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Abstract. Since its first discovery as part of the Rous sarcoma 
virus (RSV) genome, the c‑SRC (SRC) proto‑oncogene 
has been proved a key regulator of cancer development and 
progression, and thus it has been highlighted as an attractive 
target for anti‑cancer therapeutic strategies. Though the exact 
mechanisms of its action are still not fully understood, SRC 
protein mediates crucial normal cell functions, such as cell 
development, proliferation and survival, and its dysregulation 
is considered as an oncogenic signature and a driving force for 
cancer initiation. In the present review, we present a flashback 
to the history of the Src research, while focusing on the most 
important milestones in the field. Moreover, we investigate the 
proposed regulatory mechanisms and molecules that mediate 
its action in order to designate putative therapeutic targets and 
useful prognostic and/or diagnostic tools. Furthermore, we 
present and discuss existing therapeutic approaches that are 
explored in clinical settings.
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1. Introduction

The proto‑oncogene c‑SRC (SRC) is a non‑receptor tyrosine 
kinase, its expression and activity is enhanced in various 
human cancers and correlates with malignancy progression 
and development of distant metastasis (1‑3). Since there 
is increasing evidence of its crucial role in tumor progres‑
sion (4,5) c‑SRC has emerged as a promising target for 
anticancer therapy. Consequently, SRC inhibitors have been 
evaluated in the development of clinical therapies (6,7). 
However, the exact mechanisms of action of c‑SRC and the 
critical respective pathway involved in malignancy are not 
fully elucidated.

c‑SRC is involved in the maintenance of normal cell 
homeostasis regulating a wide range of cellular events, 
including cell growth, differentiation, proliferation, survival, 
adhesion, migration and motility (8,9). In normal cells, the 
expression levels and activity of c‑SRC are strictly regu‑
lated by several mechanisms. The kinase activity of c‑SRC 
is controlled by C‑terminal SRC kinase (CSK), which 
phosphorylates a conserved tyrosine residue in the c‑SRC 
carboxy‑terminal domain (Tyr530). This is reversed by phos‑
phatases such as protein tyrosine phosphatase 1B (PTP1B), 
resulting in c‑SRC activation. Additionally, activation of 
growth‑factor receptors leads to their association with the 
c‑SRC homology 2 (SH2) domain, which disrupts inhibitory 
intramolecular interactions to promote c‑SRC activation. 
Other proteins, such as CRK‑associated substrate (CAS) and 
FAK, bind to the c‑SRC SH2 and SH3 domains to stimulate 
c‑SRC activation by a similar mechanism. Moreover, c‑SRC 
is also negatively regulated via the ubiquitin‑proteasome 
pathway, which is mediated by E3 ubiquitin‑ligase Cbl 
and Cullin‑5 (10‑12). Hence, c‑SRC is regulated at both 
transcriptional and post‑translational levels by a variety of 
mechanisms (10‑12). The disruption of any of the c‑SRC regu‑
latory mechanisms may trigger cancer phenotypes through 
uncontrolled proliferation, enhanced survival, and invasive‑
ness, in cooperation with other oncogenic signals (2). Once 
activated, as by growth factors or integrins, c‑SRC triggers 
downstream signaling pathways, including the RAS/MAPK, 
phosphatidylinositol 3‑kinase (PI3K)/AKT, and STAT path‑
ways, leading to malignant phenotypic changes (13).

Historical retrospective of the SRC oncogene 
and new perspectives (Review)

ARISTOFANIA SIMATOU1,  GEORGE SIMATOS1,  MARIA GOULIELMAKI2,  
DEMETRIOS A. SPANDIDOS3,  STELLA BALIOU2  and  VASSILIOS ZOUMPOURLIS2

1First Breast Unit, Saint Savas Cancer Hospital, 11522 Athens; 2Biomedical Applications Unit, 
Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens; 

3Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece

Received June 11, 2020;  Accepted July 14, 2020

DOI: 10.3892/mco.2020.2091

Correspondence to: Dr Vassilios Zoumpourlis, Biomedical 
Applications Unit, Institute of Chemical Biology, National Hellenic 
Research Foundation (NHRF), 11635 Athens, Greece
E‑mail: vzub@eie.gr

Key words: Src oncogene, Rous sarcoma virus, carcinogenesis, 
cancer therapy, miRNAs



