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Abstract: A new organic material with three 4,4-difluoro-4-borata-3a-azonia-4a-aza-s-indacene dyes
(BODIPYs) at the periphery of the central core is successfully synthesized (3BDP3T) and its correspond-
ing aqueous nanoparticles are prepared via the encapsulation approach and characterized in detail
both experimentally and theoretically with the aid of the Density Functional Theory (DFT). The linear
and non-linear optical properties of the synthesized material are also studied. Until now, the devel-
opment of organic materials with three BODIPYs as substituents is limited and their properties are
not fully resolved. The obtained 3BDP3T-based nanoparticles exhibit far-red and near infrared (NIR)
emission with photoluminescence quantum yields of 0.021, which is promising as a new fluorescent
contrast agent in the far-red and NIR spectral regions.

Keywords: hyperpolarizabilities; absorption spectra; DFT computations; nanoparticles; BODIPY;
probe; near infrared; conjugated polymers

1. Introduction

Acceptor-Donor-Acceptor (ADA) organic electronic materials are a class of functional
dyes that provided the largest impact to the field of organic electronics and, especially, the
small molecule-based organic photovoltaics (OPV) materials during the last five years [1–5].
According to this concept, an electron-donating conjugated oligomer is functionalized at its
ends with two electron-deficient units among which dicyanovinylene groups are the most
widely utilized [6]. Stronger heterocyclic acceptors were originally utilized less frequently
despite their beneficial influence on the absorption properties, i.e., reducing the band gap
and increasing the color tunability.

Such a heterocyclic electron withdrawing the building block is the 4,4-difluoro-4-borata-
3a-azonia-4a-aza-s-indacene dye, which is more commonly known as BODIPY. BODIPY-
type dyes are an emerging class of red/near infrared (NIR) emitters (and absorbers) [7,8]
because, even though the monomeric BODIPY is a green-emitting fluorophore (quantum
efficiency up to 100% with narrow absorption and emission bands < 50 nm) [9], it can
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be functionalized by means of a few synthetic steps so as to shift the energy gap into the
NIR [10]. Discovered for the first time in 1968 by Treibs and Kreuz [11], BODIPYs are of
wide importance and have a broad use as laser dyes in biological sensing, organic electronic,
and other possible applications [12–17].

Taking these into account, we have recently reported the synthesis of a novel A-D-A
type near infrared (NIR) organic material (referred to as NIRBDTE, for brevity, please see
Figure 1 for the chemical structure) containing two BODIPY moieties as the (A) units and
an oligothiophene segment as the electron donating (D) part [10]. NIRBDTE was then used
as the emitter in NIR organic light emitting diodes (OLEDs) with the highest efficiency
reported so far for a metal-free fluorescent material, emitting at 720 nm. Motivated by these
results, we were interested in exploring alternative chemical approaches, such as going
beyond the classical A-D-A type organic electronic materials, by functionalizing electron
donating units with more than two BODIPY dyes for bioimaging. Organic materials
with 3 BODIPYs meso substituted in the periphery of an electron donating molecule (D)
are limited and their synthesis is particularly challenging. However, the development
of stable meso substituted BODIPYs are the key synthetic intermediates toward higher
dimensionality structures. These type of 2D or 3D organic materials are expected to provide
new insights on the optical or electronic properties.
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Fluorescent probes based on small organic molecules have become fundamental tools
in the science of biology due to their ability to provide information about the localization
and quantity of the biological molecules without having them to be genetically modi-
fied [18]. One of the major disadvantages for the use of organic fluorophores in bioimaging
is their failure to continuously fluoresce for extended periods. Moreover, most of fluo-
rophores spectra are usually wide, which sometimes contributes to overlap of signals from
numerous biological fluorophores. Therefore, between the different fluorophores, BODIPYs
are the most popular group. Their efficiency of the high photostability, sharp absorption
and emission patterns, high fluorescence quantum yields, and high extinction coefficients
makes them perfect candidates for bioimaging [7,19].

