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Abstract: The mechanical response of graphene nanoribbons under uniaxial tension, as well as its
dependence on the nanoribbon width, is presented by means of numerical simulations. Both armchair
and zigzag edged graphene nanoribbons are considered. We discuss results obtained through two
different theoretical approaches, viz. density functional methods and molecular dynamics atomistic
simulations using empirical force fields especially designed to describe interactions within graphene
sheets. Apart from the stress-strain curves, we calculate several elastic parameters, such as the
Young’s modulus, the third-order elastic modulus, the intrinsic strength, the fracture strain, and the
Poisson’s ratio versus strain, presenting their variation with the width of the nanoribbon.

Keywords: 2D materials; mechanical response; uniaxial tension; numerical simulations

1. Introduction

Since the isolation of graphene, the first atomically thin two-dimensional material
realized experimentally, an enormous number of investigations have explored its fasci-
nating properties. Graphene has exceptional electronic [1–5] and thermal [6–9] transport
characteristics. Besides, its vibrational [10–14], mechanical [15–26], and optical [27–33]
properties have been extensively studied both experimentally and theoretically. From the
theoretical perspective, several force fields have been designed [20,34–38] that are able to
sufficiently describe particular features of this nanomaterial or, more generally, of carbon
condensed phases. Various dynamical and structural properties of graphene have been ex-
amined [39–42], as well as the influence of different kinds of defects [43–52]. Graphene has
been used in a number of devices and applications, for example, in integrated circuits [53],
sensors/biosensors [54–56], detectors [57,58], etc.

Graphene nanoribbons (GNRs) are narrow stripes of graphene having a width in the
nanometer scale [59]. There are two main routes of GNR production: a top-down approach
using either lithography for etching graphene [60,61] or carbon nanotube unzipping [62,63]
and a bottom-up synthesis using appropriate precursor molecules [64–66]. The second
method provides a controllable fabrication of GNRs with well defined widths and edge
structures. Both armchair edged nanoribbons (AGNRs) and zigzag edged nanoribbons
(ZGNRs) have been synthesized (see, e.g., Ref. [67] and references therein).

GNRs exhibit a richer behavior than graphene, as their properties can be tuned
through engineering of their width and edge structure. For example, due to quantum
confinement, narrow graphene nanoribbons present a semiconducting electronic structure
with increasing energy band gap as the nanoribbon width decreases [60,61,68]. As a result,
structural, vibrational, and electronic properties of GNRs and their applications in devices
have been extensively considered [69–77].

The mechanical response of graphene nanoribbons under uniaxial tension has also
received considerable attention. One of the early studies on this subject presents numerical
results on the size dependence of Young’s modulus and Poisson’s ratio for square-shaped
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GNRs, using both molecular dynamics (MD) simulations with the AIREBO force field and
energy calculations through the orthogonal tight-binding method [78]. These different
methods showed that the Young’s modulus of GNRs increases with the nanoribbon size,
while the Poisson’s ratio decreases, for both armchair and zigzag directions, and the
obtained elastic parameters converge to the corresponding bulk values at large widths,
above 10 nm [78].

At the same time, another investigation of hydrogen-passivated ZGNRs under rela-
tively small uniaxial stresses, using the PBE functional within the Generalized Gradient
Approximation (GGA) in density functional theory (DFT), presented a decrease of both
the Young’s modulus and the Poisson’s ratio with the ribbon width, for widths up to
2 nm [79]. In the same theoretical framework of GGA-PBE density functional theory, a
study of hydrogen-passivated nanoribbons presents stress-strain data for different ribbon
widths, up to about 3 nm for ZGNRs and 1.3 nm for AGNRs, and finds that by increasing
width the Young’s modulus decreases slightly for AGNRs but stronger for ZGNRs, while
the Poisson’s ratio decreases for AGNRs, but it is insensitive to width for ZGNRs [80].

