cross-section’ on the phase differences between dichromatic
or trichromatic weak AC fields can be found in [7]. We note
that the use of the relative phase as a control parameter in
two-color studies of spectroscopy where interference plays a
crucial role, continues to find new areas of application,
e.g. [8].

In the present work, we examine a different possibility,
where the understanding of the phenomenon requires the
calculation and use of time-dependent solutions of the
METDSE that account for the interplay between electronic
structures, state-mixings, spectral features and time-dependent
ionization dynamics. The problem involves the study from
first principles of the effects on the two-photon resonant
photoelectron spectrum of the combination of the transition
probabilities via two paths and their interference, as a function
of the time-delay, Dt, between the applied ultrashort pulses.

The chosen physical system is that of Helium irradiated
by two XUV ultrashort Gaussian pulses of moderate inten-
sities, ´1 1012 Wcm−2 and ´8 1012 Wcm−2, which are
applied with negative (the ω2 pulse precedes the ω1 pulse) or
positive time delay,Dt, and whose wavelengths are chosen so
as to cause two-photon resonant ionization through the tran-
sitions s1 2 S0

1  s p1 2 Po
1

1 at 58.4 nm and s1 2 S0
1  s p1 4 Po

1
1 at

52.22 nm.
In lowest order, the excitation scheme is written as

He ⟶ ⟶ ( )e e
w w

s s p s s or d1 1 2 12 1 2 and, ⟶
w

s1 2 2

⟶ ( )e e
w

s p s s or d1 4 1 ,1 (A)

w1=0.78 a.u. and w2 = 0.87 a.u. are the central fre-
quencies of the two pulses. The same final scattering state is
reached via the two paths, while interference can occur.

The question which we asked and answered in this work
quantitatively is the following: To what degree does the
ionization probability depend on the variation of Dt from
relatively large positive to relatively large negative values, as
the system is excited via the two paths and their interference?

We note that, in the previous era of optical lasers and AC
fields, the importance of interference on the time-independent
rate of two-photon transitions to the continuum was first
proposed by Chen, Shapiro and Brumer [6, 9] and was first
demonstrated experimentally by Pratt [10], followed by Wang
and Elliott [11]. Their analysis was based on the time-inde-
pendent formula of lowest order perturbation theory and on
consideration of quantities such as the degree of detuning,
laser power, or relative polarization, as control para-
meters [10, 11].

In the present case of ultrashort, time-delayed XUV pulses,
the theoretical treatment must necessarily involve time
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explicitly, apart from having to compute N-electron matrix
elements. The relevant information is obtained from systematic
calculations that solve the METDSE nonperturbatively, using a
two-color perturbation ( )V tint = ( )wV t,1 1 + ( )w + DV t t, .2 2

Now, it isDt that has the role of the control knob. In addition,
results were obtained by applying second order time-dependent
perturbation theory, (SOTDPT), with explicit incorporation of
the characteristics of the two pulses.

2. Construction of the problem and quantitative
solution

The proposal of the two-photon resonant ionization of Helium
using two ultrashort XUV pulses which was outlined in the
Introduction, is displayed in figure 1. The main goal was to
identify quantitatively, from first principles, a set of para-
meters of two XUV Gaussian pulses and the corresponding
values of ultrashort time delays,Dt, that can be used to affect
in a significant and controllable way the photoelectron spec-
trum. As discussed in section 3, this has proven possible. The
duration of either pulse is in the range of a few femtoseconds,
for intensities in the range ´1 1012– ´1 1013 Wcm−2. Time-
consuming nonperturbative calculations also showed that, for
intensities close to 1014 W cm−2, the resulting spectrum loses
its clarity, indicating the presence of strong shifting and
mixing of states and transition amplitudes from both the
discrete and the continuous spectrum.

The photoelectron peak around the energy E12=ω1+
ω2−Eion, is essentially independent of the phase difference,

j, because the two paths reaching E12 have the same
dependence on it. This is a convenient condition for experi-
mentalists, because the steady control of j for FEL pulses of
high energy is not achievable easily.