Based on this, in this contribution, we present the successful synthesis and properties
characterization of a new organic electronic material consisting of three BODIPY dyes at the
periphery of the benzo[1,2-b:3,4-b′:5,6-b”]trithiophene (3BDP3T; Figure 1) for the first time.
We manage to prepare 3BDP3T-based aqueous nanoparticles utilizing the encapsulation
method and study its optical properties toward its application as far-red to near infrared
(NIR) dye probe for fluorescent optical imaging. In order to shed some light on the
experimental findings, a series of theoretical computations is also reported.
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2. Experimental Section
2.1. Materials

All reactions are air and light sensitive and, therefore, were performed under argon
and in the dark. All glassware was washed using detergent (Teepol), rinsed with excess
water, acetone and methylene dichloride, and dried in an oven at 120 ◦C. All solvents
and reagents were purchased from Aldrich. Toluene was distilled using calcium hydride
(CaH2) and benzophenone prior to polymerization. The 2,5,8-tris(trimethylstannyl)benzo[1,2-
b:3,4-b′:5,6-b”]trithiophene was purchased from Sunatech Inc. (Suzhou, China) and 10-(5-
bromothiophen-2-yl)-5,5-difluoro-5H-4λ4,5λ4-dipyrrolo[1,2-c:2′,1′-f ][1,3,2]diazaborinine was
synthesized according to the literature [10].

Synthesis of 3BDP3T. 10-(5-bromothiophen-2-yl)-5,5-difluoro-5H-4λ4,5λ4-dipyrrolo
[1,2-c:2′,1′-f ][1,3,2]diazaborinine (154 mg, 0.435mmol) was mixed with the 2,5,8-tris
(trimethylstannyl)benzo[1,2-b:3,4-b′:5,6-b”]trithiophene (100 mg, 0.136 mmol), tris
(dibenzylideneacetone)dipalladium(0) (5%, 6,4 mg) and tri(o-tolyl)phosphine (10%, 4,1 mg)
in toluene. The mixture was stirred overnight at 110 ◦C. The crude product was cooled
down and toluene was removed under reduce pressure. The product was purified by silica
gel column chromatography using a mixture of hexane:dichloromethane 7:3 eluent and
then recrystallized from hexane to afford the 3BDP3T as an orange powder (80 mg, 55%).
1H NMR (CDCl3, 600 MHz) δ 7.96 (s, 6H), 7.58 (d, J = 3.9 Hz, 3H), 7.48 (d, J = 3.6 Hz, 3H),
7.34 (d, J = 4.21 Hz, 6H), 7.24 (s, 3H), 6.62 (d, J = 4.21 Hz, 6H).

2.2. Instrumentation

Nuclear Magnetic Resonance (NMR): 1H-NMR measurement was carried out in solution
(1% w/v) using CDCl3 (Acros 99.6%) as the solvent and tetramethylsilane (TMS) as the
integral standard on a Varian 600 MHz NMR spectrometer (Palo Alto, California) at an
ambient temperature.

2.3. Dynamic Light Scattering (DLS)

The structural study was performed using dynamic light scattering (DLS) in order to
determine the mean diameter (d, nm) of nanodroplets and the polydispersity index (PdI)
of the system. DLS measurements were performed using the Zetasizer NanoZS device
(ZEN3600) from Malvern Instruments (Malvern, UK) equipped with He-Ne (632.8 nm)
laser and detection was performed at a scattering angle of 173◦. The mean diameter of the
dispersed nanodroplets was calculated by the Stokes-Einstein law.

RH =
kBT

6πηD
(1)

where RH is the hydrodynamic radii of nanodroplets, kB is the Boltzmann constant, T is
the absolute temperature, η viscosity of microemulsion (in specific temperature), and D is
the diffusion constant, respectively [20].

After their preparation, the microemulsions were placed in a suitable glass cell in dust-
free conditions. The experimental data were processed using version 6.32 of the Malvern
Zetasizer Nano software (Malvern Panalytical Ltd., Enigma Business Park, Malvern, UK).
The temperature during the measurements was constant at 25 ◦C. Experiments were
performed in triplicate for each sample, and results were presented as an average of ± S.D.

