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Abstract. Contemporary developments in molecular biology 
have been combined with discoveries on the analysis of the role of 
all non‑coding RNAs (ncRNAs) in human diseases, particularly 
in cancer, by examining their roles in cells. Currently, included 
among these common types of cancer, are all the lymphomas 
and lymphoid malignancies, which represent a diverse group 
of neoplasms and malignant disorders. Initial data suggest that 
non‑coding RNAs, particularly long ncRNAs (lncRNAs), play 
key roles in oncogenesis and that lncRNA‑mediated biology 
is an important key pathway to cancer progression. Other 
non‑coding RNAs, termed microRNAs (miRNAs or miRs), 
are very promising cancer molecular biomarkers. They can be 
detected in tissues, cell lines, biopsy material and all biological 
fluids, such as blood. With the number of well‑characterized 
cancer‑related lncRNAs and miRNAs increasing, the study 
of the roles of non‑coding RNAs in cancer is bringing forth 
new hypotheses of the biology of cancerous cells. For the first 
time, to the best of our knowledge, the present review provides 
an up‑to‑date summary of the recent literature referring to all 
diagnosed ncRNAs that mediate the pathogenesis of all types 
of lymphomas and lymphoid malignancies.
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1. Introduction

Lymphomas are a heterogeneous group of cancers; more 
specifically, they consist of a group of blood disorders derived 
from lymphocytes and are presented with multiple variations 
in clinical presentation, long‑term prognosis and pathogenesis. 
They represent one of the most common types of cancer world‑
wide and affect numerous patients. According to the World 
Health Organization (WHO) classification report, there are 
approximately 100 different types of lymphoma. The two main 
categories of lymphomas are non‑Hodgkin lymphoma (NHL) 
(consisting 9 out of 10 of all lymphoma cases) and Hodgkin 
lymphoma (HL) (consisting 1 out of 10 of all lymphoma 
cases) (1‑3). Furthermore, non‑Hodgkin lymphomas can be 
grouped into B‑ and T‑cell NHLs (TNHLs), which account 
for approximately 90 and 10% of NHLs, respectively (4,5). 
According to the WHO, two other categories are also 
considered as types of lymphoid tissue tumors: Multiple 
myeloma (MM) and immunoproliferative diseases (3). 

Epidemiology. According to the WHO, there are the following 
lymphoma subtypes (WHO 2016): i) Mature B‑cell neoplasms; 
ii) mature T‑cell and natural killer (NK) cell neoplasms; 
iii) precursor lymphoid neoplasms; iv) HL; and v) immunode‑
ficiency‑associated lymphoproliferative disorders (4,5).

B‑cell NHLs (BCNHLs) are tumors of B‑cells that exhibit a 
heterogeneity that is attributed to the fact that these tumors are 
derived from different stages of mature B‑cell differentiation. 
The main subtypes of BCNHLs are the following: i) diffuse 
large B‑cell lymphoma (DLBCL); ii) chronic lymphocytic 
leukemia (CLL); iii) follicular lymphoma (FL); iv) mantle cell 
lymphoma (MCL); v) Burkitt's lymphoma (BL); vi) marginal 
zone lymphoma (MZL); and vii) mucosa‑associated lymphoid 
tissue (MALT) (6). The majority of BCNHLs, such as DLBCL 
and FL, have passed the germinal center (GC) reaction, 
indicating that their immunoglobulin (IG) genes have been 
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hypermutated. Other subtypes, such as MCL and CLL, are 
derived from GC‑inexperienced B‑cells (7). 

The most common subtypes of TNHLs and NK‑cell 
NHLS (NK‑NHLs) are the following: i) Cutaneous T‑cell 
lymphomas (mycosis fungoides, Sezary syndrome and others); 
ii) adult T‑cell leukemia/lymphoma; iii) angioimmunoblastic 
T‑cell lymphoma; iv) extranodal NK/T‑cell lymphoma; 
nasal type; vi) enteropathy‑associated T‑cell lymphoma; and 
vii) anaplastic large cell lymphoma (ALCL) (4).

Risk factors and diagnosis of lymphomas. The most common 
risk factors for HL are Epstein‑Barr virus (EBV) infection 
and a family history of the disease (8). The most common 
risk factors for several types of NHLs include the following: 
i) Autoimmune diseases, such as Sjögren syndrome, celiac 
disease, rheumatoid arthritis and systemic lupus erythema‑
tosus; ii) HIV/AIDS infection; iii) human T‑lymphotropic 
virus infection; iv) Helicobacter pylori infection; v) HHV‑8 
infection; vi) hepatitis C virus infection; vii) medical treat‑
ments (patients who have been previously treated for Hodgkin 
lymphoma, methotrexate and the tumor necrosis factor‑a 
inhibitors); viii) genetic diseases; and ix) certain chemical 
agents (benzene and certain herbicides and insecticides; 
weed‑ and insect‑killing substances) (9‑15). Some environ‑
mental agents, such as red meat consumption and tobacco 
smoking may also play a role in increasing the risk of devel‑
oping NHL (11,12,16). 

The diagnosis of lymphomas can be achieved due to the 
enlargement of lymph nodes, which can be determined by 
performing a lymph node biopsy (17). A lymph node biopsy 
commonly is followed by performing immunophenotyping, 
flow cytometry, fluorescence in situ hybridization testing, bone 
marrow aspiration and bone marrow biopsy (18). Imaging via 
computed tomography of the chest and upper‑lower abdomen 
may then be performed to determine the possible expansion of 
the lymphoma throughout the human body (17). 

Non‑coding RNAs (ncRNAs). ncRNAs are RNAs that are not 
translated to proteins. Over the past ten years, a number of 
ncRNAs have been identified. Any of the three RNA poly‑
merases (RNA Pol I, RNA Pol II or RNA Pol III) can perform 
the transcription of a ncRNA. The ncRNAs are divided into 
the following two main categories: Small ncRNAs, <200 bp 
in length and long ncRNAs (lncRNAs), >200 bp in length (19).

In these two categories, several individual categories of 
ncRNAs also exist. These include housekeeping ncRNAs 
[transfer RNAs (tRNAs) and some ribosomal RNAs (rRNAs)], 
which are essential for fundamental principles of cellular 
biology, small nuclear RNAs (snRNAs), and a number of 
recently observed RNAs which are associated with the 
transcription of genes into proteins (20). 

