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Abstract: Liposomes with adjuvant properties are utilized to carry biomolecules, such as proteins,
that are often sensitive to the stressful conditions of liposomal preparation processes. The aim
of the present study is to use the aqueous heat method for the preparation of polymer-grafted
hybrid liposomes without any additional technique for size reduction. Towards this scope, lipo-
somes were prepared through the combination of two different lipids with adjuvant properties,
namely dimethyldioctadecylammonium (DDA) and D-(+)-trehalose 6,6′-dibehenate (TDB) and the
amphiphilic block copolymer poly(2-(dimethylamino)ethyl methacrylate)-b-poly(lauryl methacrylate)
(PLMA-b-PDMAEMA). For comparison purposes, PAMAM dendrimer generation 4 (PAMAM G4)
was also used. Preformulation studies were carried out by differential scanning calorimetry (DSC).
The physicochemical characteristics of the prepared hybrid liposomes were evaluated by light scatter-
ing and their morphology was evaluated by cryo-TEM. Subsequently, in vitro nanotoxicity studies
were performed. Protein-loading studies with bovine serum albumin were carried out to evaluate
their encapsulation efficiency. According to the results, PDMAEMA-b-PLMA was successfully incor-
porated in the lipid bilayer, providing improved physicochemical and morphological characteristics
and the ability to carry higher cargos of protein, compared to pure DDA:TDB liposomes, without
affecting the biocompatibility profile. In conclusion, the aqueous heat method can be applied in
polymer-grafted hybrid liposomes for protein delivery without further size-reduction processes.

Keywords: cationic lipids; block copolymer; bovine serum albumin; differential scanning calorimetry
(DSC); cryogenic transmission electron microscopy (cryo-TEM)

1. Introduction

Dimethyldioctadecylammonium (DDA) is a cationic lipid with several applications in
the field of nanomedicines and drug delivery systems [1–9]. DDA lipid nanoparticles can
encapsulate self-amplifying RNA to be protected from degradation and to achieve efficient
delivery and strong antigen-specific humoral and cellular-mediated immune responses
to virtually any infectious disease [4]. DDA ligand-targeted formulations encapsulated
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plasmid DNA in the interior of a 100–150 nm pegylated liposome were also formed [5]. In
other words, DDA cationic lipid is a raw material for the formulation of different types
of systems in various structures and sizes for the delivery of nucleic acids and active
pharmaceutical ingredients (APIs) of differing molecular weights [1–5]. The DDA-based
systems can also be used as vaccine platforms with adjuvant properties [4].

Furthermore, an adjuvant system intended for mucosal vaccination based on biodegrad-
able poly(DL-lactic-co-glycolic acid) (PLGA) nanoparticles modified with the DDA and the
immunopotentiator trehalose-6,6′-dibehenate (TDB) lipids was designed and developed
by a quality-by-design approach to tailor humoral and cellular immunity characterized by
antibodies and Th1/Th17 responses [1].

Additionally, another interesting delivery platform category for the treatment of
diseases is lipid-dendrimer hybrid nanosystems. Poly(amidoamine) (PAMAM) G4.0 with
zwitterionic lipids were reported as delivery systems for paclitaxel with efficacy in killing
ovarian cancer cells [10]. These systems are ideal for understanding in depth the different
mechanisms involved in cellular processes, such as membrane fusion, transmembrane
permeability, and endocytosis [11]. The different localizations of dendrimers in the cellular
uptake have already been studied using the lipid bilayer models in vitro. The size and the
surface charge correlated with the molecular structure are crucial parameters for dendrimer
internalization and intracellular trafficking in living cells [12,13].