Results regarding the stress-strain response of AGNRs and ZGNRs of different widths,
ranging from 1 to 9 nm, have also been calculated through atomistic molecular mechanics
simulations using the REBO force field [81]. The Young’s modulus was found to decrease
with the ribbon width for unpassivated ZGNRs and AGNRs, as well as for hydrogen-
passivated ZGNRs, while it was increasing for hydrogen-passivated AGNRs. The fracture
strain decreased with the width in all cases, though it seems that it was not converging
to the bulk values as the width increases, while the intrinsic strength increases with the
width except for the case of hydrogen-passivated ZGNRs where it was decreasing [81]. MD
simulations using the AIREBO potential in Ref. [82] have shown increase of the Young’s
modulus with width for both AGNRs and ZGNRs, while both the fracture strain and the
intrinsic strength decay by increasing width for ZGNRs and are almost insensitive on
ribbon’s width for AGNRs.

Numerical data from a structural mechanics approach examining GNRs of different
lengths and widths up to 10 nm has found that the Young’s modulus increases with
the width in zigzag edged nanoribbons, while it exhibits a non-monotonous behavior for
relatively narrow AGNRs [83]. Finally, an atomic scale finite element method has calculated
stress-strain curves for ribbons of different widths and found a response insensitive to width
for AGNRs, while the Young’s modulus and the intrinsic strength of ZGNRs is a decreasing
function of ribbon width, in contrast to the width independent case of AGNRs [84].

Further, the effects of various defects, such as Stone-Wales defects [85], large vacancy
rings and different kinds of N doping [86], edge defects [80], and defective GNRs with
coved edges [87], on the mechanical behavior of GNRs under uniaxial tension have been
examined. The response of uniaxially compressed graphene nanoribbons has been also
investigated [52,88].

Here, we present extensive numerical computations of the mechanical behavior of
ZGNRs and AGNRs when a tensile load is applied uniaxially on their ends, and we
determine the corresponding elastic constants and their dependence on ribbon width. As
already mentioned, both the edge structure and the nanoribbon width provide controllable
parameters that affect materials’ properties. We apply first principle methods as well as
atomistic MD simulations using appropriate potentials for describing bond stretchings
and angle bendings within the graphene plane. In the following section, we outline the
computational methods used in this work, and the next section contains a discussion of
our results. The final section concludes our study.

2. Methods
2.1. Density Functional Theory Calculations

The strain response of ZGNRs and AGNRs that are not passivated was studied by
DFT theoretical simulations at the GGA level and the PBE functional [89]. We employed
the Quantum-Espresso computer code [90] with an ultra-soft RRKJ-type pseudopoten-
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tial [91]. This combination has been proven to reproduce accurately structural, mechanical,
vibrational, and thermodynamic properties of carbon allotropes [49,92].

In Figure 1, we show examples of the employed unit-cells (see red boxes) for the cases
of ZGNRs and AGNRs. Graphene nanoribbons are 1D periodic systems and, as can be
seen from Figure 1, the dimension of the unit-cell along the direction of periodicity for the
AGNRs is roughly two times larger than that of ZGNRs (4.27 Å and 2.46 Å respectively).
Accordingly, we used 8 k-points for the AGNRs and 16 for the ZGNRs. Concerning the
vertical to the nanoribbon direction, in order to isolate the nanoribbon, a periodicity was
assumed with an empty space of at least 15 Å between a nanoribbon and its images due
to periodicity.

Figure 1. Examples of: (a) a zigzag nanoribbon and (b) an armchair nanoribbon. L is the length of
the nanoribbon, and W is its width. The unit-cell employed in DFT calculations is shown with red
boxes. The green boxes contain the terminal atoms on which forces were applied in the atomistic MD
simulations. The convention of layer numbering (N) is also shown.

Initially, structures were optimized as far as the atomic positions and the unit-cell
are concerned. Subsequently, strain was applied along the direction of periodicity by
increasing the unit-cell dimension and keeping it frozen in the calculations while all atomic
positions were allowed to relax. This procedure allows for the width of the nanoribbon
to adjust. We performed calculations for nanoribbons of several widths, extending up to
more than 5 nm for ZGNRs and up to more than 2 nm for AGNRs, and for strains in the
range 0–30%.