2.4. Absorption and Photoluminescence

The absorption spectra of the tetrahydrofuran (THF) solutions and the aqueous Conju-
gated Polymer Nanoparticles (CPNs) were measured using a UV-Visible Analytik Jena AG
Germany, Specord 205 spectrophotometer using a 1-cm path length quartz cuvette. The THF
solutions were in dry conditions to prevent the stabilizers interference with the fluorescence
measurement. The photoluminescence (PL) emission and the relative PL quantum yield
(PLQY) was measured by PL spectroscopy when using a dilute fluorenone solution (excita-
tion wavelength of 380 nm) in acetonitrile as the reference (Φr = 0.032) [21,22]. The used
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excitation wavelength was 520 nm. The cuvette was a 1 cm cuvette and 90◦. All the fluores-
cence measurements were performed under argon atmosphere. A software-controlled FS5
Spectrofluorometer (Edinburgh Instruments Ltd., Livingston, UK) enabled the acquisition
of photoluminescence spectra. The photoluminescence quantum yield has been calculated
from the equation below [23].

Φx = Φr(Fx/Fr)·(Ar/Ax)·(n2
x/n2

r) (2)

where,

ΦX, is the photoluminescence quantum yield of the unknown sample,
F, is the area of the integration of the emission intensities,
n, is the refractive index of the sample and the reference,
A, is the solution optical density at the excitation wavelength.

The indexes ‘r’ and ‘x’ are referred to as the refence and the unknown sample, respectively.
Cyclic Voltammetry: The cyclic voltammetry was conducted on a VersaSTAT4 potentiostat
galvanostat with platinum (Pt) disk, Pt wire, and standard calomel electrode (SCE) as
the working electrode, counter electrode, and reference electrode, respectively, using
a 0.1 M-solution of tetrabutylammonium hexafluorophosphate (n-Bu4NPF6) in anhydrous
acetonitrile at a potential scan rate of 50 mV s−1. Thin films of samples were deposited
onto the Pt disk working electrode from a chloroform solution. The potential of the SCE
reference electrode was internally calibrated by using the ferrocene/ferrocenium redox
couple (Fc/Fc+). The electrochemical energy levels were estimated by the highest occupied
molecular orbital EHOMO = −[4.8 + (Eonse

Ox − Fc1/2)] and lowest unoccupied molecular
orbital ELUMO = −[4.80 + (Eonse

Red − Fc1/2)].

2.5. Theoretical Calculations

We employed DFT to calculate a series of properties, the EHOMO and ELUMO, the
first allowed electronic transition (excitation energy), the dipole moment, and the elec-
tronic (hyper)polarizabilities of 3BDP3Ta and 3BDP3Tb, both in the gas phase and in
solution. In particular, EHOMO and ELUMO were calculated by employing a series of func-
tionals (e.g., PBE1PBE/6-31G**, HSEH1PBE/6-311G** etc.) and their performance will
be checked by using the experimental values. The computation of linear and non-linear
optical response properties ((hyper)polarizabilities) will provide insights on the interac-
tion of these derivatives with light, thus, revealing certain features associated with their
structure-property relationship.

Linear and Non-Linear Optical Properties: Definitions. When a molecule is set in a uniform
static electric field, F, its energy, E(F), is given by:

E(F) = E0 − µiFi − (1/2)αijFiFj − (1/6)βijkFiFjFk − (1/24)γijklFiFjFkFl − . . . , (3)

where E0 is the field-free energy, µi, αij, βijk, and γijkl are the dipole moment, polarizability,
first hyper-polarizability, and second hyper-polarizability components, respectively. A sum-
mation over repeated indices is implied. The polarizabilities and the hyper-polarizabilities
are also called linear (L) and nonlinear optical (NLO) properties. The reported values for
the dipole moment (µ), polarizability (α), and hyper-polarizabilities, first (β) and second
(γ) are given by:

µ = (µx
2 + µy

2 + µz
2)1/2 (4)

α =
1
3
(αxx + αyy + αzz) (5)

∑
i=x,y,z

µiβi
||µ|| (6)
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where
1
5 ∑

j=x,y,z
(βijj + βjij + βjji) (7)

γ =
1
5
(γ xxxx + γyyyy + γzzzz + 2γxxyy + 2γxxzz + 2γyyzz) (8)

Finite field approaches [24], by employing Equation (3), have been used to compute
the (hyper)polarizability components, by applying a step field of 0.001 a.u.

The Density Functional Theory computations have been performed by using the
GAUSSIAN 09 software [25]. The B3LYP/6-31G* method has been employed to calculate
the molecular structures we have used in this work. Vibrational analysis was performed
for all structures employed in this study to verify that a stationary point has been found in
the potential energy surface.

