ELECTRONIC SUPPLEMENTARY INFORMATION

Solution-phase molecular recognition of an azafullerene-quinoline dyad by a face-to-face

porphyrin-dimer tweezer

Anastasios Stergiou, *^a Aikaterini K. Andreopoulou, ^b Joannis K. Kallitsis^b and Nikos Tagmatarchis^{*a}

^a Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece

E-mail: <u>astergiou@eie.gr</u> (A. Stergiou), <u>tagmatar@eie.gr</u> (N. Tagmatarchis)

^b Department of Chemistry, University of Patras, University Campus, 26504 Rio-Patras, Greece

Figure S1. ¹H NMR spectrum of C_{59} N-FQ recorded in CDCl₃. The inset represents the region of the proton signals from the quinoline system.

Figure S2. ¹³C NMR spectrum of C₅₉N-FQ recorded in CDCl₃.

Figure S3. ¹⁹F NMR spectrum of C_{59} N-FQ recorded in CDCl₃. The inset represents expanded areas of the recorded signals.

Figure S4. FT-IR spectra of FQ (grey), $C_{59}N$ -COOH (black) and $C_{59}N$ -FQ (orange).

Figure S5. (a) ESI-MS mass spectrum, and (b) isotopic distribution pattern of $[C_{59}N-FQ+1]^+$.

Figure S6. Tauc plot for the determination of the energy gap of FQ, based on the UV-Vis spectra presented in Figure 1a.

Figure S7. FT-IR spectra of $C_{59}N$ -FQH⁺ (olive), $C_{59}N$ -FQ (orange) and a mixture containing $C_{59}N$ -FQH⁺ and $C_{59}N$ -FQ (purple).

Figure S8. (a) Job's plot for the $(H_2P)_2/C_{59}N$ -FQH⁺ system in benzonitrile, based on the absorbance changes of the Soret band of $(H_2P)_2$ with respect to the $X_{C59NFQH^+}$. (b) Absorbance changes of the Soret band of $(H_2P)_2$ with respect to the concentration of the guest $C_{59}N$ -FQH⁺, in benzonitrile. Inset: Hill plot for the $(H_2P)_2/C_{59}N$ -FQH⁺ system.

Figure S9. Fluorescence emission spectra of (a) FQ, (b) protonated FQH⁺, (c) $C_{59}N$ -FQ and (d) $C_{59}N$ -FQH⁺, recorded at three different excitation wavelengths (300, 320 and 340 nm) in toluene.

Figure S10. (a, b) DPV curves recorded upon incremental additions of up to 2.1 equivalents (gray lines) of $C_{59}N$ -FQ and $C_{59}N$ -FQH⁺, respectively. Purple line represents the DPV oxidation wave of free (H₂P)₂, red line refers to the reduction wave of the azafullerene cage within $C_{59}N$ -FQ and $C_{59}N$ -FQH⁺, while orange line displays the Fc⁺/Fc redox pair employed as internal reference. All graphs recorded in N₂-saturated solutions of 0.3 mM (H₂P)₂ in benzonitrile with 0.1 M TBAPF₆ as the supporting electrolyte at room temperature with scan rate 0.01 V/s.

Figure S11. Absorption and emission spectra of $(H_2P)_2$ in benzonitrile showing the spectral cross-section for the $0\rightarrow 0$ transition.