MicroRNAs (miRNAs or miRs). To date, miRNAs are the less 
extensively studied ncRNAs for their roles in cancer. Over the past 
years, a number of targeted reviews have been published (21‑23), 
which have described a complex basic mechanism through 
which miRNAs can lead to the silencing of target gene expres‑
sion; through the formation of a silencing complex induced by 
RISC‑induced RNA, which uses proteins from the Argonaute 
family (such as AGO2) for the splicing of target mRNAs or for the 

suspension of the translation of these mRNAs (21). The patterns 
of expression of miRNAs in different cancer types have been 
well‑observed, and studies have highlighted numerous miRNAs, 
such as miR‑10b, let‑7, miR‑101 and miR‑15a‑16 complex‑1, 
which have oncogenic or tumor‑suppressive functions (22,23).

lncRNAs. Recent observations of new species of lncRNAs 
have led to the development of various possible candidates as 
lncRNAs. Although a number of RNAs have a length of >200 bp, 
such as repeat sequence transcripts and pseudogenes (24), the 
term lncRNA (also referred to as lincRNAs, for long transgenic 
ncRNAs) is not used in the same manner in all cases.

A number of common features of lncRNAs have been indi‑
cated to confirm their biological identity, such as the following: 
i) Epigenetic regulation as in a transcripted gene; ii) transcrip‑
tion performed by RNA polymerase II; iii) poly‑adenylation 
to the 3'‑untranslated region (3'‑UTR); iv) frequent splicing 
of multiple exons through specific molecular patterns; 
v) regulation by classic transcription factors; and vi) frequent 
tissue‑specific expression (24) (Fig. 1). 

ncRNAs in normal B‑cell differentiation and T‑cell develop‑
ment. B‑cell differentiation in adult humans begins within the 
bone marrow (BM) and is continued thereafter in the lymph 
nodes, tonsils and spleen (25). On the other hand, T‑cells a 
derived from bone marrow hematopoietic stem cells (HSCs), 
whose progenitors migrate to and colonize the thymus (26).

The most common lncRNAs affecting normal B‑cells are 
the following: i) MYB‑AS1, SMAD1‑AS1 and LEF1‑AS1, 
located on 6q23.3, 4q31.21 and 4q25, respectively, are 
involved in early B‑cell development; ii) CRNDE, located 
on 16q12.2‑involved in mitotic cell cycle related processes; 
and iii) RP11‑132N15.3/lnc‑BCL6‑3, located on 3q27.3, and 
involved in the modulation of the GC reaction. However, data 
on the roles of lncRNAs in normal T‑cells are limited (27‑31).

miRNAs are also involved in lymphocyte development, 
as first described in 2004; it was demonstrated that miR‑223, 
miR‑181 and miR‑142 were highly expressed in B‑cells (32). 
miR‑181 can also contribute to the regulation of the levels of 
CD69, BCL2 and TCR during T‑cell development. In addition, 
miR‑155 and miR‑181 play key roles in the regulation of GC 
B‑cell differentiation (33).

It is essential knowledge that all ncRNAs may play a vital 
role as predictive and prognostic biomarkers in the pathogenesis 
and progression of lymphomas and lymphoid malignancies in 
general. The main aim of the present review was to provide an 
up‑to‑date summary of available information on all the known 
miRNAs and lncRNAs that participate in the development of all 
lymphoid disorders, with a main focus on their connection to each 
lymphoma subtype. Furthermore, these molecular biomarkers 
may be used, in the near future, in the therapeutic management 
of the majority of lymphomas. Thus, the present review summa‑
rizes all published data to date on ncRNAs, in order to shed light 
on the future perspectives of lymphoma management.

2. Literature search

A literature search was performed, including studies published 
up to August, 2020, using the following databases: Medline 
(PubMed), Science Direct, Web of Science and Google Scholar. 
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Systematic reviews, uncontrolled prospective, retrospec‑
tive and experimental studies were included for each specific 
subject (total no. of studies, n=235). The following inclusion 
criteria were applied: Studies concerning ncRNAs, lncRNAs, 
miRNAs, cancer and lymphomas: HLs, and BCNHLs and 
TNHLs. All studies concerning the association of lncRNAs 
and miRNAs with NHLs and HLs were included.

3. Non‑coding RNAs in lymphomas

Over the past years, a number of studies have referred to the 
significance of lncRNAs and miRNAs in the pathophysi‑
ology of lymphomas, particularly B‑cell NHLs. There are 
different non‑coding RNAs that play a role in each subtype 
of lymphoma, and these are referred to the sections and tables 
below (Figs. 2 and 3). 

a) BCNHLs
DLBCL. Diffuse large B‑cell lymphoma is the most common 
form of NHL among adults (34) and it occurs most often 
in older‑aged individuals, with a median age of diagnosis 
approaching the seventh decade of a patient's life (35). 
There are 2 different molecular subtypes of DLBCL: 
GC B‑cell like (GC‑DLBCL) and activated B‑cell like 
(ABC‑DLBCL) (36,37). 

Subtypes of DLBCLs with a distinctive morphology or 
immunophenotype are the following: i) T‑cell/histiocyte‑rich 
large B‑cell lymphoma; ii) ALK+ large B‑cell lymphoma; 
iii) plasmablastic lymphoma; iv) intravascular large B‑cell 

lymphoma; and v) large B‑cell lymphoma with IRF4 
rearrangement (38,39).

Subtypes of DLBCLs with distinctive clinical issues are 
the following: i) Primary mediastinal large B‑cell lymphoma; 
ii) primary cutaneous DLBCL, leg type; iii) primary DLBCL 
of the central nervous system; iv) DLBCL associated with 
chronic inflammation; v) lymphomatoid granulomatosis; and 
vi) primary effusion lymphoma (38,39).

Additionally, there are DLBCLs driven by viruses, such as 
the following: i) EBV‑positive DLBCL, not otherwise speci‑
fied; and ii) HHV8‑positive DLBCL, NOS (Not otherwise 
specified). There are also DLBCLs driven by disorders related 
to DLBCL, such as: i) Helicobactor pylori‑associated DLBCL; 
and ii) EBV‑positive mucocutaneous ulcer (40,41).