Effect of the Environment on the L&NLO Properties: We have first computed the L&NLO
properties in the gas phase. The solvent effect, on the properties of interest, has been
calculated by employing the Polarizable Continuum Model, which uses the integral equation
formalism variant [25]. This technique employs the solute cavity via a set of overlapping
spheres. Many research groups contributed to its development (e.g., Tomasi, Barone) [26,27].

Nanoparticles Preparation: In more detail, 1 mg of 3BDP3T and 9 mg of poly(ethylene
glycol) methyl ether–block–poly(lactide-co-glycolide) (mPEG-b-PLGA) were dissolved in
1 mL of THF. The choice of mPEG-b-PLGA was based on the fact that it is an FDA-approved
and metabolizable copolymer [28]. The resulting solution is added to 7 mL of deionized
water following a procedure described elsewhere [29]. The solution left overnight to allow
complete evaporation of the THF and the volume of water lost was replaced. After this
procedure, stable aqueous nanoparticles containing the 3BDP3T are formed. The hydropho-
bic PLGA segments are liable to entangle with 3BDP3T and the hydrophilic polyethylene
glycol (PEG) chains should extend into the aqueous phase. The obtained nanoparticles
were then filtered through a 0.2-µm cellulose acetate filter. To evaluate the sizes of the
formatted aqueous nanoparticles, dynamic light scattering (DLS) measurements were
performed at room temperature of 25 ◦C a day after their preparation.

3. Results and Discussion
3.1. Synthesis and Properties Characterization

With a view for establishing general protocols for (organic) semiconductors design, we
consider that BODIPY might be an ideal acceptor end-unit because it has strong electron-
withdrawing characteristics, and it is expected to provide both negative inductive (−I) ef-
fects originating from “through-bond” polarizations [10], and mesomeric (−M) effects [30],
originating from π-bond polarizations. Such an approach is expected to facilitate both
delocalization and stabilization of charge carriers (e.g., electrons). In practice, the devel-
opment of BODIPY-based organic semiconductors and, especially those that contain more
than two BODIPY units, has, so far, lagged behind that of other π-deficient units, mainly
because of stability issues during the synthesis. However, thanks to a recently developed
synthetic protocol, stable α,β-unsubstituted BODIPYs functionalized solely on the meso
position can be successfully produced and integrated into more complex structures [10].
Following this approach, we performed a Stille cross-coupling reaction between the 10-(5-
bromothiophen-2-yl)-5,5-difluoro-5H-4λ4,5λ4-dipyrrolo[1,2-c:2′,1′-f ][1,3,2]diazaborinine and
the 2,5,8-tris(trimethylstannyl)benzo[1,2-b:3,4-b′:5,6-b”]trithiophene to obtain the 3BDP3T
(Scheme 1) that contains three BODIPY dyes at the terminal of the benzo[1,2-b:3,4-b′:5,6-b”]
trithiophene core.

1H-NMR analysis revealed the successful synthesis of the small molecule dyes. The
BODIPY’s protons (6H) were clearly observed with independent peaks at 6.65, 7.42, 7.58,
and 7.98 ppm while the ratio of the integrated area between the BODIPY’s and thiophenes’
protons (7.24 ppm) was 2, confirming the expected structure. The UV-Visible absorption and
photoluminescence spectra of 3BDP3T were recorded in tetrahydrofuran (THF) solution.
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Scheme 1. Synthetic route towards the preparation of 3BDP3T.

Figure 2a shows an intense absorption peak with λmax at 520 nm (logε = 5.28) and an
emission spectrum with λmax at 630 nm and a shoulder at 680 nm. The photoluminescence
quantum yield (PLQY) found 0.029 ± 0.011 from three independent measurements. This
large stoke shift ((c. 3300 cm−1), which is considerably higher than for “normal” BODIPYs
(c. 300 cm−1)) that is shown in 3BDP3T is desirable because we can shift the emission
spectra more to the near infrared region (>650 nm). Especially, the range of 1000–1700 nm
(short wave infrared, SWIR) is particularly useful for bioimaging, as this electromagnetic
field does not interfere with the absorption and emission of radiation due to the absorption
of various biological fluids, while it is less harmful to tissues and absorption radiation at
long wavelengths [31].