For all different widths, the dependence of the total energy on strain was obtained.
Typically, this dependence is parabolic for small strains, and, as strain increases, the curve
bends and reaches a maximum value. We assume that this maximum corresponds to
fracture strain. However, we should keep in mind that the imposed periodicity restricts the
fracture mechanism, since it does not allow fracture paths that alter this periodicity. Thus,
one expects that the so-obtained fracture strains might be, in some degree, overestimated.
Having the total energy for several values of strain, the force acting to the vertical to
the strain unit-cell edges was obtained numerically as the first derivative of the total
energy with respect to the unit-cell dimension along the strain direction. Then, the two-
dimensional (2D) stress was calculated by dividing this force with the vertical to the strain
unit-cell dimension (i.e., the width of the nanoribbon).

2.2. Molecular Dynamics Simulations

For the MD simulations, we used the empirical force fields introduced in Ref. [20] for
the description of in-plane motion in graphene. These potentials concern the bond stretch-
ing and valence angle bending of planar sp2 carbons within a graphene sheet, and they have
been derived through fitting with numerical data obtained from first principles’ methods.

Using the layer numbering depicted in Figure 1, we have considered ZGNRs with
sizes 87 × N, where N = 4, 6, 8, 10, 12, 20, 40, 60, and 80 (see Figure 1a), and AGNRs with
sizes 86 × N, where N = 5, 7, 9, 11, 13, 21, 41, 61, and 81 (see Figure 1b), in order to examine
nanoribbons of varying widths.

The response of GNRs under uniaxial tension is calculated by applying constant forces
at all atoms on the ends vertical to the long direction, of length L, of the nanoribbon (shown
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with green boxes in Figure 1). Opposite forces are applied at the different ends, pulling the
corresponding atoms away. All other atoms of the GNR, including those on the long edges,
are free of any force or other constrains, just interacting through the considered force fields
with their neighboring atoms of the structure. Applying a friction term at each atom of
GNR, the evolution of the system is followed numerically through Newton’s equations of
motion, until reaching the equilibrium corresponding to the applied tensile forces [20]. The
used dissipation coefficient was 10 ps−1, but we note that this choice has not any effect on
the equilibrium state of the system, only affecting the transient behavior and the time to
reach equilibrium. Then, the average strain along the long direction of the nanoribbon is
calculated at this equilibrium state, while the corresponding 2D stress is obtained by the
total force applied at each end (i.e., the sum of the forces acting at all atoms of the GNR’s
end) divided by the original nanoribbon width W (the width before the deformation, as
usually considered when calculating the nominal stress).

3. Results and Discussion
3.1. Stress-Strain Curves

The mechanical response of graphene nanoribbons is quantified through the corre-
sponding stress-strain curves. The calculated response under uniaxial tension is presented
in this subsection. A number of elastic parameters, such as the Young’s modulus, the
third-order elastic modulus, the intrinsic strength, and the fracture strain, are obtained
through the stress-strain curves and will be discussed in the following subsections.

The nominal 2D stress-strain curves for zigzag graphene nanoribbons of various
widths are shown in Figure 2 and for armchair nanoribbons in Figure 3. The left panels in
these figures present results obtained from MD simulations, while the right panels from
DFT computations, as described in the previous section. The widths of the examined
nanoribbons range from the subnanometer scale up to around 17 nm (10 nm) for ZGNRs
(for AGNRs) in the MD case or a few nm in the DFT case. The GNRs examined using DFT
here are almost twice as wide as those considered in earlier studies [79,80]. In all cases, the
results for the wider GNRs considered in this work converge to the corresponding bulk
data [20], which are explicitly shown here (see the black filled circles in Figures 2 and 3)
for comparison.
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Figure 2. The 2D stress (force per unit length) as a function of strain parallel to the loading direction
for ZGNRs of different widths W, obtained by (a) MD simulations and (b) DFT calculations. The
layer numbering N is shown in Figure 1a.