In order for a B‑cell to be developed or to progress 
into a DLBCL type, changes in the following genes need 
to occur: BCL2 (42), BCL6 (42), MYC (36), EZH2 (43), 
MYD88 (42), CREBBP (44), CD79A and CD79B (44) and 
PAX5 (44). Therefore, the neoplastic cells in DLBCL exhibit 
a pathologically overactivation of the nuclear factor (NF)‑κB, 
phosphoinositide 3‑kinase (PI3K)/AKT/mammalian target of 
rapamycin (mTOR), Janus kinase (JAK)/signal transducer and 
activator of transcription (STAT), mitogen‑activated protein 
kinase (MAPK)/extracellular signal‑regulated kinase (ERK), 
B‑cell receptor and Toll‑like receptor pathways (42). 

Concerning miRNAs in DLBCLs, it has been shown than 
in ABC‑type DLBCL lymphoma, there is a high expression of 
miR‑21, miR‑146a, miR155, miR‑221 and miR‑363, while in 
GCB‑type DLBCL, there is a high expression of miR‑421 and 

Figure 1. lncRNAs involved in oncogenesis, tumor progression and metastasis. These lncRNAs can be divided into 7 subtypes based on the process/property 
in which they are involved: Immune system escape, epithelial‑mesenchymal transition, and angiogenesis, drug resistance, metastasis, cell stemness, DNA 
damage and metabolic disorders. lncRNAs, long non‑coding RNAs.
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Figure 2. Summary of the major lncRNAs that are involved in different types of lymphomas. lncRNAs, long non‑coding RNAs.

Figure 3. Summary of the miRNAs that are involved in different types of lymphomas. miRNAs, microRNAs.



ONCOLOGY LETTERS  21:  393,  2021 5

the miR‑17~92 cluster (45‑50) (Table I). In serum samples of 
patients with DLBCL, increased levels of miR‑21, miR‑155 and 
miR‑210 have been identified, along with increased levels of 
miR‑124, miR‑532‑5p miR‑15a, miR‑16, miR‑29c and miR‑155. 
Decreased levels of miR‑122, miR‑128, miR‑141, miR‑145, 
miR‑197, miR‑345, miR‑424 and miR‑425 have been also 
found in the serum of patients with DLBCL. miR‑27a, miR‑142, 
miR‑199b, miR‑222, miR‑302, miR‑330, miR‑425 and miR‑519 

seem to be associated with the overall survival of patients 
with DLBCL (50). In any case, miR‑155, miR‑34a, miRNA‑21, 
miRNA‑23a, miRNA‑27b, miRNA‑34a, 12‑miRNA signa‑
ture, 15‑miRNA signature, 27‑miRNA signature, miR‑363, 
miR‑518a, miR‑181a, miR‑590, miR‑421 and miR‑324‑either in 
serum samples, or in tissue or cell line samples of patients with 
DLBCL, can be used as diagnostic biomarkers in patients with 
DLBCL (50‑71) (Table I and Fig. 3). 

Table I. miRNAs and lncRNAs identified in patients with diffuse large B‑cell lymphoma.

 Genome 
 location   Molecular
miRNA(s)/lncRNA (if defined) Role mechanism/sample (Refs.)

miR‑155  Diagnostic biomarker Presence in serum (51)
miR‑34a  Diagnostic biomarker Presence in serum (52)
miR‑17/92 cluster  Cell survival, prognostic  Subtyping (53)
  biomarker
miR‑21, miR‑23a, miR‑27b, miR‑34a   Poor overall survival, diagnostic  Presence in serum (54‑58)
  and prognostic biomarkers
miR‑20a, miR‑30d, miR‑22, miR‑146a  Prognostic biomarkers Presence in tissues (59)
miR‑21, miR‑210  Diagnostic biomarkers Presence in serum (60)
12‑miRNA signature, 15‑miRNA signature,   Diagnostic biomarkers Presence in tissue (61‑64)
27‑miRNA signature
miR‑155, miR‑221, miR‑222, miR‑21,  Diagnostic biomarkers Presence in cell lines (65)
miR‑363, miR‑518a, miR‑181a, miR‑590,
miR‑421, miR‑324
miR‑124, miR‑532, miR‑122, miR‑128,  Diagnostic biomarkers Presence in plasma (66)
miR‑141, miR‑145, miR‑197, miR‑345,   and exosomes
miR‑424, miR‑425 
miR‑34a, miR‑323b, miR‑431  Diagnostic biomarkers Presence in serum (67)
miR‑27a, miR‑142, miR‑199b, miR‑222,  Predictive biomarkers Presence in tissue (46)
miR‑302, miR‑330, miR‑425, miR‑519
miR‑224, miR‑455, miR‑1236, miR‑33a,  Predictive biomarkers Presence in serum (68)
miR‑520d
miR‑125b, miR‑130a, miR‑199a, miR‑497,   Predictive biomarkers Presence in tissue,  (69‑71)
miR‑370, miR‑381, miR‑409    blood and cell lines 
lincRNA‑p21/TP53COR1 17p13.1 Tumor‑suppressor Link to cyclin D1, (72‑76)
  (mouse)  CDK4 and p21
 6p21.2 
 (human)  
GAS5 1q25.1 Tumor‑suppressor Regulation of mTOR  (77‑86)
   pathway 
LOC283177 11q25 Uncharacterized Not described (87)
lnc‑RP11‑211G3.3.1‑1 3q27.3 Uncharacterized Not described (88)
LUNAR1 15q26.3 oncomiR progenitor NOTCH1 regulation. (89,90)
   Enhances IGF1R 
   mRNA expression 
PEG10 7q21.3 oncomiR progenitor Activated by c‑MYC (91‑93)
HULC 6p24.3 oncomiR progenitor Not described (94‑97)
HOTAIR 12q13.13 oncomiR progenitor Regulation of the (98)
   PI3K/AKT/NF‑κB 
   pathway 