Cyclic voltammetry was performed to estimate the energy levels of 3BDP3T. The
oxidation and reduction potentials of 3BDP3T are shown in Figure 2b. 3BDP3T exhibits
reversible reduction peaks and irreversible oxidation peaks with oxidation and reduction
onset potentials at 1.44 V vs. a standard calomel electrode (SCE) and −0.5 V vs. SCE,
respectively, resulting in EHOMO and ELUMO values of −6.14 eV and −3.91 eV, respectively.
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(n-Bu4NPF6) in anhydrous acetonitrile).

3.2. Theoretical Calculations

The reported computational results will focus on: (a) the rationalization of the first
absorption energy by employing Natural Transition Orbital analysis (NTO) [32], (b) the
EHOMO and ELUMO, and the first electronic excitation energy, (c) the linear and non-linear
optical properties (L&NLO) by computing the static (hyper)polarizabilities of 3BDP3Ta
and 3BDP3Tb (Figure 3), (d) the effect of the solvent and small structural changes on the
optical and non-linear optical properties of interest will also be discussed, and (e) the
effect of BODIPY, as an electron acceptor, on the L&NLO properties, will be discussed and
compared with other well-known strong electron acceptors (NO2, CN). Electron acceptor
defines those atoms or groups that withdraw electron density [33].
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Computation of EHOMO and ELUMO of 3BDP3Ta. In Table 1, we present the EHOMO
and ELUMO of derivative 3BDP3Ta, computed by a series of functionals and basis sets.
From these results, it is inferred that: (a) the best EHOMO is given by PBE1PBE/6-31G**,
B3PW91/6-311G**, (b) the best ELUMO is given by HSEH1PBE/6-311G**, B3PW91/6-311G**,
(c) CAM-B3LYP, B3LYP functionals overestimate the HOMO-LUMO gap, compared with
the experiment. A similar trend is observed for the value computed with the MP2 method.
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Therefore, it is inferred that, of all considered functionals, B3PW91/6-311G** has, appar-
ently, the best performance when compared with the available experimental data for both
EHOMO and ELUMO. With regard to the EHOMO–ELUMO gap, the value which has the closest
agreement with the experiment is given by the HSEH1PBE/6-311G** method.

Table 1. The EHOMO, the ELUMO, and the EHOMO–ELUMO gap of 3BDP3Ta, computed in the presence
of the solvent (chloroform) by employing a series of functionals and basis sets. All values are given
in a.u.

Molecule 1 EHOMO ELUMO |EHOMO − ELUMO|

CAM-B3LYP/6-31G** −0.256 −0.079 0.177
CAM-B3LYP/6-311G** −0.263 −0.088 0.175

PBE1PBE/6-31G** −0.223 −0.113 0.11
HSEH1PBE/6-311G** −0.215 −0.132 0.083

B3PW91/6-311G** −0.223 −0.125 0.098
BLYP/6-31G** −0.180 −0.120 0.06
B3LYP/6-31G** −0.220 −0.116 0.104
MP2/6-311G** −0.281 −0.010 0.271

Exp.2 −0.225 −0.144 0.081
1 The geometry, which was employed for the computation of EHOMO and ELUMO and the corresponding difference,
was optimized at the gas phase with the method B3LYP/6-31G**. 2 Present work.

Rationalization of the Observed First Electronic Absorption. The leading NTOs, describing
the first allowed electronic transition of 3BDP3Ta, have been computed by two methods
(Figure 4). Employing the CAM-B3LYP/6-31G** method, we find that two pairs of NTOs,
with weights of 0.70 and 0.19, are required to describe the first electronic transition. This
involves mainly one BODIPY unit (Figure 4). Using the HSEH1PBE/6-311G** approach,
we also find two NTOs, with weights of 0.77 and 0.22. However, the transition involves
two BODIPY units and the intervening thiophene groups. It appears that a charge transfer
(CT) takes place from the thiophene groups to the BODIPY units. It is observed that the
two methods (CAM-B3LYP/6-31G**, HSEH1PBE/6-311G**) give a rather different picture
for the transition. It has been noted that CAM-B3LYP overestimates |EHOMO − ELUMO|.
This may be due to the fact that the present intra-molecular CT transition (Figure 4) is
rather short [34].