Materials 2021, 14, 5042 5 of 15

0 5 10 15 20
Strain //  (%)

0.0

0.5

1.0

1.5

2.0

F
o

rc
e 

/ 
le

n
g

th
  

(e
V

/A
2
)

bulk
W=0.49 nm, N=5
W=0.74 nm, N=7
W=0.98 nm, N=9
W=1.23 nm, N=11
W=1.48 nm, N=13
W=2.46 nm, N=21
W=4.92 nm, N=41
W=7.38 nm, N=61
W=9.84 nm, N=81

(a)

0 5 10 15 20
Strain //  (%)

0.0

0.5

1.0

1.5

2.0

F
o

rc
e 

/ 
le

n
g

th
  

(e
V

/A
2
)

bulk
W=0.72 nm, N=7
W=0.96 nm, N=9
W=1.21 nm, N=11
W=1.46 nm, N=13
W=1.95 nm, N=17
W=2.20 nm, N=19

(b)

Figure 3. The 2D stress (force per unit length) as a function of strain parallel to the loading direction
for AGNRs of different widths W, obtained by (a) MD simulations and (b) DFT calculations. The
layer numbering N is shown in Figure 1b.

The results of Figure 2 demonstrate that the mechanical response of ZGNRs appears
to be rather insensitive to the ribbon width W in the MD simulations, while there is a
smooth dependence in the DFT calculations. The other way around is for the AGNRs, as
can be seen from Figure 3. Our MD derived stress-strain response of ZGNRs and AGNRs
is in qualitative agreement with molecular mechanics calculations that employ energy
minimization using the REBO potential, as shown in Figure 4 of Ref. [81]. On the other
hand, similar trends with our DFT data have been observed in Figure 4 of Ref. [80], apart
from the fact that a small dependence of the mechanical response of AGNRs on their
width W has been observed there. However, we note that hydrogen-passivated GNRs
have been considered in the DFT results discussed in that work. It is worth mentioning
that an insensitivity of the mechanical behavior of AGNRs on their width has been also
found using an atomic scale finite element method, while a qualitatively similar picture
with our DFT data has been observed in the case of ZGNRs, though with a weaker width
dependence, as can be seen from Figure 8 of Ref. [84].

3.2. Young’s Modulus

The slope of the stress-strain curves at small strains provides the Young’s modulus
E of a material. The 2D Young’s moduli of both armchair and zigzag edged GNRs have
been calculated from the data presented in the previous subsection, and their dependence
on nanoribbon width is depicted in Figure 4. In that figure, the values of E have been
normalized to the 2D Young’s modulus of bulk graphene, which has been calculated to be
Ebulk = 320 N/m within both DFT and MD approaches considered here [20]. This value is
within the experimental estimate [17] of 340 ± 50 N/m, corresponding to a 3-dimensional
Young’s modulus of 1.0 ± 0.1 TPa if one considers the thickness of single layer graphene to
be 3.35 Å.

Figure 4 shows that, as the GNR width increases, the normalized Young’s modulus
tends to 1 in all cases, as expected. However, the DFT and MD results demonstrate opposite
trends. In particular, the DFT data reveal an increasing Young’s modulus as the width of
the GNR decreases, which is more evident for ZGNRs (reaching more than 30% increase
with respect to the bulk value for the smallest ribbon considered here), while the MD
computations result in decreasing values of E as W decreases, which is more evident in
the case of AGNRs (showing more than 20% decrease from the bulk value for the smallest
nanoribbon examined).
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Figure 4. The ratio E/Ebulk of the 2D Young’s moduli of nanoribbons, E, and bulk graphene, Ebulk,
obtained from the MD (circles) and DFT (squares) simulations, for ZGNRs (filled symbols) and
AGNRs (open symbols), as a function of nanoribbon width.

This contradicting qualitative behavior is in accordance to the observed dependence of
E in previous investigations. Other DFT calculations in hydrogen-passivated nanoribbons
have also found larger values of E for smaller ribbon widths for the case of ZGNRs
(see Figure 3 of Ref. [79]), while the width dependence of both ZGNRs and AGNRs
shown in Figure 5 of Ref. [80] exhibits a similar behavior as that presented by our DFT
data in Figure 4. On the contrary, MD simulations using the AIREBO potential resulted in
increasing Young’s modulus with W for both AGNRs and ZGNRs (see Figure 10 of Ref. [82]),
as also shown in our MD data. Another study has also shown increased values of E with
the ribbon size but for square-shaped AGNRs and ZGNRs using both MD calculations
with the AIREBO potential and tight-binding energy computations, as well [78].