SIMATOU et al: HISTORICAL RETROSPECTIVE OF THE SRC ONCOGENE AND NEW PERSPECTIVES2

2. Discovery of Rous sarcoma virus

In 1909, at the Rockefeller Institute, Peyton Rous started his 
studies on a sarcoma that had been developed in the breast muscle 
of a hen. In his original experiments, Rous managed to transmit 
the tumor to other birds of the same species, by implanting frag‑
ments of the initial tumor. In his subsequent experiments, he 
developed a short protocol for the induction of tumors in chickens. 
He used a chicken with sarcoma of breast muscle, removed the 
mass and broke it up into small chunks of tissue. Subsequently 
he ground up sarcoma with sand and filtrated it through a fine 
pore filter. Finally, he injected the filtrate into a young chicken, 
and observed the growth of sarcomas. He then hypothesized that 
the tumor‑inducing agent should be an oncogenic virus, later 
becoming known as Rous sarcoma virus (RSV), since this agent 
was possible to pass through a filter too fine to contain bacteria or 
chicken cells and was capable of causing cancer with a predict‑
able pattern (14,15). This finding was of great importance as it 
was the first proof of viral carcinogenesis and thus triggered 
the discovery of many other types of tumor‑inducing viruses in 
non‑human primates such as mice, cats, rabbits (16‑19) and later, 
of the first oncogenic human virus, Epstein Barr in 1964 (20). 
Additionally, the discovery of this pioneer oncogenic retrovirus 
(RSV) was the hallmark of the onset of the development of 
research on the molecular mechanisms of carcinogenesis (21). 

For almost half a century the research interest was 
focused on chemical carcinogenesis (22‑27). The revival of 
research regarding oncogenic retroviruses came in 1958 in the 
Laboratory of Renato Dulbecco. Temin and Rubin developed a 
quantitative in vitro bioassay for the transformation of normal 
chicken embryonic fibroblasts with RSV. More specifically, 
in their experiment, they showed that when the virus was 
introduced to Petri dishes where embryonic fibroblasts where 
cultured, the RSV(+) cells obtained an evolutionary advan‑
tage and were transformed, acquiring cancer morphology 
under the microscope, i.e., they were less adherent and often 
rounded up, with increased size and/or number of nucleoli (28). 
In 1966, the Nobel prize was finally awarded to Peyton Rous 
for his discovery. The next question that arose was whether the 
transformation of cellular phenotypes was due to the constant 
influence of the RSV genome. In 1970, an experiment in 
Berkeley confirmed the above hypothesis. In this experiment, 
when fibroblasts where cultured with a heat‑sensitive mutation 
of RSV at permissible temperatures (37°C) the cells were 
transformed. When the cultures containing these cells were 
transferred to an impermissible temperature (41°C), the fibro‑
blasts regained their normal morphology and they re‑acquired 
a cancerous morphology when re‑exposed to 37°C. It was 
evident that the transforming phenotype was maintained from 
the ongoing effects of this protein (29‑31). The Src oncogene of 
RSV became the prototype for dozens of other transforming 
genes in oncogenic viruses. Its product was identified by Brugge 
and Erikson in 1977, as a protein with tyrosine‑kinase activity.

3. Cellular origin of retroviral oncogenes

In 1961, the RSV was proved to contain an RNA genome (32), 
whose continuous presence was necessary for maintaining cell 
transformation. However, the mechanism by which the viral 
RNA genome was incorporated into the infected cells remained 

undefined. In 1970, the simultaneous research of Temin and 
Baltimore led to the discovery of reverse transcriptase, an 
enzyme that catalyzes the transcription of the retroviral RNA 
into DNA (33), and that is also present in RSV. Through reverse 
transcriptase, the monoclonal RNA of the virus is converted to a 
double‑stranded DNA, and the viral genome is then incorporated 
into the nuclear DNA via another enzyme, called integrase (34). 
Initially, it was considered that a copy of the src transforming 
gene exists only within infected cells (35‑38). In 1974, the labora‑
tory of Michael Bishop and Harold Varmus, taking advantage 
of the reverse transcriptase, undertook the design of a special 
gene detector for src, in order to understand its properties and 
origin. To their surprise, they found that the src detector could 
also be hybridized with the genetic material of non‑infected cells 
of chicken and other species (two copies per genome of diploid 
cells) (35,37,38). They also observed that the more distant the 
evolutionary affinity with the chicken, the weaker the degree of 
hybridization. The data supported the idea that the src sequences 
found in non‑infected cells, are actually part of their normal 
genome (the cellular version of src=c‑src) (35‑39). In 1975, 
the Nobel prize was awarded to Temin and Baltimore, for the 
discovery of reverse transcriptase (33,34).