Computation of the (hyper)polarizabilities. The CAM-B3LYP/6-31G* method has been
employed to compute the dipole moment and the (hyper)polarizabilities of derivatives
3BDP3Ta and 3BDP3Tb, both in the gas phase and in solution (solvent: chloroform, water).
This method has been successfully applied for the computation of NLO properties of
organic and inorganic derivatives [35,36]. The results are presented in Table 2.

Solvent effect. It is observed that the solvent has a significant effect on all the properties.
The hyperpolarizabilities β and γ are those which are most affected by the solvent. Thus,
it is observed: β(sol)/β(gas) = 1.8 and γ(sol)/γ(gas) = 1.94, where β(sol) and γ(sol) denote
the hyperpolarizability values in solution and β(gas) and γ(gas) are the corresponding
values in the gas phase. A small variation of the basis set (6-31G** and 6-311G**) led to
insignificant changes of the L&NLO properties.

In order to study the effect of the solvent polarity, we report computations in the
presence of a high polar solvent (water, ε = 80) since the nanoparticles will be formed
in water. The results are shown in Table 2. It is observed that, although the solvent’s
polarity is substantially increased (c.a 94%), the optical and electrical response properties
of both molecules are slightly affected. For example, it is seen that, for the optical response
properties of 3BDP3Ta, α(wat) = 1.1 α(chloroform), β(wat) = 1.2 β(chloroform), where
α, β, denote the average pol/ty and first hyperpolarizability (CAM-B3LYP/6-311G**),
respectively. As far as concerns about the optical absorption of 3BDP3Ta, λ(wat) is slightly
red shifted, compared with that computed within chloroform. Similar trends are observed
for the 3BDP3Tb derivative.
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Figure 4. The leading NTOs and their weights, describing the first allowed electronic transition of
3BDP3Ta, computed with two methods. Red and blue colors depict positive and negative regions of
the orbitals, respectively.

Table 2. The dipole moment (a.u.), (hyper)polarizabilities (a.u), the excitation energy (Eexc, eV), the absorption wavelength
(λ, nm) of the first electronic allowed transition and the total energy (Hartrees). All the properties were computed at the gas
phase optimized geometry (B3LYP/6-31G**).

Molecule µ α β γ (×106) Eexc/λ Etot

3BDP3Ta
G.P 1 1.1603 962.53 16,053 2.713 −5350.7473 9

Sol. 2 1.4783 1193.43 28,903 5.253 2.78/445.5 3

1.4734 1253.94 31,534 5.774
(0.114) 4,7 (1524.4) 4,7 (17,300) 4,7 (10.7) 4,7 2.18/569.4 5

1.4675 1371.15 72,505 19.25 2.23/556.8 6

(0.108) 5,7 (1699.6) 5,7 (41,700) 5,7 (34.9) 5,7 2.10/590.0 5,11

(0.117) 7,8 (1506.9) 7,8 (15,400) 7,8 (8.5) 7,8

Exp. 10 1.633 4,11 1390.7 4,11 3685 4,11 520

3BDP3Tb
G.P 1 −5350.7514 9

Sol 2,3 0.095 1201.5 400 5.88 2.78/446.0 3

0.114 3,11 1326.2 4,11 577 4,11 2.15/576.0 5

2.08/597.0 5,11

Exp. 10 520
1 Properties computed in the gas phase. 2 Properties calculated in the presence of the solvent (chloroform). 3 Method: CAM-B3LYP/6-31G**.
4 Method: CAM-B3LYP/6-311G**. 5 Method: HSEH1PBE/6-311G**. 6 Method: B3PW91/6-311G**. 7 In a square bracket, the x-component
of the property is given. 8 Method: MP2/6-311G**. 9 Method: B3LYP/6-31G**. Etot = Eel + Ezpva, where Eel is the electronic energy and
Ezpva is the zero-point vibrational averaging correction. 10 Present work. 11 Solvent: Water.
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In terms of a comparison of the properties, p = αxx, βxxx, and γxxxx, computed with the
CAM-B3LYP/6-311G* method with those calculated with the MP2/6-311G* technique shows
the adequacy of the former for the computation of L&NLO optical properties of the 3BDP3Ta/b
derivatives. It is observed that, for 3BDP3Ta, the ratio: p(MP2)/p(CAMB3LYP) = 0.99, 0.89,
and 0.79, for the polarizability, first and second hyperpolarizability component, respectively.
By employing the HSEH1PBE functional, the ratio p(MP2)/p(HSEH1PBE) takes the values of
0.89, 0.37, and 0.24 for αxx, βxxx, and γxxxx, respectively.