Apart from the formulation parameters and the properties of the different functional
biomaterials that should be considered during the liposomal development, the preparation
process also plays a key role. Conventional techniques, such as the aqueous heat method,
are ideal for the easy scale up of the liposomal and lipidic nanoparticles for industrial
production due to the absence of potentially toxic organic solvents, the elimination of the
usually required two or three steps in the preparation protocol, and the high reproducibility
of the processes [14–16]. The selection of lipids/excipients and of other materials, such as
surfactants, are the critical quality parameters which impact the size and the polydispersity
index of these lipid nanocarriers [17,18]. These physicochemical characteristics as well as
the core-bilayer structure, the surface charge, the stability of the final formulation and the
cargo encapsulation efficiency are also related to the formulation process and the quality
aspects of the final product [14–20]. Therefore, in the present study, the aqueous heating
method was used without any additional technique for size reduction to produce hybrid
lipid-polymer nanostructures for protein encapsulation.

The aim of this investigation is to use the aqueous heat method for the preparation of
polymer-grafted nanostructures without any additional technique for size reduction. The
raw materials are: lipids with adjuvant properties: DDA and TDB; and amphiphilic block
copolymer poly(2-(dimethylamino)ethyl methacrylate)-b-poly(lauryl methacrylate) (PLMA-
b-PDMAEMA). This amphiphilic block copolymer has been already used for the formula-
tion of stimuli-responsive lyotropic liquid crystalline nanosystems and stimuli-responsive
polymer-grafted liposomes for the delivery of hydrophobic anti-glioma agents [21–23].
For comparison reasons, we also used PAMAM G4. PAMAM G4 is a dendritic poly-
mer containing amine groups with a different internal chemical structure and topology
compared to the linear PLMA-b-PDMAEMA block copolymer (Figure 1). On the other
hand, PAMAM dendrimers are commercially available, and many studies have already
been published regarding their interactions with lipid bilayers and the preparation of
lipid-dendrimer nanostructures for drug loading and controlled release. Therefore, it is
of interest to study dendrimers as polymeric components of the formulations using the
aqueous heat method. DSC was used for the preformulation studies to identify the inter-
actions between lipids/polymers and lipid/dendrimers. Light-scattering techniques and
cryogenic transmission electron microscopy (cryo-TEM) were used for the evaluation of
the prepared systems. Nanotoxicity and protein-loading studies were designed as a road
map for the evaluation of the prepared systems as carriers for delivery purposes.
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Figure 1. The chemical structures of (a) DDA, (b) TDB, (c) PLMA-b-PDMAEMA, and (d) PAMAM-G4.

2. Materials and Methods
2.1. Materials

Dimethyldioctadecylammonium (DDA) (Figure 1a) and D-(+)-trehalose 6,6′-dibehenate
(TDB) (Figure 1b) were purchased from Avanti Polar Lipids Inc. (Albaster, AL, USA);
chloroform and methanol was purchased from LabScan (Dublin, Ireland). The PDMAEMA-
b-PLMA (Figure 1c) amphiphilic diblock copolymer was synthesized with RAFT polymer-
ization methodologies [23]. PAMAM dendrimer generation 4 (PAMAM G4) (Figure 1d)
(empirical formula C622H1248N250O124, formula weight: 14,214.17) was purchased from
Aldrich. Bovine serum albumin was purchased from Merck (Darmstadt, Germany) and
Pierce™ (Pittsburgh, PA, USA). The BCA protein assay kit was purchased from Thermo
Scientific™, Waltham, MA, USA.
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2.2. Methods
2.2.1. Differential Scanning Calorimetry

DSC experiments were performed on an 822e Mettler-Toledo (Schwerzenbach, Switzer-
land) calorimeter calibrated with pure indium (Tm = 156.6 ◦C) and water. Sealed alu-
minum 40 µL crucibles were used as sample holders. DDA:TDB 1:0.2; DDA:TDB:PLMA-
b-PDMAEMA (1:0.2:0.5; 1:0.2:1; and 1:0.2:2.5 weight ratios) and DDA:TDB:PAMAM G4
(1:0.2:0.1) bilayers were dissolved in chloroform:methanol 9/1 v/v, and the solvents were
removed by slow evaporation. Residual solvents were removed under vacuum overnight.
The dried material was weighted into the aluminum crucibles, and lipid bilayers were
prepared by hydration using water for injections. An empty aluminum crucible was used as
reference. Prior to measurements, the crucibles were heated at a temperature that exceeds
the transition of DPPC (41.7 ◦C) to ensure equilibration. Three heating-cooling cycles were
performed: 10◦ to 60 ◦C at 5 ◦C/min or 20 ◦C/min scanning rate, respectively. A ther-
modynamic evaluation was performed during the second cooling and heating cycle. All
samples were scanned until identical curves were obtained. Errors were evaluated based
on at least three replicate runs. Enthalpy changes and characteristic transition temperature
were calculated using Mettler-Toledo STARe software.