On the other hand, we expect that Dt should play a
significant role in the vicinity of E12, because, for ultrashort
pulses, the population transfer to the intermediate states s p1 2
P o1 and s p1 4 P o1 is strongly dependent on it. It follows that
the magnitudes of the photoelectron peaks corresponding to
the photon frequencies (w w+1 1), (w w+2 2), and (w w+ ,1 2

or w w+2 1), will also depend on Dt and, of course, on
intensity, in a way which cannot be predicted without accu-
rate calculations that solve the METDSE with a two-color
time-dependent interaction operator, ( )V t .int

The basic step towards the quantitative understanding of
the electron dynamics associated with the processes of
figure 1 is the calculation of the solution of the METDSE
from first principles. This was done nonperturbatively by
implementing the state-specific expansion approach (SSEA)
[12]. For reasons of comparison and for additional insight into
the role of the continuum and of discrete states other than the
s p1 2 P o1 and the s p1 4 P ,o1 the METDSE was also solved at
the level of SOTDPT with Gaussian pulses of finite duration
—see below.

The fundamental equations are

( ) ( ) ( ) ( )Y =
¶Y
¶

H t t i
t

t
a, 1

( ) ( )
( ) ( ) ( ) ( )w w
= +
= + + D

H V
V V V

t t
t t t t b

H ,
, , . 1

atom int

int 1 1 2 2

In our work, the coupling operator in ( )V tint is the full mul-
tipolar electric Hamiltonian, Hel

· ( · ) ( )   
òå lk l=H e r E r d . 2el

j
j j

0

1

The compact form (2) is taken from equation (5.35) of Lou-
don’s book [13]. The reasons for choosing (2) and the theory
which deals with the properties of this operator when calcu-
lating bound-bound, bound-free and free-free matrix elements
in spherical symmetry, can be found in [14] and its references.

As we have argued in the past [12, 14], of special sig-
nificance in the general problem associated with the systematic
nonperturbative solution of the METDSE for field-induced
electron dynamics, is the correct and systematic calculation of the
on- and the off-resonance free-free (continuum-continuum)
matrix elements. When the state-specific, energy-normalized,
proper scattering wavefunctions are employed, these matrix ele-
ments are characterized by singularities on the energy axis.
Taking account of them, in a rigorous and numerically accurate
way, is essential for securing the reliability of nonperturbative
solutions of the METDSE, especially since in the general many-
electron, many-channel problem, their number is huge. We have
shown [14], that when, instead of the unbounded electric dipole
operator r, the operator of equation (2) is used in the calculation
of the required matrix elements with the electric dipole selection

Figure 1. The scheme in the two- XUV photon resonant ionization of
Helium chosen for the present study of the possibility of using the
ultrashort time delay, Dt, between the instants of application of the
two ultrashort Gaussian XUV pulses, as a control knob. For the s p1 2
P o1 state, ω1=0.78 a.u. (58.4 nm), and for the s p1 4 P o1 state,
ω2=0.87 a.u. (52.2 nm). The pulse durations are of the order of a
few femtoseconds. The black and gray curves surrounding the two
discrete levels represent realistically the energy profiles of the pulses,
with central frequencies ω1 and ω2.
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rules for linearly polarized light, the level of complexity in
dealing numerically with these singularities is reduced
significantly.

In accordance with figure 1, the He s1 2 1S state is
assumed to interact with two XUV time-delayed pulses. The
pulse forms are

( ) ( )

( ) ( )
( )

( )

å

w

=

=
=

a- -

E t E t

E t F e t
k

,

cos ,
1, 2 3

k
k

k k
t t

kk k
2

( ) ‐ ( )a
t

t= = a
2 ln 2

, full width at half maximum. 3k
k
2

The time delay is positive or negative, and is defined as

( )D = -t t t . 42 1

The final results (section 3) determine the photoelectron
probability distribution, (per atomic unit of energy)

∣ ( )∣ ( )åe
a=e
e

dP

d
T , 5

ℓ
ℓ end,

2

where ae ℓ, is the coefficient of the energy-normalized state of
the continuum at energy ε, with angular momentum ℓ, and
Tend is the time at which the interaction is essentially zero.