lncRNA, long non‑coding RNA; miRNA/miR, microRNA.
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Concerning lncRNAs in patients with DLBCLs, the 
following have been observed (Table I): i) lincRNA‑ 
p21/TP53COR1, located chromosome on 6p21.2 (human), 
acting as a tumor suppressor by linking to cyclin D1, CDK4 and 
p21 (72‑76); ii) GAS5, located on chromosome 1q25.1, acting as 
a tumor suppressor by regulating the mTOR pathway (77‑86); 
iii) LOC283177, located on chromosome 11q25, with an 
uncharacterized mode of action (87); iv) lnc‑RP11‑211G3.3.1‑1, 
located on chromosome 3q27.3, with an uncharacterized mode 
of action (88); v) LUNAR1, located on chromosome 15q26.3, 
acting as an oncomiR progenitor by regulating NOTCH1 
and enhancing insulin‑like growth factor 1 receptor (IGF1R) 
mRNA expression (89,90); vi) PEG10, located on chromosome 
7q21.3, acting as an oncomiR progenitor, and being activated 
by c‑MYC (91‑93); vii) HULC, located on chromosome 6p24.3, 
acting as an oncomiR progenitor (94‑97); viii) HOTAIR, 
located on chromosome 12q13.13, acting as an oncomiR 
progenitor, via the regulation the of the PI3K/AKT/NF‑κB 
pathway (98) (Fig. 2). 

CLL. CLL is the most common form of leukemia affecting 
adults (99). In the case that along with CLL, there are enlarged 
lymph nodes, this clinical condition is referred to as small 
lymphocytic lymphoma (SLL). The groups of CLL/SLL 

monoclonal B‑cells are the following: Low‑count CLL/SLL 
with a number of monoclonal B‑cells <0.5x109 cells/liter 
(i.e. 0.5x109/l), and high‑count CLL/SLL MBL with monoclonal 
B‑cells ≥0.5x109/l but <5x109/l (99). A patient is diagnosed 
as having CLL if the number of monoclonal B‑cells are 
>5x109/l (100,101). Classical CLL, according to the Matutes 
score (102), includes the expression of five different markers in 
the immunophenotype: These are CD5, CD23, FMC7, CD22 
and immunoglobulin light chain (102‑104).

Concerning miRNAs in CLL, miR‑15a/16‑1 acts as a 
tumor suppressor in patients with CLL and its expression is 
therefore found to be decreased (105,106), while miR‑7‑5p, 
miR‑182‑5p and miR‑320c/d are regulated by p53, and are 
increased in patients with CLL (107,108). miR‑181b expression 
is also low in patients with CLL (with a poor outcome) (109). 
miR‑155 is overexpressed in patients with CLL and together 
with miR‑21, lead to higher mortality levels in patients with 
CLL (110) (Table II and Fig. 3). 

Additionally, patients with CLL are characterized by higher 
levels of miR‑34a, miR‑31, miR‑155, miR‑150, miR‑15a and 
miR‑29a; these can be used as diagnostic biomarkers (110‑115). 
In particular, miR‑192 is expressed in low levels in patients 
with CLL and can be thus used a diagnostic biomarker for 
CLL (116) (Table II). 

Table II. miRNAs and lncRNAs identified in patients with chronic lymphocytic leukemia.

 Genome 
 location   Molecular 
miRNA(s)/lncRNA (if defined) Role/activation mechanism/sample (Refs.)

miR‑15a/16 cluster, miR‑7, miR‑182,   Diagnostic biomarkers Presence in PBMCs and  (107,108,115,116)
miR‑320c/d, miR‑29, miR‑192    cell lines 
miR‑151, miR‑34a, miR‑31, miR‑155,   Diagnostic biomarkers Presence in serum (113‑114)
miR‑150, miR‑15a, miR‑29a
miR‑181b, miR‑21, miR‑155, miR‑708,   Prognostic biomarkers Presence in PBMCs, cell  (115,133‑135)
miR‑17~92 cluster, 13‑miRNA    lines, serum, blood cells 
signature, miR‑150, miR‑155
miR‑181b, miR‑155, miR‑21,   Predictive biomarkers Presence in PBMCs and  (133‑135)
miR‑148a, miR‑222    cell lines 
DLEU2 13q14.3 Tumor suppressor NF‑κB activation (117‑120)
NEAT1 11q13.1 Tumor‑suppressor Induction by p53 (121,122)
lincRNA‑p21/TP53COR1 17p13.1 Tumor‑suppressor Induction by p53 (72‑76)
 (mouse)
 6p21.2 
 (human) 
MIAT 22q12.1 Oncogene Regulatory loop with (123‑126)
   OCT4 
ZNF667‑AS1/lnc‑AC004696.1‑1 19q13.43 Uncharacterized Not described (127,128)
BM742401 18q11.2 Tumor‑suppressor Not described (129,130)
BIC 21q21 oncomiR progenitor Host of miR‑155‑5p and  (131,132)
   miR‑155‑3p 
lnc‑IRF2‑3 4q35 Uncharacterized Not described (128)
lnc‑KIAA1755‑4 20q11.23 Uncharacterized Not described (128)

lncRNA, long non‑coding RNA; miRNA/miR, microRNA; PBMCs, peripheral blood mononuclear cells.
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Concerning lncRNAs in patients with CLL, the following 
have been observed (Table II): i) DLEU2, located on chromo‑
some 13q14.3, acting as tumor suppressor by activating the 
NF‑κB pathway (117‑120); ii) NEAT1, located on chromo‑
some 11q13.1, acting as a tumor suppressor via induction 
by p53 (121,122); iii) lincRNA‑p21/TP53COR1, located on 
chromosome p21.2 (human), acting as a tumor suppressor via 
induction by p53 (72‑76); iv) MIAT, located on chromosome 
22q12.1, acting as an oncogene by forming a regulatory loop 
with OCT4 (123‑126); v) ZNF667‑AS1/lnc‑AC004696.1‑1, 
located on chromosome 19q13.43, with an uncharacter‑
ized mode of action (127,128); vi) BM742401, located on 
chromosome 18q11.2, acting as a tumor suppressor, with an 
uncharacterized mode of action (129,130); vii) BIC, located on 
chromosome 21q21, acting as an oncomiR progenitor by being a 
host of miR‑155‑5p and miR‑155‑3p (131,132); viii) lnc‑IRF2‑3, 
located on chromosome 4q35 with an uncharacterized mode 
of action (128); ix) lnc‑KIAA1755‑4, located on chromosome 
20q11.23 with an uncharacterized mode of action (128) (Fig. 2).

Finally, in Table II, references are provided of all the other 
miRNAs used as predictive and prognostic biomarkers in 
clinical trials of patients with CLL (133‑135). 