2.2.2. Preparation of Lipid Nanostructures; Polymer–Lipid Nanostructures; and
Lipid-Dendrimer Nanostructures

All the nanostructures were prepared using the aqueous heat method [7].

2.2.3. Cryogenic Transmission Electron Microscopy (cryo-TEM) Measurements

Cryogenic transmission electron microscopy (cryo-TEM) images were obtained using
a Tecnai F20 X TWIN microscope (FEI Company, Hillsboro, OR, USA) equipped with a
field emission gun, operating at an acceleration voltage of 200 kV. Images were recorded on
the Gatan Rio 16 CMOS 4k camera (Gatan Inc., Pleasanton, CA, USA) and processed with
Gatan Microscopy Suite (GMS) software (Gatan Inc., Pleasanton, CA, USA). The specimen
preparation was done by vitrification of the aqueous solutions on grids with holey carbon
film (Quantifoil R 2/2; Quantifoil Micro Tools GmbH, Großlöbichau, Germany). Prior
to use, the grids were activated for 15 s in oxygen plasma using a Femto plasma cleaner
(Diener Electronic, Ebhausen, Germany). Cryo-samples were prepared by applying a
droplet (3 µL) of the suspension to the grid, blotting with filter paper, and immediately
freezing in liquid ethane using a fully automated blotting device Vitrobot Mark IV (Thermo
Fisher Scientific, Waltham, MA, USA). After preparation, the vitrified specimens were kept
under liquid nitrogen until they were inserted into a cryo-TEM-holder Gatan 626 (Gatan
Inc., Pleasanton, CA, USA) and analyzed in the TEM at −178 ◦C.

2.2.4. In Vitro Cytotoxicity

HEK293 cells were cultivated in DMEM high glucose culture medium (BioSera), con-
taining 10% FBS, 2 mmol/L glutamine, 100 U/mL penicillin, and 100 g/mL streptomycin at
37 ◦C. Changes of medium were performed every 48 h, and cells were passaged on a weekly
basis using the standard trypsin EDTA method. When cells reached a sufficient confluency,
they were transferred to a 96-well plate (corning-Costar, Corning, NY, USA) with approxi-
mately 5000 cells/well. The MTS assay was used (CellTitre 96R Aqueous MTS, Promega)
to quantify the reduction of viability following exposure to prepared nanosystems. The
principle of this assay is based on the action of mitochondrial dehydrogenase enzymes
that consume NAD(P)H to reduce a tetrazolium compound (MTS) to formazan, and the
concentration of the latter is proportional to the number of living cells. Its concentration
is calculated via absorbance reading at 490 nm. Each of the nanosystems were tested in
seven different concentrations (from 25 to 500 µg/mL) and during an 16 h incubation.
Additionally, three types of controls were used: a positive control (cells that were not
exposed to nanostructures), a negative control (nanosystems in cell-free medium), and a
background control (culture medium only). Absorbances were normalized with respect to
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the untreated control cultures to calculate changes in cell viability. All experiments were
held in duplicate to ensure reproducibility.

2.2.5. BSA Encapsulation and Encapsulation Efficiency (%EE) Studies

The encapsulation protocol for the loading of all the prepared systems with BSA is de-
scribed in [24]. Briefly, DDA:TDB 1:0.2 liposomes; DDA:TDB:PLMA-b-PDMAEMA (1:0.2:0.5;
1:0.2:1, and 1:0.2:2.5 weight ratios) polymer–lipid nanostructures and DDA:TDB:PAMAM
G4 lipid dendrimer nanostructures (1:0.2:0.1 weight ratio) were mixed with BSA for 30 min.
The colloidal concentration of the prepared systems was 2 mg/mL, and the concentration
of BSA was 1 mg/mL. After the electrostatic complexation process, we studied the physico-
chemical characteristics of the complexes formed using dynamic and electrophoretic light
scattering (DLS, ELS).