The bulk of the results reported in the paper were
obtained for field intensities Ik of the order of 1012 W cm−2.
They are clear, and demonstrate the physics quantitatively. In
particular, the values of Fk (Ik) for which the results presented
in figures 2–5 were obtained are

( )
( ) ( )

= = ´
= = ´

-

-

F I

F I

0.00534 a.u. 1 10 W cm and,

0.015 a.u. 8 10 W cm . 6
1 1

12 2

2 2
12 2

The intensity for the path through the state s p1 4 P o1 (52.2 nm),
was chosen to be larger because the corresponding dipole
matrix element is smaller than the one for s1 2 S0

1  s p1 2 Po
1

1

(58.4 nm). Specifically, the excitation matrix elements are,
0.412 a.u. for the 1s2−1s2p transition and 0.129 a.u. for the
1s2–1s4p transition.

We also carried out SSEA calculations for the higher
intensities I1 = ´1 1014 Wcm−2 and I2 = ´2 1014 Wcm−2.
As expected, the field-induced shifts and higher-order state-
mixings and interference among multiple transition paths
involving discrete and scattering states, are enhanced and
cause a blurring of the photoelectron spectrum, which
destroys the clear picture for control exhibited by figures 2–5.
Such high intensity spectra may have an interest for other
types of studies. For the scope of the present application, they
served in order to roughly delineate the range of pulse

Figure 2. Photoelectron spectrum for the two-XUV photon resonant
ionization of Helium according to the scheme of figure 1.

e
edP

d
is the

probability distribution per atomic unit of energy, defined and computed
by equation (5). The full widths at half maximum, t1 and t ,2 are of the
order of 20 cycles of each field. The curves correspond to positive and
negative values of time delay, Dt. The solid line curve corresponds to
D =t 0 fs, the dashed one to D =t 2.4 fs, the dotted one to
D = -t 2.4 fs, and the dashed–dotted one to D = -t 4.8 fs. The left
and right peaks represent the two-photon ionization of He ionization,
with ω1=0.78 a.u. (58.4 nm) and ω2=0.87 a.u. (52.2 nm). The
middle peak is due to the combination of the transition amplitudes via
the two paths and their interference at E12 . (See figure 1).

Figure 3. As in figure 2, with t1 and t2 of the order of 40 cycles of
each field. The curves are obtained for negative values of Dt. The
solid line curve corresponds to D =t 0 fs, the dashed one to
D = -t 1.2 fs, the dotted one to D = -t 2.4 fs, the dashed–dotted
one to D = -t 4.8 fs, and the dashed–dotted–dotted one
to D = -t 24.2 fs.

Figure 4. As in figure 3, for positive values of Dt. The solid line
curve corresponds toD =t 0 fs, the dashed one toD =t 2.4 fs, the
dotted one to D =t 4.8 fs, the dashed–dotted one to D =t 7.3 fs,
and the dashed–dotted–dotted one to D =t 16.9 fs.
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parameters for which the spectra are clean, and can be of
direct use to future possible experimental investigations.

3. Calculations

The ( )Y t of equation (1) was calculated at two different levels
of theory. In both cases, the relevant state-specific electronic
structures, electron correlations, and energy-normalized scat-
tering states were taken into account systematically and reli-
ably. The characteristics of the pulses were the same for both
levels of theory.

The first level, which is the generally applicable one for
problems of time-resolved electron dynamics for strong and/
or ultrashort pulses, has to do with the nonperturbative
calculation of ( )Y t . The SSEA results from this type of
solution serve as a reliable reference for both experiment and
theory.

Here we note that, because of the simple, closed-shell
structure of the Helium 1S ground state, and because of the
simplicity of the one-electron Rydberg character of its 1Po

excited discrete states to which it is connected upon absorp-
tion of the first photon, even the ‘single-active electron’
(SAE) approximation [15] may produce the phenomenon
semi-quantitatively when the intensity is relatively low, of the
order 1011–1013 W cm−2. However, when the intensity
increases, say reaching values of the order of 5×1013

W cm−2
–1×1014 W cm−2 and above, then, not only the

contributions from the high-energy continuum increase, but
also ground state electron correlations and doubly excited
states may contribute in higher order. As is well known, the
model of the SAE cannot handle electron correlations or
double excitations and interchannel couplings.

In either case, (moderate or strong fields), the use of a
many-electron theory such as the SSEA guaranties numerical
accuracy as well as transparency, and there is no need for
discounts in the construction and implementation of the

methodology that is generally required for solving the
METDSE nonperturbatively.