From 1976 to 1980 the research focused on the differences 
between the c‑src and, the v‑src, which is located within the RSV 
genome. The first one exhibited physiological cellular behavior 
as opposed to the second, which acts as a potent oncogene. The 
explanation was simple; the src gene of RSV was not initially 
present in the primordial RSV retrovirus. A pre‑existing virus 
(ALV=src negative) was detected that caused leukosis in 
birds and which, through genetic modifications, incorporated 
sequences from the genome of infected cells (RSV=src posi‑
tive). Subsequent experiments showed that the structure of the 
RSV genome is closely related to this common infectious agent 
of birds, called ALV (35‑40). Both of them include three genes: 
Gag, pol and env. The gag gene encodes for proteins that take 
part in the formation of the nucleoprotein nucleus; the pol gene 
encodes for integrase and reverse transcriptase; and the env gene 
determines the glycoprotein precursors. The only difference 
between the two genomes lies in the ability of the src gene to 
cause cellular transformation (39,40). Thus, for the first time, 
the concept of proto‑oncogene was introduced, implying that a 
normal gene can be altered by mutation or by a pre‑viral inser‑
tion, to become an oncogene, thereby contributing to cancer 
development. Since 1980, retroviruses have been used as probes, 
to detect the corresponding proto‑oncogenes in humans, and 
researchers have shifted the focus on chemical carcinogen‑
esis (41‑43). This second theory confirmed the cellular origin of 
retroviral oncogenes and additionally contributed to the unravel‑
ling of possible mechanisms for proto‑oncogene activation, such 
as amplification, pre‑viral insertion, single nucleotide polymor‑
phism and translocation (41‑45). In 1989, the Nobel prize was 
awarded to Bishop and Varmus for the discovery of the cellular 
origin of retroviral oncogenes (46,47). The most important 
historic milestones on Src research are presented in Fig. 1.

4. MicroRNAs as the fine tuners of SRC oncogenic signaling 

As mentioned above, c‑SRC is the first reported oncogene 
and its product is the first non‑receptor tyrosine kinase to 
be identified (48). In many human neoplasms, including 
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colorectal, breast, prostate, pancreatic, head and neck, and 
lung carcinomas, gliomas and melanoma, SRC overexpression 
has already been detected. In fact, its dysregulation could be 
characterized as an oncogenic signature and as a key factor 
for tumor progression (3,5,49). However, the molecular mecha‑
nisms underlying c‑SRC‑mediated tumor progression are not 
fully understood. Recent studies have highlighted several 
microRNAs (miRNAs) as key molecules in SRC‑mediated 
tumor progression (50). miRNAs are a family of small, 
endogenous and evolutionarily conserved non‑coding RNAs 
(containing about 22 nucleotides) involved in the regulation of 
essential cellular and functional processes, including prolif‑
eration, differentiation, survival and stress responses. The 
majority of miRNAs are transcribed from DNA sequences into 
primary miRNAs (pri‑miRNAs) and processed into precursor 
miRNAs (pre‑miRNA), and finally mature miRNAs. Their 
functionality is bimodal, since they locate complementary 
mRNAs and either regulate protein translation or induce 
degradation of the target mRNA (51). Hence, miRNAs act 
either as oncogenes or tumor suppressors and are important 
regulators of gene expression at the post‑transcriptional 
level (52). In subsequent experiments, microarray profiling 
revealed that c‑SRC regulates a set of miRNAs, which act as 
tumor suppressors, when their expression is downregulated. 
Generally, miRNAs are commonly silenced in human cancers 
by mutation, methylation, loss of heterogeneity or by other 
post‑transcriptional modifications (53). Studies on the function 
of these miRNAs uncovered miRNA‑mediated c‑SRC onco‑
genic signaling and crosstalk between Src and other oncogenic 
signaling pathways, such as the focal adhesion‑mediated 
pathway and the mammalian target of rapamycin, mTOR (50). 