FLs. FL is the second most common type of NHL, and the 
most common indolent NHL. It derives from the uncontrolled 
division of centrocytes and centroblasts of the follicles in the 
GCs of lymph nodes.

The genomic alterations that can be found in FL include 
the following: i) the t(14:18)(q32:q21.3) translocation (the 
majority of the cases); ii) 1p36 deletions (second most common 
genomic alteration in FL) that lead to the loss of TNFAIP3; 
iii) mutations in PRDM1; and iv) the same mutations observed 
in in situ FL (ISFL), including KMT2D, CREEBP, BCL2 and 
EZH2, as well as other mutations (45).

According to the WHO criteria, there are differences, 
which can be observed under a microscope, which can be 
used to diagnose and categorize FL into the following 3 
grades, with grade 3 comprising A and B subtypes (46): 
Grade 1, follicles with <5 centroblasts per high‑power field 
(hpf); grade 2, follicles with 6 to 15 centroblasts per hpf; 
grade 3, follicles with >15 centroblasts per hpf; grade 3A, 
grade 3 in which the follicles contain predominantly centro‑
cytes; grade 3B, grade 3 in which the follicles consist almost 
entirely of centroblasts.

Low‑grade FLs are grades 1 and 2, as well as grade 3A. 
Grade 3B is regarded as a highly aggressive FL, which can be 
easily transformed into a higher grade (46). The transformation 
of FL into a more aggressive state or other type of aggres‑
sive lymphoma is associated with specific genetic alterations, 
such as in the following genes: CREEBP, KMT2D, STAT6, 
CARD11, CD79, TNFAIP3, CD58, CDKN2A or CDKN2B, 
TNFRSF4 and c‑MYC (45,46,136‑138).

Concerning miRNAs in FLs, a number of studies 
have demonstrated that there is an increase in the levels 
of 6 particular miRNAs: miR‑223, miR‑217, miR‑222, 
miR221, let‑7i and let‑7b in patients with FL, in which 
their lymphoma underwent a transformation. In addition, 
the miR‑17~92 cluster can be used as a useful diagnostic 
biomarker found in patients with FL, while miR‑20a/b 
and miR‑194 can also be found in patients with FL. Other 
useful diagnostic biomarkers in patients with FL may be 
the following: miR‑9, miR‑155, miR‑31, miR‑17, miR‑217, 
miR‑221, miR‑222, miR‑223, let‑7i, let‑7b17‑miRNA 
signature, 44‑miRNA signature, miR‑494 23‑miRNA 
signature (136‑140) (Table III and Fig. 3). 

Concerning lncRNAs in patients with FL, studies have 
demonstrated that there are 3‑fold as many lncRNAs that are 
upregulated than lncRNAs that are downregulated in patients 
with FL3A stage disease, without their biological functions 
being cleared yet. The only lncRNA that seems to be upregu‑
lated in patients with FL3A grade disease is RP11‑625 L16.3, 
located on chromosome 12, with an uncharacterized mode of 
action (72) (Table III and Fig. 2). 

MCLs. MCL is recognizable as an aggressive and incurable 
small B‑cell lymphoma. It predominantly affects older‑aged 
males (>60 years old), and sometimes it may be indolent in 
some patients. MCLs arise from the mantle zone of early 
B‑cells of the lymph node follicle and they possess the t(11;14)
(q13;q32) translocation with an overexpression of cyclin 
D1.MCL cells also exhibit CD5+ and CD23‑ and surface 
IgM/D expression (141,142).

Two types of clinically indolent variants have now been 
identified (140,141). Classical MCL with IGHV‑unmutated or 
minimally mutated B‑cells and SOX11 overexpression; usually 
presented in lymph nodes and other extranodal sites. Additional 
molecular/cytogenetic abnormalities may be presented in 
blastoid or pleomorphic MCL. Leukemic non‑nodal MCL 

Table III. miRNAs and lncRNAs identified in patients with follicular lymphoma. 

 Genome 
 location   Molecular
miRNA(s)/lncRNA (if defined) Role/activation  mechanism/sample (Refs.)

RP11‑625 L16.3 12 Uncharacterized Not described (72)
miR‑9, miR‑155, miR‑31, miR‑17  Diagnostic biomarkers Presence in tissues (136,137)
miR‑217, miR‑221, miR‑222, miR‑223, let‑7i, let‑7b  Diagnostic biomarkers Presence in tissues (138,140)
17‑miRNA signature, 44‑miRNA signature, miR‑494  Diagnostic biomarkers Presence in tissues (138,139)
23‑miRNA signature  Predictive biomarkers Presence in tissues (139)

lncRNA, long non‑coding RNA; miRNA/miR, microRNA.
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develops from IGHV‑mutated SOX11 B‑cells, and is usually 
presented in peripheral blood, BM and spleen (142).

Concerning miRNAs in MCLs, a number of studies 
have demonstrated the overexpression of miR‑15/16 and 
miR‑17~92 in MCL and that this is associated with an aggres‑
sive form of the disease (143,144). In addition, the inhibition 
of miR‑29 has been demonstrated to lead to the progression 
of MCL (a potential prognostic marker for MCL) (143‑145). 
Additionally, the 95‑miRNA signature can be a diagnostic 
biomarker for MCL (145) (Table IV and Fig. 3).

Concerning lncRNAs in patients with MCL, it has been 
demonstrated that MALAT1 is overexpressed in human 
MCL tissues and cell lines compared to normal B‑cells [a 
high international prognostic index (IPI) is present], and 
is associated with the lower overall survival of patients 
with MCL (146). Thus, MALAT1, located on 11q13 chro‑
mosome, can act as an oncogene in patients with MCL 
(regulation of the bioavailability of TGF‑β) (146‑152) 
(Table IV and Fig. 2). 

Finally, in Table IV, references of all the other miRNAs that 
have been observed in patients with MCL and used as prog‑
nostic biomarkers in clinical trials are presented (153‑157).

BL. BL is a type of aggressive B‑NHL. It may be presented with 
any of three main clinical variants: Endemic BL, sporadic BL 
and the immunodeficiency‑associated BL (158). In all types of 
BL, the dysregulation of the c‑myc gene is observed (the gene 
is found at 8q24), presented with any one of the three known 
chromosomal translocations (159). The most common variant 
is t(8;14)(q24;q32), which involves c‑myc and IGH (159).