We have also computed the properties of two configurations of 3BDP3T (Figure 3).
The first (3BDP3Ta) has the sulfur atoms of thiophenes in a cis arrangement (3BDP3Ta)
and the second (3BDP3Tb) in trans. In derivative 3BDP3Tb, the conformation, where the
sulfur atoms of thiophenes, are in a trans position that lies lower (2.6 kcal/mol) than the
corresponding conformation, where the sulfur atoms of thiophenes are in a cis position
(3BDP3Tb). This structural change has a very significant effect on the dipole moment (µ)
and the first hyperpolarizability (β).

µ(cis)/µ(trans) = 15.6 and β(cis)/β(trans) = 7.2 (9)

This finding highlights the importance of these properties as probes of small differ-
ences in the molecular structure. A modest effect is observed for the polarizability and the
second hyperpolarizability, while both isomers have practically the same Eexc.

In order to further explain, qualitatively, the noticeable difference on β, due to cis and
trans arrangement of thiophenes (3BDP3Ta,3BDP3Tb), the density of the first hyperpo-
larizability, β, has been computed. This property has been successfully used to explain
NLO property differences, resulting by structural changes [35,36]. Only the diagonal com-
ponent, βxxx, of the density (Figure 5) is reported and analyzed, since it was found that
the electronic βxxx value is affected more upon the conformational change (Figure 3), that
is ∆βxxx(3BDP3Ta−3BDP3Tb) = 37,891 a.u. (CAMB3LYP/6-31G**). Therefore, the βxxx
density differences are expected to reveal the origin of the noticeable alteration of the β
value, upon the conformational change. The computed densities for 3BDP3Ta, 3BDP3Tb
are depicted in Figure 5. The Multiwfn software was used.
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It is observed that, for 3BDP3Ta (Figures 3 and 5), the positive contribution exceeds
the corresponding negative one, resulting in a positive βxxx value (15,800 a.u.). Upon
changing the positions of thiophenes (cis-trans), the negative contribution to βxxx density
is increased, especially in the periphery of the core, thus, changing the sign of the βxxx
value (−22,011 a.u.).
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Comparison of BODIPY with NO2 and CN. The effect of BODIPY, as an electron acceptor,
on the L&NLO properties has been checked by comparing the performance of BODIPY with
that of NO2 and CN, which are known to be very efficient electron acceptors (Figure 6) [33].
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Figure 6. The structure of derivative 1, used for the study of the effect of acceptor, A, where A = BOBIPY,
NO2, and CN.

The results of Table 3 show that µ(CN) > µ(NO2) > µ(BODIPY), but P(BODIPY) >
P(NO2) > P(CN), where p = α, β, or γ. In fact, BODIPY as an electron acceptor, leads
to a much larger α, β, or γ in comparison with NO2 or CN. This is a very useful find-
ing, since large NLO properties and their tuning are required for many applications
(e.g., optoelectronic technologies, optical switching, and telecommunications) [37,38].

Table 3. The dipole moment (a.u.) (hyper)polarizabilities (a.u), the energy of the HOMO and LUMO, EHOMO and ELUMO,
respectively the EHOMO − ELUMO gap the excitation energy (Eexc; eV) the absorption wavelength (λ; nm) of the first
electronic allowed transition of 1a with a series of acceptor groups (A). All values are given in a.u.

Molecule 1/A µ 2 α 2 β 2 γ (×106) 2 EHOMO
3 ELUMO

3 |EHOMO −
ELUMO| 3 Eexc/λ 3

Bodipy 1.474 1193 2890 5.25 −0.215 −0.132 0.083 2.18/569.4

NO2 1.561 656 1625 2.54 −0.225 −0.127 0.098 2.62/473

CN 1.629 632 636 1.57 −0.219 −0.104 0.115 3.09/400.5
1 The geometry, which was employed for the computation of the properties, was optimized at the gas phase with B3LYP/6-31G**), method:
2 The properties were computed with CAM-B3LYP/6-31G**, in the presence of the solvent (chloroform), 3 Method: HSEH1PBE/6-311G**;
solvent: chloroform.