The second level is that of SOTDPT, where the Gaussian
forms of the two pulses and their finite duration of a few
femtoseconds were taken into account explicitly.

For the SSEA calculation, the time-dependent wave-
function, ΨSSEA(t), was constructed and computed in the form

( ) ( ) ( )

( ) ( ) ( )ò

å

å

a

ea e

Y = F

+ Fe e

= = +

=

t t snℓ L

d t s ℓ L

1

1 , 7

SSEA
ℓ n ℓ

n ℓ n

ℓ o
ℓ

0, 1
,

1

,
1

where Fn and Fe are the symmetry-adapted 2-electron bound
and energy-normalized scattering wavefunctions for the He
states, labeled by each reference configuration.

As explained in [12] and its references, the choice of the
N-electron wavefunctions in the SSEA is specific to the
electronic structure of each state in the expansion, (discrete,
resonance and purely scattering state), and to each problem.
The theoretical formulations and methods for their calculation
at different levels of approximation, depend on the property/
phenomenon of interest. In general, these wavefunctions are
constructed from separately optimized numerical and analytic
one-electron functions [16], and its references.

In order to eliminate any numerical inaccuracies and
uncertainties, especially when it comes to the diffuse Rydberg
wavefunctions, the state-specific bound wavefunctions in
expansion (7) were computed and used (in matrix elements)
numerically, by solving, for each discrete state F ,n the multi-
configurational Hartree–Fock (MCHF) or HF (for the Ryd-
berg states) equations, using the code published by Froese-
Fischer [17]. The energy-normalized scattering orbitals were
obtained numerically in the frozen core of the +He 1s state.

The ground-state wavefunction, Φ(1s2 1S), was obtained
from a numerical MCHF calculation with the 1s2, 2s2, 2p2,
3s2, 3p2, 3d2, 4s2, 4p2, 4d2, 4f 2 configurations, essentially
exhausting the relevant to the dynamics contributions of
electron correlation. The excited discrete states are of the
Rydberg type, 1snℓ 1L. They were represented by state-spe-
cific numerical HF orbitals with n = 2,3,4,5,6,7 and ℓ=0, 1,
2, 3, 4, i.e. we included all discrete states up to s g1 7 1G.

Using energies of the energy-normalized scattering
orbitals εℓ in the range from 0 to 2.0 a.u. above threshold, and
angular momenta with ℓ=0, 1, 2, 3, 4, the convergence of
the SSEA calculations was very good. The number of coupled
equations corresponding to the converged expansion (7) was
of the order of 10 000, the overwhelming majority involving,
as usual, matrix elements with scattering states.

4. Results from the SSEA and from the time-
dependent perturbation theory to second order

Following a series of exploratory SSEA calculations, we
identified sets of pulse parameters that can demonstrate with
clarity and accuracy the physics of the problem. Specifically,
we delineated roughly the region of moderate intensities that

Figure 5. As in figure 2, with t1 and t2 of the order of 80 cycles of
each field. The curves correspond toDt= 0. The gray square shows
the value calculated from the second order time-dependent
perturbation theory (SOTDPT). See text.
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produce photoelectron spectra, (probability distribution per
atomic unit of energy), where every peak is interpreted with
certainty, (figures 2–5), from the region of strong fields,
where the spectrum is altered by being broadened while
acquiring additional smaller peaks. One set of moderate
intensities which is experimentally practical is given by (6).

We discuss three sets of results, which are presented as
figures 2–5. These sets correspond to pulses of about 20, 40
and 80 field-cycles. In order to obtain additional insight, our
study also included complementary calculations from the
application of SOTDPT.

The formula for the matrix element of the SOTDPT can
be found in textbooks, e.g. in chapter 2 of [18]. In the
interaction picture, it is formally written as the operator

( ) ( ) ( ) ( )( ) / ò ò=
-¥ -¥

A t i dt V t dt V t .
t t

2 2
1 int 1 2 int 2

1

Its implementation to the present case of the He middle
peak (figure 1) reads

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

∣ ( )∣ ( )

∣ ( ) ∣

∣ ( ) ∣ ( )

∣ ∣ ∣ ∣ ( )

( ) ( )

( )

( )

( )

( ) ( )

ò

ò

ò ò

å

å

á F ñ

=
-

á ñ

´ á F ñ

=
-

á ñ ´ á F ñ

´ ´

e

e e

e e e

-¥

-

-¥

-

-¥

-

-¥

-
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sE ℓ L A t s

i
dt e sE ℓ L E t z sJp P

dt e sJp P E t z s
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where J spans the discrete and the continuous parts of the P o1

spectrum, and =ℓ s d, .