Recently, the mechanisms underlying SRC‑mediated acti‑
vation of mTOR signaling, a major downstream effector of the 
PI3K pathway, were found to be regulated by miRNA expres‑
sion in various cancer types (54,55). More precisely, functional 
analysis showed that transcription of miR‑99a, which is often 
downregulated in various human cancers, and is regulated by 
SRC‑related oncogenic pathways, like the epidermal growth 
factor receptor (EGFR) pathway. It was demonstrated that 
mir‑99a targets mTOR and fibroblast growth factor receptor 

3 (FGFR3), both of which are strongly related with human 
cancers (56,57). In conclusion, this study indicated that 
miR‑99a is the missing link between SRC and mTOR, which 
have both been correlated with human cancer. Furthermore, 
miRNA‑mediated mTOR regulation has also been shown in 
studies of miR‑100 and miR‑199‑3p (58,59). Further studies 
suggested that miRNAs also regulate focal adhesion and acti‑
vation of downstream effectors in SRC‑activated cancer cells. 
More specifically, integrin‑linked kinase (ILK) is targeted by 
miR‑542‑3p, a downregulated miRNA in SRC‑transformed 
cells (60‑63). Apart from the fact that downregulation of 
miR‑542‑3p corresponds with upregulation of c‑SRC and ILK, 
there is also a correlation between ILK upregulation and c‑SRC 
activation in human colon cancer tissues. Furthermore, it was 
found that miR‑542‑3p‑mediated ILK downregulation induces 
inactivation of c‑SRC and FAK in human colon cancer cells 
(feedback loop). 

Last but not least, miRNA mediates regulation of SRC 
expression itself, and this could also be a logical explanation for 
the resistance that is observed when SRC‑targeting drugs are 
used. In detail, miR‑23b functions as a tumor suppressor and 
as a mediator of metastasis in different cell lines (64). miR‑27b, 
which targets paxillin, a platform for adaptor proteins and a 
critical component of the focal adhesion complex, is under the 
control of the PI3K pathway (65‑68). Taking into consideration 
that both of them are downregulated in human castration‑resis‑
tant prostate cancers (69), c‑SRC could be regulated by the 
miR‑23b/27b 24‑1 gene cluster via a dual mechanism: Regulation 
of c‑SRC kinase activity via either miR‑27b or miR‑23b medi‑
ated regulation of paxillin. As a result, upregulation of c‑SRC 
expression may amplify the positive‑feedback loop mediated 
by the miR‑23b/27b 24‑2 gene cluster thus, inducing tumor 
progression mediated by c‑SRC activity (50).

5. miRNA‑mediated SRC oncogenic signaling in selected 
cancer types 

As many miRNAs are down‑regulated in human cancers 
through various genetic and epigenetic alterations, such as 
methylation and loss of heterogeneity, research was focused 

Figure 1. Historical retrospective of the major discoveries regarding the Src oncogene.
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on the role of down‑regulated miRNAs in c‑SRC transforma‑
tion (53). Subsequent experiments highlighted the key role of 
miR‑137 in the development of SRC‑mediated human colon 
cancer (70). To elucidate the role of miR‑137 and its correlation 
with SRC signaling, the HCT116 cell line, anti‑sense miRNAs 
and also dasatinib (a specific SRC kinase inhibitor) were used. 
It was finally concluded that miR‑137 is down‑regulated in 
the early stages of cancer progression (70). In another experi‑
ment, the role of miR‑129‑1‑3p in human colon cancer was 
evaluated by assessing miR‑129‑1‑3p expression in 10 pairs of 
primary colon tumors and adjacent non‑cancerous tissues using 
qRT‑PCR and western blot analysis to examine the activity of 
SFK (SRC pY418). It was clarified that miR‑129‑1‑3p was mark‑
edly downregulated and SFK activity was greatly upregulated 
in colon cancer tissues (71). Additional studies demonstrated 
that certain miRNAs induce SRC oncogenic signaling by 
targeting SRCIN1, a specific SRC kinase signaling inhibitor. 
For example, miR‑665 suppresses SRCIN1 expression, which 
normally acts as a negative regulator of MAPK/ERK signaling 
in ovarian cancer cells (72). In ovarian cancer, sustained activa‑
tion of MAPK/ERK signaling is associated with strong cell 
proliferation and metastatic potential (73). The western blotting 
results showed that inhibition of miR‑665 increased SRCIN1, at 
both the mRNA and protein level, and inactivated MAPK/ERK 
pathway in ovarian cancer (74). Similar findings were reported 
in the case of miR‑150. It was observed that miR‑150 promotes 
the proliferation and migration of lung cancer cells by targeting 
SRC kinase signaling inhibitor 1 (SRCIN1), therefore acting 
as an oncogene (75). Subsequent studies examined the role 
of miR‑17‑5p in the evolution of osteosarcoma and revealed a 
component of the miR‑17‑5p/SRCIN1/EMT signaling pathway. 
Furthermore, classic EMT markers such as N‑cadherin, 
E‑cadherin and Snail were quantified by western blot analysis. 
Finally, it was proven that SRCIN1 is a direct target of miR‑17‑5p 
and silencing of this miRNA could change the expression of 
EMT markers and arrest cell growth (76). SRCIN1 was found 
to be downregulated in breast cancer in previous studies (77). 
Moreover, miR‑374a was shown to induce cell proliferation, 
invasion and migration of gastric cancer cell via binding to 
SRCIN1 (78). It was also found to be involved in pancreatic 
cancer through the axis miR‑374a/SRCIN1/EMT (79). Finally, 
a recent study focused on the identification of miR‑373 levels 
in metastatic neuroblastoma samples and its interaction with 
SRCIN1 (80). 