Interestingly, the molecular mechanics results of Ref. [81], demonstrating qualitatively
similar stress-strain curves as our MD findings, lead to decreasing Young’s modulus with
W for unpassivated ZGNRs and AGNRs. Decaying values of E by increasing W have been
also found for ZGNRs in the atomic scale finite element method of Ref. [84], while there is
no sensitivity of E to W in the AGNRs’ case. However, the obtained values of Ebulk in the
last two works are well below the experimentally determined [17] and widely accepted
Young’s modulus of bulk graphene mentioned above.

3.3. Third-Order Elastic Modulus

The stress-strain response of GNRs can be accurately described by the following
quadratic relation:

σ = E · ε + D · ε2, (1)

where σ corresponds to the 2D stress, ε is the strain (expressed in pure values, not in
percentages as in Figures 2 and 3, for example a value of 0.1 should be used instead of
10%), E is the 2D Young’s modulus, and D is the 2-dimensional third-order elastic modulus
describing the departure of the mechanical response from the linear behavior.

Through fitting of the stress-strain curves presented in Figures 2 and 3 with Equation (1),
the respecting values of D have been derived for all GNRs examined here. In this fitting
procedure, just one fitting parameter has been considered, the elastic constant D, since
the values of E have been independently determined through the stress-strain data at
small strains as discussed in the previous subsection. We note that the third-order elastic
modulus is negative for graphene, as well as for GNRs.
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Figure 5 depicts the normalized values of D, divided over the corresponding quantities
Dbulk of bulk graphene, which provide their large width limitings values. These bulk
values have been calculated −700 N/m for AGNRs and −670 N/m for ZGNRs using
DFT, and −670 N/m for AGNRs and −560 N/m for ZGNRs using MD [20]. An available
experimental estimate of the 2D value of third-order elastic modulus is −690 N/m [17].
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Figure 5. The ratio D/Dbulk of the 2-dimensional third order elastic moduli of nanoribbons, D, and
bulk graphene, Dbulk, obtained from the MD (circles) and DFT (squares) simulations, for ZGNRs
(filled symbols) and AGNRs (open symbols), as a function of nanoribbon width.

Once more, we see that the calculated third-order elastic moduli converge to the
corresponding bulk quantities when the width W increases, as the normalized values tend
to 1. However, the DFT and MD results show again opposite trends, in a similar way as
discussed for the Young’s moduli in the previous subsection. Existing investigations of the
mechanical properties of graphene nanoribbons [78–84] have not reported results for the
third-order elastic modulus and its dependence on width in order to compare our findings
with other available data.

3.4. Fracture Strain

The fracture strain is the maximum strain that can be sustained by a GNR before
failure. It is given by the abscissa of the last point of the stress-strain curve, immediately
before failure. In the atomistic MD simulations, which are less computer-time consuming
than the corresponding DFT calculations, there is an increased density of points near
fracture, as can be clearly seen for example in Figure 3a, in order to locate more precisely
the fracture point.

Figure 6 depicts the fracture strains εf for the two families of GNRs with the different
structural edges, normalized to the corresponding bulk values εf

bulk, which in the consid-
ered MD (DFT) approach have been found [20] to be more than 28% (around 24%) and
around 14.5% (around 19%) for ZGNRs and AGNRs, respectively. In this case, the DFT and
MD results agree that narrow zigzag nanoribbons have fracture strains slightly above the
corresponding bulk values and are weakly dependent on width. Regarding the armchair
nanoribbons, which show stronger width dependence, the two methods give opposite
trends; εf decreases (increases) for smaller widths in DFT (MD) up to more than 10% (more
than 20%) of the corresponding bulk value.
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Figure 6. The ratio εf/εf
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bulk,
obtained from the MD (circles) and DFT (squares) simulations, for ZGNRs (filled symbols) and
AGNRs (open symbols), as a function of nanoribbon width.