4.1. Pulses of about 20 field-cycles

The results of the first set with the moderate intensities (6) are
displayed in figure 2. They were obtained for t ,k =k 1, 2, of
the order of 20 field cycles (duration of about t1=4 fs and
t2=3 fs). The left and right peaks correspond to the
absorption of two ω1 and two ω2 photons respectively. These
peaks are essentially independent of Dt. A slight dependence
is observed when the duration of the pulses is longer- see
below.

However, the absorption of one photon from each pulse
gives rise, through the combination of the transition ampli-
tudes via the two paths and their interference, (figure 1), to the
peak in the middle, whose dependence on Dt is found to be
significant: For negativeDt, of the order of 2–5 fs, where the
ω2 pulse precedes the ω1 pulse, the height of this peak gra-
dually decreases with respect to its value for D =t 0. On the
contrary, for positive Dt, the height of the peak increases. In
the latter case, the upper limit of the ionization probability is
determined by the ionization probability of the 1s2p1Po state.

This observable dynamical effect, which was obtained
quantitatively from first principles, constitutes the main pre-
diction of this work. Its explanation is as follows:

The choice of the pulse intensities, ( >F F2 1), is such
that the Rabi frequencies for both resonant couplings

( ⟶
w

s s p1 1 2 ,2 1 ⟶
w

s s p1 1 42 2 ) are essentially the same, which
means that the population transfer from 1s2 to the two P o1 states
is nearly the same. In the case of (relatively) large negative time
delays, i.e. when the pulses do not overlap, the ω1 pulse starts to
act following the fading out of the interaction due to the ω2

pulse. Hence, the transfer of population from the s p P1 4 o1 state
to the continuum states es s S1 1 and es d D1 1 is much weaker
than the one resulting when the opposite case holds, namely,
when the time delays become positive and large, in which case
it is the ω2 pulse that pumps population from s p P1 2 o1 to the
continuum. This is so because the dipole transition matrix ele-
ments ∣ ∣ e eá ñs p P s s s dH1 2 1 , 1o

el
1 are larger than the

∣ ∣ e eá ñs p P s s s dH1 4 1 , 1o
el

1 ones, and, in addition, the field
strengths satisfy >F F .2 1 Therefore, for time delays in the
range between (relatively) large negative and large positive
values, or, equivalently, in the range between non-overlapping
pulses, the height of the middle peak varies continuously.

In addition to the understanding of the phenomenon that
is presented in figure 2 in terms of matrix elements and field
strengths, it is also of interest to obtain additional quantitative
information on how the phenomenon is affected by the states
of the full spectrum as a function of the duration (number of
field cycles) of the two pulses. We recall that the spectral
widths of these pulses are not negligible. For example, for the
present case of 20 cycles, these spectral widths are 0.76 eV
and 0.62 eV, (depicted on figure 1), when the energy differ-
ences between the two P o1 excited states of interest from their
neighboring P o1 states are, ΔΕ(1s2p, 1s3p)=1.87 eV, and
ΔΕ(1s4p, 1s3p)=0.65 eV, ΔΕ(1s4p, 1s5p)=0.30 eV.

For reasons of economy, we considered only the case
withD =t 0. By comparing the results of the SOTDPT and of
the SSEA, the following conclusion is reached: The height of
the peak from the SSEA calculation is ´ -2.5 10 .4 For the
case where J spans the states of the P o1 discrete spectrum
only, then the SOTDPT result is ´ -1.7 10 .4 However, when
the continuous spectrum is included, the result is essentially
the same as that of the SSEA. Hence, we have a quantitative
understanding of the significance of the scattering states for
these field parameters.