The variant at t(2;8)(p12;q24) involves IGK and c‑myc (160). 
The variant at t(8;22)(q24;q11) involves IGL and c‑myc (160). 
In addition, a last variant of three‑way translocation, t(8;14;18) 
has been identified (161).

Concerning miRNAs in patients with BL, it seems that 
MYC regulates and is regulated by numerous miRNAs 
(Table V), the most common of which are the following: 
miR‑23a, miR‑26a, miR‑29b, miR‑30d, miR‑146a, miR‑146b, 

Table V. miRNAs and lncRNAs identified in patients with Burkitt's lymphoma.

 Genome 
 location 
miRNA(s)/lncRNA (if defined) Role/activation Molecular mechanism/sample (Refs.)

MINCR 8q24.3 Uncharacterized Induction of MYC (173)
miR‑23a, miR‑26a, miR‑29b,   Diagnostic biomarkers Presence in tissues (165)
miR‑30d, miR‑146a, miR‑146b, 
miR‑155, miR‑221
22‑miRNA signature, miR‑513a,   Diagnostic biomarkers Presence in tissues (166,167)
miR‑628, miR‑9
39‑miRNA signature, 19‑miRNA   Diagnostic biomarkers Presence in tissues (168‑171)
signature, 49‑miRNA signature
miR‑34b, miR‑29 family, miR‑181b  Diagnostic biomarkers Presence in cell lines and tissues (167,171‑173)

lncRNA, long non‑coding RNA; miRNA/miR, microRNA.
 

Table IV. miRNAs and lncRNAs observed in patients with mantle‑cell lymphoma.

 Genome 
 location 
miRNA(s)/lncRNA (if defined) Role/activation Molecular mechanism/sample (Refs.)

MALAT1 11q13 Oncogene Regulation of the bioavailability  (146‑152)
   of TGF‑β
miR‑15/16, miR‑17/92  Diagnostic biomarker Presence in cell lines (141,142)
95‑miRNA signature  Diagnostic biomarker Presence in tissues (143)
miR‑15b, miR‑129, miR‑135, miR‑146a,   Prognostic biomarkers Presence in tissues (144,153)
miR‑424, miR‑450, miR‑222, miR‑17, 
miR‑18a, miR‑19b, miR‑92a
(miR‑17/92 cluster)  
miR‑29, miR‑20b, miR‑18b  Prognostic biomarkers Presence in cell lines and tissues (154‑156)
miR‑223  Prognostic biomarkers Presence in PBMCs and cell lines (157)

lncRNA, long non‑coding RNA; miRNA/miR, microRNA; PBMCs, peripheral blood mononuclear cells.
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miR‑155, and miR‑221 (162‑165) [widely used as diagnostic 
biomarkers (166‑173)] (Table V and Fig. 3).

Concerning lncRNAs in patients with BL, 13 lncRNAs have 
been identified thus far (173). The most well‑identified lncRNA 
in patients with BL is MINCR, located on chromosome 8q24.3, 
with an uncharacterized role; but it seems that it causes the induc‑
tion of myc and modulates its transcriptional program (173). 

Other indolent BCNHLs. There are also two other types of 
BCNHLs which exhibit an indolent course. These are MALT 
lymphomas and MZL, particularly the splenic type (SMZL). 

None of the lncRNAs has been thus far identified as playing 
a major role in the the activation or progression of a B‑cell to 
transform in any of these types of B‑cell lymphomas.

Concerning miRNAs in SMZL, miR‑96, miR‑129, miR‑29a, 
miR‑29b‑1, miR‑182, miR‑183, miR‑335 and miR‑593 can be 
used as diagnostic biomarkers, although without sufficient 
data to date (174) (Table VI and Fig. 3). 

As regards miRNAs in MALT lymphomas, miR‑203 
primarily, and secondly, miR‑150, miR550, miR‑124a, 
miR‑518b and miR‑539, have been widely recognizable 
as being present in gastric MALT lymphoma (175). Other 
miRNAs identified in MALT lymphomas are the following: 
The 27‑miRNA signature, miR‑142, miR‑155, miR‑203 
miR‑142 and miR‑155 (176,177) (Table VI and Fig. 3). 

b) HLs. There are two main types of HL: Classical Hodgkin 
lymphoma (9 out of 10 cases) and nodular lymphocyte predomi‑
nant Hodgkin lymphoma (1 out of 10 cases) (178,179). There is a 
differentiation in morphology, phenotype and molecular features 
between both these types. Furthermore, classical HL alone can 
be subclassified into 4 more pathologic subtypes: i) Nodular scle‑
rosing HL; ii) mixed‑cellularity subtype; iii) lymphocyte‑rich; 
and iv) lymphocyte‑depleted HL (180‑182).

Compared to B‑NHLs, only limited data are available on 
the expression of lncRNAs in HLs. As regards miRNAs in 
patients with HL Hodgkin, there are studies which show that 
low miR‑135a levels lead to significantly poorer prognostic 
outcome in Hodgkin patients (183,184). The inhibition of let‑7 
and miR‑9 leads to the prevention of plasma cell differentia‑
tion (184). In particular, the inhibition of miR‑9 seems to lead 

to a decrease in cytokine production and a reduced ability in 
attracting inflammatory cells (185). In addition, miR‑155, the 
23‑miRNA signature and 134‑ and 100‑miRNA signature, 
25‑miRNA signature and miR‑9‑2 (methylation) can be used as 
diagnostic biomarkers in patients with HL (as they are presented 
in HL cell lines and tissues) (186‑193) (Table VII and Fig. 3). 

c) T‑NHLs and NK‑NHLs. T‑cell lymphomas affect T‑cells 
and they are divided into 4 major types: i) Extranodal T‑cell 
lymphoma; ii) cutaneous T‑cell lymphomas: Sézary syndrome 
and Mycosis fungoides; iii) anaplastic large cell lymphoma; 
and iv) angioimmunoblastic T‑cell lymphoma. There is also a 
clinical entity known as aggressive NK‑cell leukemia with an 
aggressive, systemic proliferation of NK cells; it can also be 
termed aggressive NK‑cell lymphoma (194,195).