The free BSA was separated from the BSA entrapped in the nanostructures by using
the ultrafiltration centrifugal method. In detail, the nanostructures were centrifuged for
30 min at 4000 rpm using centrifugal filter tubes [molecular weight (MW) cutoff = 100 kDa;
Millipore]. The particles were separated from the aqueous phase, and the free BSA was
analyzed in the supernatant by the bicinchoninic acid (BCA) protein quantification method
according to the kit protocol.

Protein quantification using BCA (Pierce™ BCA Protein Assay Kit, Thermo Scien-
tific™) protein assay was carried out following manufacturer’s instructions. Briefly, samples
were incubated up to 30 min at 37 ◦C, with 25 µL of sample and 200 µL of the working
reagent. Absorbance was then measured at 562 nm using an INNO microplate reader.

Centrifuged samples of the respective empty nanostructures were also conducted
by BCA assay and used as a blank. The loading % was calculated according to the
following equation:

(loading) % =

(
1−

Csupernatant

Ctotal

)
%

where Csupernatant is the BSA that was quantified in the supernatant (non-entrapped), and
Ctotal is the total concentration of the BSA added in the dispersion [25].

3. Results and Discussion
3.1. Preformulation Studies: The Role of the Guest into DDA:TDB Lipid Bilayer
Thermotropic Behavior

The first step for the design and the development of hybrid/chimeric nanostructures
composed by different materials is to investigate the interactions of the guest molecule with
the lipid bilayer. DSC is widely used for qualification and quantification of these interac-
tions and is a useful tool for the later formulation studies. In Table 1, the calorimetric values
obtained during the heating and the cooling processes are presented. According to the
literature, the DSC scan for pure DDA is characterized by one sharp well-defined endother-
mic peak with main transition temperature at 47.2 ◦C in 10 mM Tris at pH 7.4 [7,19,20].
The incorporation of TDB in different molar ratios causes shift in Tm values toward lower
temperatures and have been already studied in the literature [7]. We should pointed out
that the addition of the polymeric guest caused alterations of the thermotropic character-
istics of the DDA:TDB, but the curves did not show significant changes. The curves are
more or less the same as those published in [7]. In our study, we run DSC experiments of
lipid bilayers hydrated in HPLC-grade water. For DDA:TDB lipid bilayers, we observed
the Tm at 51.4 ◦C and the pre-transition (Ts) at 40.3 ◦C. These small differences in main
and pre-transition temperatures are related to the difference in the dispersion medium. In
previous studies, Tris buffer was used, and in this investigation the DSC experiments were
run in HPLC-grade water. The presence of salts caused different hydration networks on the
surface of lipid bilayers and consequently a slight difference in the Tm values. The presence
of PLMA-b-PDMAEMA caused a decrease of the Tm values around 10 ◦C for all the weight
ratios studied. The decrease of Ts was around 7 ◦C for the 1:0.2:0.5 and 1:0.2:1 weight ratios.
At the highest weight ratio of the polymeric guest (i.e., 1:0.2:2.5), the abolishment of the
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pretransition phenomenon was observed. The enthalpy increased slightly (in absolute
values) with the incorporation of polymeric chains into DDA:TDB lipid bilayers (from
−117.0 J/mol for DDA:TDB to −113.7 J/mol for DDA:TDB:PLMA-b-PDAMAEMA at a
1:0.2:0.5 weight ratio) (Table 1). The increase of the PLMA-b-PDAMAEMA weight ratio
caused a significant reduction (in absolute values) of the ∆H values (for DDA: TDB:PLMA-
b-PDAMAEMA 1:0.2:1 ∆H = −46.5 J/mol and for 1:0.2:2.5 ∆H = −42.6 J/mol) (Table 1).
The significant decrease of the Tm and ∆H values implies that PLMA hydrophobic polymer
chains are incorporated into the lipid bilayer, disrupting its structure by creating new
hydrophobic interactions. The cooperativity of the systems is significant as ∆T1/2 values
also decreased (Table 1). The decrease or the abolishment of the pretransition leads to the
conclusion that the hydrophilic polymeric chain also interacts with the polar groups of the
lipids, causing a different orientation of the polar head due to the creation of hydrophilic
interactions between PDMAEMA and DDA/TDB. In other words, the presence of the
PLMA-b-PDMAEMA copolymer controls the molecular packing of the lipids by altering
their physical liquid crystalline phase, dynamics, and phase separation [26–28].