We are not aware of other DFT results regarding the fracture strain or the intrinsic
strength (see next subsection) of GNRs. Molecular dynamics simulations with the AIREBO
force field have found that, for AGNRs, there is no dependence of εf on the width, while,
for ZGNRs, the fracture strain decreases with W reaching values of around 16% for a 12 nm
wide zigzag nanoribbon (see Figure 12 of Ref. [82]). However, such a value of fracture
strain is considerably below the calculated by different methods εf

bulk of graphene under
tensile load in this direction, which is well above 20% [16,19,20,80]. Atomistic molecular
mechanics calculations using the REBO potential have found for unpassivated ZGNRs
with widths up to 8 nm a qualitatively similar behavior as in our MD data (see Figure 7 of
Ref. [81]), while, for unpassivated AGNRs the fracture strain shows a slight decrease on W,
but the presented results do not seem to converge to the corresponding bulk values.

3.5. Intrinsic Strength

The intrinsic strength, also referred to as fracture stress or tensile strength, represents
the maximum stress that a material can withstand, while for larger stresses it fails. It is
obtained by the stress-strain curve through the last point’s, just before failure, ordinate.
The DFT and MD derived values of intrinsic strengths for ZGNRs and AGNRs and their
variation with the nanoribbon width are shown in Figure 7, once more normalized to the
respective bulk values. The bulk graphene values for uniaxial tension along the same
direction as in the AGNRs are around 34 N/m using DFT and around 32 N/m using MD,
while for the perpendicular direction, i.e. the same direction as in ZGNRs, are 38 N/m and
45 N/m, respectively [20]. We mention here that the experimentally estimated intrinsic
strength of graphene is 42 ± 4 N/m, corresponding to an effective 3-dimensional value of
130 ± 20 GPa [17].
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Figure 7. The ratio Ff/Ff
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bulk,
obtained from the MD (circles) and DFT (squares) simulations, for ZGNRs (filled symbols) and
AGNRs (open symbols), as a function of nanoribbon width.

The numerical results presented in Figure 7 show that, for AGNRs, the fracture stresses
show almost no dependence on the ribbon width in DFT, while, in MD, there is a small
variation only for extremely narrow widths, in the subnanometer scale. For ZGNRs the
MD intrinsic strengths seem to be insensitive to the width, but the DFT data show a strong
increase of the fracture stress by reducing W, that reach more than 40% increase with
respect to the bulk value for the narrower nanoribbons considered here.

In qualitative agreement to our DFT data are results from MD simulations (see
Figure 11 of Ref. [82]) and from finite element approaches (see Figure 9, right panel of
Ref. [84]) showing no dependence of AGNRs’ intrinsic strength on W and decreasing
values of Ff with ribbon width for ZGNRs. Contrary to these results, molecular mechanics
calculations for unpassivated GNRs have found increasing fracture stresses with W, an
effect which is stronger for AGNRs and very small for ZGNRs (see Figure 9 of Ref. [81]).

3.6. Poisson’s Ratio

The Poisson’s ratio, ν, represents the relative contraction in the direction perpendicu-
larly to the applied load over the relative extension (strain) in the direction of the tensile
load. It is given by the quantity ν = −ε⊥/ε//, where the ε⊥ is negative due to the lateral
contraction. Within our DFT and MD approaches, we have calculated the lateral strains
and the corresponding Poisson’s ratios for the examined GNRs under uniaxial tension. In
the MD case, the lateral strain at the middle of the length of the nanoribbon is computed in
order to avoid end effects. Though the Poisson’s ratio is usually referred to small deforma-
tions, here we present results for the whole range of strains up to materials’ failure, since ν
exhibits a strong dependence on strain.

Figures 8 and 9 depict the variation of the Poisson’s ratio with strain for zigzag and
armchair nanoribbons, respectively. The results obtained by MD are shown in the left
panels, and those from DFT in the right ones. Both methods demonstrate that in general
narrower GNRs exhibit larger Poisson’s ratios, and there is a decrease of ν with increasing
width towards the bulk values which are shown by black filled circles in these figures.
The MD data show a smooth, almost linear, dependence of Poisson’s ratio on strain, for
both ZGNRs and AGNRs. A roughly similar behavior is shown by DFT in the case of
AGNRs, but with larger Poisson’s ratios than the corresponding MD values for the narrower
nanoribbons (Figure 9). For ZGNRs, the DFT results give a more irregular dependence on
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strain, which is more evident for the smallest width examined (Figure 8), perhaps due to
the unpassivated edges of the considered nanoribbons.
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Figure 8. Poisson’s ratio of ZGNRs of different widths as a function of strain parallel to the loading
direction, obtained by (a) MD simulations and (b) DFT calculations.
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Figure 9. Poisson’s ratio of AGNRs of different widths as a function of strain parallel to the loading
direction, obtained by (a) MD simulations and (b) DFT calculations.