As regards miRNAs in T‑cell and NK‑cell lymphomas, very 
little is known so far. MiRNA‑21, miRNA‑155, miRNA‑150, 
miRNA‑142 and miRNA‑494 are present in various forms of 
cutaneous T‑cell lymphomas, compared to related benign disor‑
ders (196,197). miRNA‑146a and miRNA‑155 are also present 
in patients with cutaneous T‑cell lymphomas (1). miRNA‑223, 
miRNA‑BART‑20, miRNA‑BART‑8, miRNA‑BART‑16 and 
miRNA‑BART‑9 are EBV‑encoded and are associated with the 
activation of the EBV oncoprotein, LMP‑1 (197‑204) (Table VIII). 

Concerning lncRNAs in various types of T‑cell and 
NK‑cell lymphomas, MALAT1, located on chromosome 
11q13.1, has been identified as being overexpressed and leads 
to the induction of BMI1 activation (197); that is the reason 
why MALAT1 can be used as prognostic marker and thera‑
peutic target in T‑ and NK‑cell lymphomas (195) (Table VIII). 

d) Other common B‑cell malignancies. MM, also known 
as plasma cell myeloma, is a fatal malignant hematological 
disorder which lead to the proliferation of monoclonal anti‑
body‑secreting plasma cells; the main criterion is the presence 
of clonal plasma cells >10% in bone marrow biopsy or in a 
biopsy from other tissues (plasmacytoma). MM accounts for 
10% of all hematological malignancies (205). 

Compared to all types of B‑cell Lymphomas, very little 
is known about miRNA expression in patients with MM. As 
regards lncRNAs in patients with MM, the following have 

Table VI. miRNAs identified in patients with splenic marginal zone lymphoma B‑cell lymphoma and mucosa‑associated 
lymphoid tissue lymphoma.

  Genome  Molecular
miRNA(s) Disease type location Role/activation mechanism/sample (Refs.)

miR‑29a, miR‑29b‑1, miR‑96, miR‑129, Splenic marginal   Diagnostic Presence in tissues (174)
miR‑182, miR‑183, miR‑335, miR‑593  zone lymphoma   biomarkers
miR‑127, miR‑139, miR‑335, miR‑411, Splenic marginal   Diagnostic Presence in tissues (175)
miR‑451, miR‑486 zone lymphoma  biomarkers
27‑miRNA signature, miR‑142,  Mucosa‑associated   Diagnostic
miR‑155, miR‑203  lymphoid tissue  biomarkers Presence in tissues (176,177)
miR‑142, miR‑155 Mucosa‑associated   Prognostic  Presence in tissues (177)
 lymphoid tissue   biomarkers

miRNA/miR, microRNA.
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Table VIII. miRNAs and lncRNAs identified in patients with T‑cell and NK‑cell lymphomas.

  Genome
  location  Molecular
miRNA(s)/lncRNA Disease type (if defined) Role/activation mechanism/sample (Refs.)

miRNA‑21 NK‑cell lymphoma‑  New biomarker Regulation of apoptosis (199)
 derived cell lines  or target in of NK‑cell lymphoma cell
 primary NKTCLs  thetreatment of  lines via the PTEN/AKT
   NKTCL. signaling pathway 
miRNA‑155 NK‑cell lymphoma   Potential molecular Regulation of inflammation,  (200)
 cell lines Primary   marker of NKTCL immune cells, and the
 NKTCL specimens   differentiation and 
    maturation of tumor cells 
miRNA‑142 Under‑expression in   Two different forms Downregulation of (201,202)
 NKTCLs  (miRNA‑142‑3p and RICTOR 
 lymphomas  miRNA‑412‑5p)
   miRNA‑142‑3p is 
   a potential target of 
   therapy
miRNA‑494 NKTCLs  Potential target of  Downregulation of PTEN (202)
   therapy 
miRNA‑223 NKTCLs  EBV infection Downregulation of PRDM1 (203)
miRNA‑16 NKTCLs  Novel target in  Downregulation of (197)
   NKTCL treatment CDKN1A
miRNA‑BART‑20 NKTCLs  EBV‑encoded Maturation of NK‑cells (204)
miRNA‑BART‑8 NKTCLs  EBV‑encoded Induction of apoptosis (204)
miRNA‑BART‑16 NKTCLs  EBV‑encoded Induction of cell‑cell (204)
    adhesion
miRNA‑BART‑9 NKTCLs  EBV‑encoded Induction of cell  (204)
    proliferation
MALAT1 Various types of T and  11q13.1 Overexpression Induction of BMI1 (195)
 NK cell lymphomas  Prognostic marker  activation
   and therapeutic 
   target in T and NK 
   cell lymphomas.

lncRNA, long non‑coding RNA; miRNA/miR, microRNA; NKTCL, natural‑killer/T cell lymphoma.
 

Table VII. miRNAs identified in patients with Hodgkin lymphoma.

 Genome 
 location   Molecular
miRNA(s) (if defined) Role/activation mechanism/sample (Refs.)

miR‑155  Diagnostic biomarkers Presence in cell lines (185,186)
23‑miRNA signature, 134‑miRNA signature,   Diagnostic biomarkers Presence in cell lines  (187,188)
100‑miRNA signature    and tissues
25‑miRNA signature and miR‑9‑2 (methylation)  Diagnostic biomarkers Presence in tissues (189,190)
miR‑135a  Prognostic biomarkers Presence in tissues (191)
   and cell lines
miR‑21, miR‑30e/d, miR‑92b, miR‑124a   Prognostic biomarkers Presence in tissues (192,193)
(methylation)

miRNA/miR, microRNA.
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been observed (Table IX): i) GAS5, located on chromosome 
1q25.1, acting as a tumor‑suppressor by regulating the mTOR 
pathway (77‑86); ii) DLEU2, located on chromosome 13q14.3, 
acting as a tumor‑suppressor by being a host of the miR‑15a/16‑1 
cluster and targeting BCL2 (117‑120); iii) 3) MALAT1, located 
on chromosome 11q13, acting as an oncogene by regulating the 
bioavailability of TGF‑β (146‑152); iv) MEG3, located on chro‑
mosome 14q32.2, acting as a tumor‑suppressor by interacting 
with p53 and regulating p53 gene expression (206‑209); v) TUG1, 
located on chromosome 22q12.2, acting as an oncogene by 
being induced by p53 (150,152); vi) lnc‑SENP5‑4/NCBP2‑AS2, 
located on chromosome 3q29, with an uncharacterized mode 
of action (85); vii) 7) lnc‑CPSF2‑2, located on chromo‑
some 14q32, with an uncharacterized mode of action (85); 
viii) lnc‑LRRC47‑1/TP73‑AS1, located on chromosome 1p36, 
with an uncharacterized mode of action (85); ix) lnc‑ANGPTL1‑3, 
located on chromosome 1q25, with an uncharacterized mode of 
action (85); x) lnc‑WHSC2‑2, located on chromosome 4p16.3, 
with an uncharacterized mode of action (85).