Table 1. Calorimetric values of lipid bilayers.

Sample Weight
Ratio

Tonset.m
(◦C) a Tm (◦C) b ∆T1/2.m

(◦C) c
∆Hm

(J/mol) d
Tonset.s

(◦C) Ts (◦C) ∆T1/2
(◦C)

∆Hs
(KJ/mol)

Heating

DDA:TDB 1:0.2 49.7 51.4 1.69 −117.0 38.5 40.3 1.71 −109

DDA:TDB:PLMA-b-PDMAEMA 1:0.2:0.5 36.8 39.5 2.98 −133.7 32.6 33.8 2.54 −274

DDA:TDB:PLMA-b-PDMAEMA 1:0.2:1 38.8 40.3 1.43 −46.5 29.2 30.9 1.97 −19

DDA:TDB:PLMA-b-PDMAEMA 1:0.2:2.5 37.6 40.3 2.06 −42.6 - - - -

DDA:TDB:PAMAM G4 1:0.2:0.1 26.6 37.9 16.19 −4.5 - - - -

Cooling

DDA:TDB 1:0.2 37.7 37.6 1.68 363.9 - - - -

DDA:TDB:PLMA-b-PDMAEMA 1:0.2:0.5 40.4 37.4 5.84 613.9 - - - -

DDA:TDB:PLMA-b-PDMAEMA 1:0.2:1 40.0 37.4 4.57 409.3 - - - -

DDA:TDB:PLMA-b-PDMAEMA 1:0.2:2.5 42.8 35.5 7.01 447.2 - - - -

DDA:TDB:PAMAM G4 1:0.2:0.1 43.5 38.2 8.0 84.8 - - - -

a Tonset: temperature at which the thermal event starts; b T.: temperature at which heat capacity (∆Cp) at
constant pressure is maximum; c ∆T1/2: half width at half height of the transition peak; d ∆H: transition enthalpy
normalized per mol of lipid bilayer system. m: main transition; s: secondary transition.

During the cooling of the systems, the DDA:TDB lipid bilayer and the DDA:TDB:PLMA-
b-PDMAEMA showed a significant hysteresis in the cooling process, as indicated by the
Tm values (Table 1). This phenomenon of the non-thermodynamic reversibility during the
heating and cooling processes is well established in the literature [29]. The ∆H values were
decreased in the presence of the polymeric guest into lipid bilayers. The reduction was
higher as the weight ratio of the polymer increased (Table 1). According to our previous
published data, the crystallization of the polymer/lipid membrane takes place in lower
temperatures due to restrictions to the mobility of the lipids caused by the presence of the
block copolymer [30].

We also investigated the impact of PAMAM G4 in the thermotropic behavior of
DDA:TDB lipid bilayers. The presence of the dendrimer caused significant reductions in
the Tm and the ∆H values. We should underline that the ∆H is close to zero (Table 1). These
results showed that the incorporation of PAMAM G4 caused disruption of the organization
of the lipid bilayer. Additionally, the ∆T1/2 value increased in comparison to all the other
studied systems, and this implies that there is no cooperativity between the lipids and the
dendrimer. The same results were obtained from the cooling process (Table 1). According to
the DSC data, the formation of DDA:TDB-coated PAMAM G4 complexes is achieved due to
the strong interactions of the positively charged dendrimer and the TDB sugar head groups
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(absence of the pretransition) and the hydrophobic interactions between the lipid chains of
the DDA:TDB and the arms of PAMAM G4 (reduction of Tm and ∆H values) [12,13].