It is also observed that the type of the acceptor tunes the |H− L| (=|EHOMO − ELUMO|)
and transition energy, Eexc. It was found that |H − L|(CN)> |H − L|(NO2) >|H − L|
(BODIPY) and Eexc(CN) > Eexc(NO2) > Eexc(BODIPY). The latter agrees with the observed
alteration of the absorption wavelength, λ, of the three acceptors. For example, λ is 569 and
400 nm for BODIPY and CN, respectively.

3.3. Preparation of Nanoparticles

In this work, we prepared 3BDP3T nanoparticles with the encapsulation method.
From the three independent DLS measurements, the aqueous nanoparticles show to exhibit
a unimodal size distribution with a hydrodynamic diameter of 123.53 ± 0.38 nm (Figure 7),
which reflect the reproducibility of the hydrodynamic diameter and the FWHM of the
nanoparticle’s distribution. Simultaneously with the DLS measurements, the zeta potential
of the nanoparticles was measured. The prepared aqueous nanoparticles exhibit a substan-
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tial and negative zeta potential of −8.99mV, which is higher than −25 mV. It is well-known
that colloidal systems with a zeta potential value of −25 mV or lower (i.e., more negative)
exhibit a long-term colloidal stability [39]. The origin of a negative zeta potential has
been addressed in previous studies [40] and it is attributed to oxidative defects on the
surface of the nanoparticles or to the presence of the π-polarizations of the organic material
rings that enable stronger attractive Van der Waals forces and hydrophobic interactions.
Therefore, when the organic material is encapsulated inside the amphiphilic copolymer,
those interactions are minimized, resulting in lower zeta potential values.
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Figure 8 present the UV-Vis absorption and fluorescence spectra of the 3BDP3T-based
nanoparticles. An intense absorption peak with λmax at 515 nm and a photoluminescence
(PL) with λmax at 642 nm and a shoulder at 752 nm are recorded.
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4. Conclusions

In this work, the successful synthesis and properties characterization of a new organic
electronic material consisting of three BODIPY dyes at the periphery of the benzo[1,2-b:3,4-
b′:5,6-b”]trithiophene (3BDP3T) is presented for the first time. Until now, the development
of organic materials with three BODIPYs as substituents is limited and their properties
are not fully resolved. We manage to prepare 3BDP3T-based aqueous nanoparticles by
utilizing the encapsulation method and study its optical properties toward its application
as far-red to near infrared (NIR) dye probe for fluorescent optical imaging. The aqueous
3BDP3T nanoparticles display PL at the far-red and NIR with a PLQY of 0.021 ± 0.003,
which is slightly reduced versus the PLQY of the 3BDP3T in the THF solution, showing
that this fabrication methodology for the specific 3BDP3T maintains the PLQY unaltered.
From the theoretical study, the main points emerging are the following. The best EHOMO
has been computed by PBE1PBE/6-31G**and B3PW91/6-311G**. The best ELUMO has been
calculated by HSEH1PBE/6-311G** and B3PW91/6-311G**. The CAM-B3LYP and B3LYP
functionals as well as the MP2 method overestimate the EHOMO − ELUMO gap. The best
EHOMO − ELUMO gap has been computed by HSEH1PBE/6-311G**. The CAM-B3LYP/6-
31G** method provided satisfactory L&NLO properties, as a comparison with the MP2
method has shown. In derivative 3BDP3Tb, the conformation, where the sulfur atoms
of thiophenes are in a trans position, lies lower (2.6 kcal/mol) than the corresponding
conformation, where the sulfur atoms of thiophenes are in a cis position (3BDP3Tb). This
structural change imposes noticeable alterations to µ and β, in contrast to α, γ, and Eexc,
where the effect of the structure is of less importance. The effect of the structure to β
was further investigated by analyzing the first hyper-polatizanity density [41]. We have
employed two methods to rationalize the observed first absorption of 3BDP3Ta. Both
methods give two pairs of NTOs for the description of the first electronic transition. The
HSEH1PBE/6-311G** method predicts a transition that involves two BODIPY units and
the intervening thiophene groups. Comparison of the BODIPY electron acceptor with
other known groups revealed its significant efficiency in tuning the L&NLO response
properties of 3BDP3T.
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