The information concerning the understanding of the
participation of the states of the spectrum to the proper
description of the middle peak can be gained, in principle, by
running a series of SSEA calculations with different expan-
sions, since the structure of the theory allows in a straight
forward way to assess the degree of importance of each state-
specific wavefunction. However, this is a computationally
very time-consuming enterprise. Therefore, we turned to
much more economic calculations at the level of SOTDPT,
i.e. at the level implied by the scheme (A), where only a
subset of the states of the full spectrum is involved. These
results were then compared to the SSEA nonperturbative
results which are presented in figures 2–5. This comparison
sheds light to the understanding of the significance of the
contribution to the formation of the middle peak of those
states that are not on exact resonance with the center of the
two pulses, and of the range of pulse durations and field
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intensities for which the present problem can be tackled
reliably in terms of the SOTDPT.

Numbers from such SOTDPT calculations are contained
in table 1, corresponding to the case of 40-cycle pulses—see
below. They were obtained in order to discern the degree of
contribution to the middle peak of the two paths and of their
interference, as a function of the time delay, Δt, ranging from
negative to positive values.

4.2. Pulses of about 40 field-cycles

The results of the second set are shown in figures 3 and 4.
They were obtained for t1=8 fs and t2 = 7 fs, durations that
correspond to about 40 field cycles. The analysis given for the
results of figure 2 is also valid for this case. Now, the spectral
widths are smaller. They are 0.38 eV and 0.31 eV respec-
tively. Therefore, one should expect that the contribution to
the two-photon resonant ionization process of the snp P1 o1

discrete states with ¹n 2, 4, as well as of the
e e s p P1 0o1 scattering states, should be less important.

Indeed, for D =t 0, the SSEA value of the height of the
middle peak is ´ -2.75 10 ,3 while the value from
equation (8) with J spanning only the discrete P o1 spectrum is

´ -2.63 10 .3 The contribution of the continuous part of the
P o1 spectrum is smaller than before. The total value of the
SOTDPT calculation is almost the same as that from the
SSEA calculation.

We note that, as figures 2 and 3 for pulses of duration 20
and 40 cycles display, the secondary peaks corresponding to
the same-frequency two-photon transitions also show a slight
dependence on Dt. This dependence is of no physical rele-
vance to the present predictions. It is due to higher order
effects. They are enhanced as the duration of the pulses
becomes longer, since the formulas of time-dependent per-
turbation theory start losing their rigorous validity when, for
resonant-ionization transitions, the duration of the pulsed
interaction increases. Indeed, this conclusion can be reached
quantitatively from calculations which solve such time-
dependent problems nonperturbatively, as is the case here.

Finally, using the case of 40 field-cycles, we turn to the
quantitative interpretation of the appearance of the middle
peak at E12. This is done in terms of the results listed in
table 1. From equation (8) and for J corresponding to the
intermediate states 1s2p and 1s4p, the two main paths for the

process under study can be separated as
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The probabilities shown in table 1 correspond to the follow-
ing expressions:

( ) ∣ ( )∣ ∣ ( )∣
∣ ( )∣ ∣ ( )∣ ( )

e e

e e

= +

= +

P A s A d

P A s A d b

1 ,
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s p s p s p

s p s p s p

1 2 1 2
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1 2
2

1 4 1 4
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1 4
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for the probability involving the paths through the inter-
mediate states 1s2p and 1s4p1Po,

and

( ) ( ( ) ( ) )

( ( ) ( ) ) ( )

e e

e e

= ´ +

+ ´ +

P A s A s

A d A d c

2 c.c.

c.c. 8

s p s p

s p s p

int 1 2 1 4

1 2 1 4

*

*

for the probability resulting from the interference of the two
paths.

The total probability is given by

∣ ( ) ( )∣
∣ ( ) ( )∣ ( )

e e

e e

= +

+ +

P A s A s

A d A d d. 8

tot s p s p

s p s p

1 2 1 4
2

1 2 1 4
2

It is then possible to distinguish the contribution of each path
and of that of their interference to the total probability as a
function of time delay Dt.

The numbers in table 1 indicate that for large negative or
positive delays, the interference part of the total probability is
very small, and so, as expected, each two-photon ionization
process evolves essentially independently. On the other hand,
for time delays aroundDt=0, where the two pulses overlap,
the process via interference becomes physically significant.