In conclusion, it becomes evident that miRNA dysfunction 
is involved in various human cancers and miRNAs can func‑
tion as both oncogenes and tumor suppressors (81,82). Due 
to their implication in the regulation of sustained cell growth 
signaling, miRNAs are considered as potential biomarkers and 
therapeutic targets for cancer treatment (83).

6. Exosomes as the fine tuners of oncogenic signaling

As mentioned above, SRC functions as a molecular signaling 
switch and plays a central role in the regulation of cell prolif‑
eration, differentiation, adhesion, and migration in normal 
cells (8), and is commonly upregulated in various human 
cancer cells. The activation of SRC is strictly regulated by 
several molecular mechanisms. For example, the kinase 
activity of SRC is negatively regulated by the phosphorylation 

of a regulatory tyrosine at its c‑terminal tail, catalyzed by 
CSK (84,85). On the other hand, SRC is positively regulated 
through several extracellular signals, such as growth factors 
and extracellular matrices, which lead to the interaction with 
certain adaptor proteins, including FAK and Cas (49,86), and 
consequently to the activation of downstream signaling path‑
ways. Furthermore, cellular localization of SRC, determines 
its activity. Inactive SRC is located to the perinuclear region, 
and once activated, it is translocated to the plasma membrane, 
under the control of members of the Rho family (87). 

Recent studies have shown that activated SRC is downregu‑
lated through degradation by either lysosomes or proteasomes, 
with the functional difference between them remaining 
unclear (10,88‑90). More precisely, the E3 ubiquitin ligase Cbl 
mediates the ubiquitination of SRC and induces its degradation 
via the ubiquitin‑proteasome pathway (89,90). In a recent study, 
ubiquitination of activated SRC at Lys429 was demonstrated to 
promote its secretion via small extracellular vesicles (sEVs) (91). 
In this experiment, MDCK cells expressing a modified SRC 
that can be activated by hydroxytamoxifen were used in order 
to mimic SRC upregulated cancer cells. When proteasome 
inhibition (MG132) was performed, no accumulation of ubiqui‑
tinated SRC was noted, suggesting that ubiquitination of SRC 
preferentially promotes its secretion via sEVs to decrease the 
levels of activated SRC in these cells. It was also identified that 
Lys 429 is a critical ubiquitination site required for sEV‑medi‑
ated secretion. In an attempt to determine how the mutation 
at Lys429 on SRC (R429) affects the cell, it was observed that 
it caused resistance to ubiquitination and decreased its secre‑
tion via sEVs. Additionally, since the cbl ablation caused a less 
potent suppression of the sEV secretion, it was hypothesized 
that other E3 ligases might also be required. In addition, 
activation of R429 mutant enhanced SRC‑induced invasive 
phenotypes, supporting the hypothesis of a stronger activation 
of FAK at the early stages (86,91). These findings have shed 
light on this missing link between SRC ubiquitination and sEV 
secretion, and suggest a tumor suppressive role for the secretion 
of SRC via sEVs. The fact that SRC is detected in exosomes 
from various cancer cells, such as colorectal (92), prostate (93), 
and breast (94) cancer cells, indicates that secretion of SRC via 
exosomes may be a common mechanism used to regulate SRC 
in a wide array of cell types and seems to constitute a novel 
promising therapeutic target (95).