A decrease of the Poisson’s ratio with the width has been also found in Ref. [79] for
ZGNRs using DFT, but this behavior depends on the width definition (see Figure 4 of
that work). Another DFT study shows a decrease of ν with W for AGNRs, but almost no
dependence for ZGNRs, while in both cases the Poisson’s ratio decays with strain (see
Figure 6 of Ref. [80]). We mention that hydrogen-passivated GNRs have been considered
in these two works. For AGNRs, the strain dependence of ν in Ref. [80] is qualitatively
similar to our DFT data of Figure 9b, but this is not the case for the ZGNRs. Perhaps the
passivation/unpassivation has stronger effects on ν for narrow zigzag nanoribbons. A
decrease of the Poisson’s ratio with the size of GNR has been also observed in the atomistic
simulations of Ref. [78], but in square-shaped ribbons.

To further quantify the variation of the Poisson’s ratio with strain for the GNRs of
different width, we have fitted by straight lines the MD derived numerical data shown in
Figures 8a and 9a. These data are described very well by a linear relation of the form

ν = a · ε + ν0, (2)

where a is the slope, and ν0 is the intercept representing the Poisson’s ratio at the zero
strain limit. The results of the fitting are shown in Figure 10, where the dependence of
the intercept ν0 and the slope a on ribbon width is presented. The large width limiting
values of bulk graphene are ν0 = 022 for both armchair and zigzag nanoribbons, while



Materials 2021, 14, 5042 11 of 15

a = −0.0072/% strain for ZGNRs and a = −0.00625/% strain for AGNRs [20]. Figure 10a
depicts the increase of zero-strain Poisson’s ratio as the width of GNRs decreases, from the
bulk value of 0.22 to around 0.30. Regarding the dependence of the slope a, as can be seen
from Figure 10b, there is almost no variation with W for AGNRs, while the negative slope
is steeper for narrower ribbons in the case of ZGNRs.
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Figure 10. Dependence on width of (a) the intercept and (b) the slope, concerning the linear variation
of Poisson’s ratio with strain, Equation (2), as obtained by MD simulations for the zigzag (filled
circles) and armchair (open circles) GNRs. The horizontal dotted lines denote the corresponding bulk
values, which coincide for ZGNRs and AGNRs regarding the intercept, but they differ for the slope.

4. Conclusions

We have presented the stress-strain response of graphene nanoribbons of varying
widths, theoretically calculated using density functional theory, as well as atomistic molec-
ular dynamics simulations. Results for zigzag and armchair edged nanoribbons have been
obtained, and the width dependence of a number of elastic properties has been discussed.
The widths of the examined nanoribbons range from tenths of nm up to a few nm in DFT
and 10–17 nm in MD, depending on the edge structure. The DFT investigated nanoribbons
are almost twice as wide as those considered in similar studies.

All the results presented here smoothly converge to the corresponding bulk data as the
width of the nanoribbons increases. The calculated elastic constants of nanoribbons include
the Young’s modulus, where a relatively large number of results obtained by various
numerical methods are available, as well as the intrinsic strength and fracture strain, where
DFT data are lacking, the Poisson’s ratio, where results from atomistic simulations or
for unpassivated nanoribbons generally are lacking, and the third-order elastic modulus,
which is not much investigated in the literature.

DFT (MD) calculations show stronger dependence on width of the stress-strain curves
for zigzag (armchair) nanoribbons and almost width insensitive response for armchair
(zigzag) nanoribbons. In general, opposite trends are revealed by the DFT and MD out-
comes in many cases. However, this is not so surprising, as for example in the case of
Young’s modulus, which is well investigated, this is in accordance with existing data.
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