4.3. Pulses of about 80 field-cycles

The results of the third set are shown in figure 5. They were
obtained for t ,k =k 1, 2, of about 80 field cycles (duration of
about t1 = 17 fs, t2 = 14 fs), for D =t 0. Now, the spectral
widths are even smaller, with values 0.19 eV and 0.15 eV

Table 1.Analysis of the two-photon transition probabilities in terms of the two paths of scheme and their interference (see equations (8b,c,d)),
for the case where the full widths at half maximum, t1 and t ,2 are of the order of 40 cycles (see figures 3, 4). They were obtained for negative,
(the ω2 pulse precedes the ω1 pulse), and positive time delays, given in femtoseconds.

Δt (fs) P1s2p P1s4p Pint Ptot

−24.2 5.21×10−11 2.09×10−4 2.00×10−7 2.09×10−4

−19.4 1.28×10−8 2.09×10−4 3.23×10−6 2.13×10−4

−14.5 1.09×10−6 2.07×10−4 2.97×10−5 2.38×10−4

−9.7 3.33×10−5 1.77×10−4 1.52×10−4 3.63×10−4

−4.8 3.78×10−4 1.29×10−4 4.39×10−4 9.46×10−4

0 1.92×10−3 5.49×10−5 6.36×10−4 2.61×10−3

4.8 4.58×10−3 1.07×10−5 4.39×10−4 5.03×10−3

9.7 6.74×10−3 9.38×10−7 1.58×10−4 6.90×10−3
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respectively. Yet, a rather significant difference between the
SSEA and the SOTDPT results was obtained. In the former
case (SSEA), the height of the middle peak is ´ -3.5 10 ,2

whilst in the latter case (SOTDPT), with J spanning the full
P o1 spectrum, the height is ´ -4.2 10 .2 This means that, for
the system of interest, the SOTDPT starts to fail for pulses
with τ of about 80 field cycles.

This fact is rationalized as follows: The formalism for
AC fields corresponding to equation (8), (i.e. ( ) =E t

( )å = E t
k k1

2 = ( )å w= F tcos ,
k k k1

2
and ( )-¥ =E 0,—adia-

batic switch-on of the fields), shows that the transition
amplitude to the middle peak is equal to
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This amplitude diverges when resonant coupling occurs. The
derivation of formula (9) from formula (8) is rigorously valid
only for AC fields when time is taken to infinity. For very
short pulses, each term of the perturbation expansion is small,
and, therefore, it is expected that good convergence is quickly
obtained. This is a fundamental assumption of perturbation
theory for real N-electron systems. As the pulse duration
increases, the validity of this assumption is gradually lost.
Accordingly, the discrepancy between the nonperturbative
SSEA and the SOTDPT results indicates that for pulses with
t ,k =k 1, 2, of about 80 field cycles or more, the pulses start
approaching rapidly the AC limit. In this limit, the time-
dependent perturbation theory to lowest order is inadequate in
describing quantitatively, even for moderate intensities, the
herein studied two-photon resonant ionization phenomenon.

In view of the results and discussion of the previous
subsections, we close with a brief commentary on the Rabi
oscillations and their possible effect on the results:

The results that are displayed as figures 2–5, demonstrate
the phenomenon as a function of the (positive or negative)
time delay, Dt, with clarity. In view of the physics of Rabi
oscillation, it is useful to see how this is achieved. The field
strengths were chosen to be F1=0.00534 a.u. and
F2=0.015 a.u., so as to obtain Rabi frequencies that are
almost equal, Ω1=F1<1s2|z|1s2p> = 0.0022 a.u. and
Ω2=F2<1s2|z|1s4p> = 0.002 a.u. These frequencies cor-
respond to a Rabi cycle of about 70 fs.

A key datum in understanding the degree of significance
of Rabi oscillation, is the determination of their number, N ,os

for pulses that have Gaussian temporal shape. This number
can be estimated reliably by using the formula derived in the
appendix:

( )
( )

p
t= =N F V k

1

2 2 ln 2
, 1, 2, 10os k k k

where, ∣ ∣ ∣ ∣= á ñ = á ñV s z s p and V s z s p1 1 2 1 1 4 .1
2

2
2

For all cases shown in figures 2–5, the number of Rabi
oscillations is much smaller than 1 and therefore, the effects

that potentially can arise from them, (e.g. Autler–Townes
splitting in the photoionization spectrum), are negligible. This
fact explains our choice of this system, (He spectrum plus
laser parameters). The aim was to produce results where the
control which can be effected by varying Dt, (see the middle
peak corresponding to E12), is demonstrable with clarity.