7. SRC inhibitors as anticancer agents in clinical trials

The role of SRC in oncogenesis has prompted the detection 
of other members of the SRC family of protein kinases and 
the search for anticancer therapies. To this end, most of the 
FDA‑approved inhibitors of related protein kinases are directed 
toward neoplastic diseases. However, since SRC is not a primary 
driver of tumorigenesis, but rather a participant in pathways of 
cell division, invasion, migration and survival, administration 
of existing inhibitors of SRC as a monotherapy has not been 
proved efficient in cancer treatment (96). Moreover, there are 
currently no available prognostic biomarkers related to SRC 
activity that could be used for patient selection in clinical trials.

Currently, four oral SRC/multi‑kinase inhibitors have been 
approved by the FDA for the treatment of various malignan‑
cies. Bosutinib, a BCR‑Abl, SRC, Lyn, Hck, Kit, and PDGFR 
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inhibitor approved for the treatment of Philadelphia‑positive 
chronic myeloid leukemia (Ph+CML) and acute lymphoblastic 
leukemia (ALL), is currently evaluated in clinical trials for 
the treatment of breast cancer, glioblastoma and other solid 
tumors (97‑99). Dasatinib, an inhibitor of BCR‑Abl, SRC, Lck, 
Fyn, Yes, PDGFR, and other kinases, approved for the treatment 
of CML is currently evaluated in clinical trials against various 
solid tumors (100). This inhibitor is also evaluated in combi‑
nation with insulin‑like growth factor 1 Receptor (IGF‑1R) 
antibody AMG479 against embryonal or alveolar rhabdomyo‑
sarcoma. Ponatinib, an inhibitor of BCR‑Abl, PDGFR, VEGFR, 
members of the SRC family and other kinases, approved for the 
treatment of CML and ALL is currently evaluated in clinical 
trials against several leukemias (101). Vandetanib is an inhib‑
itor of EGFR, VEGFR, RET, members of the SRC family and 
other kinases, approved for the treatment of medullary thyroid 
carcinoma and is currently evaluated in clinical trials against 
numerous solid tumors (102‑104). Saracatinib (AZD0530) an 
SRC and BCR‑Abl inhibitor is currently evaluated in clinical 
trials against colorectal, gastric, ovarian, small and non‑small 
cell lung cancers and against metastatic osteosarcoma in the 
lung (105‑107). A related drug (AZD0424) alone or in combi‑
nation with other agents is in Phase I clinical trials against 
various types of solid tumors. KX2‑391 is another orally 
administered small molecule SRC kinase inhibitor with poten‑
tial antineoplastic activity. Interestingly, instead of binding 
to the ATP‑binding site, like other SRC inhibitors, KX2‑391 
specifically binds to the peptide substrate binding site of SRC 
kinase; in this way, kinase activity is eliminated, potentially 
resulting in the inhibition of primary tumor growth and the 
suppression of metastasis. This inhibitor is being evaluated in 
clinical trials against multiple cancer types, either alone or in 
combination with paclitaxel (108).

At present, there is a critical number of clinical trials that 
investigate the therapeutic value of putative specific SRC 
or SRC‑related inhibitors as anti‑cancer agents, alone or in 
combination with other agents (Table I) (108). The clinical 
efficacy of these agents against the above‑mentioned cancer 
types remains to be established.

8. Conclusion

The discovery of the Src gene was the trigger for the emergence 
of other oncogenes, as well as the understanding of the genetic 
basis of cancer. Therefore, different molecular mechanisms 
are involved in tumor progression, differentiation and migra‑
tion. Despite the fact that the src gene is now well studied, 
the molecular pathways mediating cancer progression have not 
yet been clarified. The contribution of miRNAs and exosomes 
in the acquisition of malignant phenotype may contribute an 
emerging therapeutic strategy of combinational therapies with 
dual pathway inhibition, although further studies are needed. 
Finally, both exosomes and miRNAs could be useful diag‑
nostic, prognostic and predictive biomarkers in SRC‑induced 
carcinogenesis, thus contributing to a more rational and 
effective classification and treatment of these patients.
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