4. Anti‑ncRNA therapeutic strategies in lymphoid disorders 

There are specific strategies that can be used in order to target 
ncRNAs in tumor management. These are the following: 
i) Antisense oligonucleotides (ASOs), which can trigger 
RNaseH‑mediated RNA degradation (210); ii) CRISPR/Cas9 
genome editing technique which can effectively silence the 
transcription of the lncRNA‑expressing loci (211,212); iii) viral 
vectors (adenovirus, lentivirus and retrovirus) which can be 
used as a RNA interference (RNAi) method and can lead to the 
knockdown of gene expression by neutralizing the targeted RNA 
through exogenous double‑stranded RNA insertion (213‑215); 
and iv) nanomedicine, including lipid‑based nanoparticles (lipo‑
somes) (216), polymer‑based nanoparticles and micelles (217), 
dendrimers (218), carbon‑based nanoparticles (219), and metallic 
and magnetic nanoparticles, such as gold nanoparticles (220,221).

All these novel therapeutic strategies targeting ncRNAs, 
have been tested to date in preclinical models with lymphoid 

disorders. For example, a viral vector carrying miR‑28 has 
been delivered in DLBCL and BL xenografts and in murine 
models with B‑lymphoma, with acceptable prophylactic and 
therapeutic effects (222). 

Furthermore, the ASO strategy, such as LNA‑anti‑miR‑155, 
has been used in a B‑cell lymphoma murine model, exhibiting 
a significant effect in murine models (223). An anti‑miR‑155 
oligonucleotide with the trademark Cobomarsen is currently 
being clinically nowadays in patients with cutaneous T‑cell 
lymphoma (224). 

Double‑stranded RNAi and ASOs are the most commonly 
used lncRNA‑targeted therapies. When the target lncRNA is local‑
ized in the nucleus, ASOs are the better therapeutic option (225). 

The most important finding, by reviewing the literature, is that 
either the lncRNA expression signature or miRNA expression 
may help distinguish between the different lymphoma entities. In 
addition, as certain ncRNAs may be associated with the progres‑
sion of lymphoma or drug resistance, these ncRNAs can be used 
as predictive and prognostic markers (225). However, the ncRNA 
regulatory network is complex and is not yet fully understood, 
as the majority of ncRNAs have not yet been thoroughly investi‑
gated. Nevertheless, ncRNA‑based therapeutics can be combined, 
in the near future, with other techniques, such as chimeric antigen 
receptor (CAR) T‑cell immunotherapy, the targeting of tumor 
cells, thus improving their therapeutic efficacy (226,227).

5. Conclusions and future perspectives

Contemporary developments in biology have been combined 
with insightful discoveries analyzing the role of ncRNAs, 
either miRNAs or lncRNAs in human tumors, particularly 
lymphomas, such as: BCNHLs, HLs, T‑cell/NK cell NHLs 
(T‑/NK‑cell NHLs) and other B‑cell malignancies, such as MM. 

The present review aimed to provide a thorough summary of 
the current understanding of ncRNAs in lymphoid malignancies 
by summarizing, for the first time, to the best of our knowledge, the 
whole existing ncRNA (and not into different categories), miRNAs 
and lncRNAs, which are associated with lymphoid disorders.

Table IX. lncRNAs identified in patients with multiple myeloma.

 Genome
lncRNA location Role/activation Molecular mechanism/sample (Refs.)

GAS5 1q25.1 Tumor‑suppressor Regulation of mTOR pathway (77‑86)
DLEU2 13q14.3 Tumor‑suppressor Host of miR‑15a/16‑1 cluster and targeting (117‑120)
   BCL2
MALAT1 11q13 Oncogene Regulation of the bioavailability of TGF‑β (146‑152)
MEG3 14q32.2 Tumor‑suppressor Interaction with p53. (206‑209)
   Regulation of P53 gene expression
TUG1 22q12.2 Oncogene Induction by p53 (150,152)
lnc‑SENP5‑4/NCBP2‑AS2 3q29 Uncharacterized Not described (85)
lnc‑CPSF2‑2 14q32 Uncharacterized Not described (85)
lnc‑LRRC47‑1/TP73‑AS1 1p36 Uncharacterized Not described (85)
lnc‑ANGPTL1‑3 1q25 Uncharacterized Not described (85)
lnc‑WHSC2‑2 4p16.3 Uncharacterized Not described (85)

lncRNA, long non‑coding RNA.
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The initial data suggest that mostly lncRNAs, play key 
roles in lymphangiogenesis, as a great number of them are 
deregulated in B‑cell malignancies. However, this particular 
field is still in its infancy, with insufficient data; thus, further 
studies need to be performed. 

Concerning the role of miRNAs as biomarkers in all lymphoid 
malignancies, ample data are available, although without imme‑
diate use in clinical practice. A number of miRNA biomarker 
studies to date on B‑NHLs, HLs, T‑/NK‑NHLs and MM are not 
based on multi‑center cooperations, and thus, in most cases, a 
number of reviews are non‑overlapping and even contradictory. 

For all the above reasons, further multi‑center studies are 
warranted with the establishment of a standardized approach 
and the use of the same techniques: RT‑qPCR, microarrays 
or next‑generation sequencing (NGS). This is mandatory step 
in order to explore more thoroughly the role and functions of 
lncRNAs in normal B‑cells and malignant B‑cells; as well as to 
perform a more in‑depth miRNA biomarker analysis in order 
to ensure that these molecules can be effectively used in daily 
practice. These tasks are both compelling and challenging in the 
next future for the prognosis and potential therapeutic targeting 
of all lymphoid malignancies; leading to a better treatment plan. 
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