5. Conclusion

Recent developments in experimental research on free-elec-
tron laser (FEL) show that it is now possible to produce
simultaneously two ultrashort pulses with wavelengths in the
XUV range, e.g. [1, 4, 5], Although it appears that problems
regarding their consistent characterization persist, (e.g. due to
‘jitter’), there is realistic optimism about their systematic use
in spectroscopic investigations of time-dependent phenomena
associated with electron dynamics.

The theoretical work reported in this paper has proposed
and shown computationally with reliable accuracy, that it is
possible to use ultrashort time delays, Dt, between two XUV
pulses of ultrashort duration (about 15 to 80 cycles for
wavelengths around 50–60 nm), and of moderate intensities,
in order to control the dynamics of photoelectron emission
based on a scheme that makes good use of different excitation
paths leading to the same final state.

Through analysis and trial calculations, we identified
excitations in the Helium spectrum, (figure 1), and an
appropriate range of pulse parameters, which demonstrate the
argument quantitatively in the case of two- XUV photon,
(58.4 nm and 52.22 nm), resonant ionization with few-fem-
tosecond Gaussian pulses.

Evidently, if two ultrashort FEL pulses with shorter
wavelengths are available for such synchronized interactions,
the spectrum must be chosen accordingly. (e.g. larger energy
differences in inner-shell resonant excitations or in excitations
in the spectra of positive ions).

The predictions and interpretations are quantitative, and
are based on the systematic solution of the fundamental
equations (1) and (2) nonperturbatively, according to the
SSEA [12], as well as perturbatively, according to the results
of SOTDPT, equations (8), (9). The relevant results on which
the discussion was based, are displayed in figures 2–5 and in
table 1.

Appendix

We use the model of a two-state system interacting with a
Gaussian pulse in the rotating wave approximation, in order
to obtain an analytic expression that connects the full width at
half maximum, t ,fwhm of the temporal form of intensity, to the
number of oscillations between the states. The formula is then
applied to the case of He subjected to the Gaussian pulses
treated in the text, using the calculated interaction matrix
elements, V1 and V .2
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The time-dependent two-state wavefunction is written as

( ) ( ) ( ) ( )y yY = +t b t c t . A1b c

Substitution of equation (A1) into the METDSE, and standard
algebra that is associated with the two-level model on reso-
nance in the RWA, produce the system of equations
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( )
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( )
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b
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g
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=

=

i
d t

dG t
VF t

i
d t
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2
1

2
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Here, ( ) ( ) ( ) ( )b g= =e e- -b t e t c t e t, ,i t i tb c eb and ec are the
energies of states yb and y ,c V is the matrix element of the
operator coupling the states, F is the peak field strength, and

( )G t is the integral function of the pulse temporal
shape ( ) ( )=g t .dG t

dt
With the boundary condition ( )b -¥ = 1, the solution

of equation (A2) is
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2
. A3

In the case of Gaussian pulse shape, [ ( ) ( )= a- -g t e ,Gauss
t tc 2

( )a =
t

2 ln 2

fwhm
2 ], ( )G t is given by

( ) ( ( )) ( )p
a

a= -G t erf t t
1

2
, A4c

where ( )erf x is the error function with the known property
[19]

( ) ( ) ( )-¥ = - ¥ =erf erf1, 1. A5

After some algebra, the time-dependent occupation prob-
ability turns out to be
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It is a modified Rabi oscillation, for which the variation of the
argument of the cos() term of (A6) from = -¥t to = +¥t ,
is, because of the property (A5)

( )
( )p

FV t
2 ln 2

. A7fwhm

When this quantity is divided by p2 , we obtain the number of
oscillations that the two-level system undergoes when sub-
jected to the interaction with the Gaussian pulse:

( )
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=N FV t
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2 2 ln 2
. A8os fwhm
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