3.2. Formulation Studies: The Role of the Guest on DDA:TDB Liposome Size and Morphology

We studied by DSC how the PLMA-b-PDMAEMA and the PAMAM G4 alter the
thermotropic behavior of DDA:TDB lipid membranes. The outcomes of the preformulation
studies were a road map for the design and the development of nanostructures composed
of the same materials. We used the aqueous heat method for the preparation of pure and
mixed nanostructures. To the best of the authors’ knowledge, this is the first report in the
literature that this protocol is utilized for the preparation of polymer–lipid nanostructures
and dendrimer–lipid nanostructures. We used dynamic and electrophoretic light scattering
to investigate the alterations of the physicochemical characteristics of the pure liposomes
in the presence of the polymer or dendrimer guest.

In Figure 2, the size, the ζ-potential, and the scattering intensity of the prepared
nanostructures are shown. The size distribution graphs are included in Figure S1. The
pure DDA:TDB were about 600 nm with high polydispersity and extremely positive ζ-
potential (around 40 mV). These values are more or less in accordance with the previously
published data. The pure lipid systems were visualized by cryo-TEM images as spherical
“solid” objects, sometimes joined together (Figure 3a). Their diameter was found around
50 nm with cryo-TEM. This difference is probably related to the inability for observing
the hydration layer in the cryo-TEM measurements of the liposome characteristics and
the presence of the aggregation phenomena in the dispersion state. The tendency of the
liposomes to become joined together is the reason that we observed higher values of Dh
by DLS measurements. This liposomal system was prepared for comparison reasons. The
incorporation of the polymeric guest at different weight ratios caused a significant reduction
of the size of the prepared nanostructures (Figure 2a). As the weight ratio of PLMA-b-
PDMAEMA block copolymer increased, the size decreased. At the highest weight ratio,
polymer–lipid nanostructures with sizes below 200 nm were observed. The population
of the particles became more homogenous with the increasing weight ratio of PLMA-b-
PDMAEMA (Figure S1). The ζ-potential values increased but not significantly (Figure 2b),
probably due to the partially protonated amino groups of PDMAEMA block at the pH 5.5 of
HPLC-grade water [21]. The scattering-intensity value of DDA:TDB:PLMA-b-PDMAEMA
1:0.2:0.5 increased significantly in comparison to the scattering-intensity value of the pure
liposomes (from ≈80 KCps to ≈140 KCps). This observation is evidence of the successful
incorporation of the copolymer into the liposomal membrane. In other words, the scattering-
intensity value depends on many parameters and also on composition; thus, the changes
reflect the particle sizes and particle composition. As the sizes decreased, we can conclude
the changes of particle composition were caused by incorporation of the copolymer. This
observation is in agreement with the DSC results during the preformulation studies, where
the significant decrease of the Tm and ∆H values for 1:0.2:0.5 ratio implied that PLMA
hydrophobic polymer chains are incorporated into the lipid bilayer. The increase of the
weight ratio of PLMA-b-PDMAEMA did not lead to a significant increase of the scattering-
intensity values. On the other hand, we observed a small decrease (Figure 2c). In our
opinion, there may be a certain percentage of polymers which are incorporated in the lipid
membrane with which the saturation of the lipid bilayer with polymer loading is achieved.
The amount of polymer that is not incorporated can form other structures, which are in a
smaller percentage and do not contribute significantly to the increase in the mass of the
system, which is expressed through the intensity values. Alternatively, the size decrease of
the polymer–lipid nanostructures or changes in their structure may also result in a decrease
of the overall scattering intensity of the system.
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Figure 2. (a) Hydrodynamic diameter, Dh (nm), (b) ζ-potential (mV), and (c) scattering inten-
sity I (KCps) of DDA:TDB 1:0.2 (red bars); DDA:TDB:PLMA-b-PDMAEMA (1:0.2:0.5; 1:0.2:1 and
1:0.2:2.5 weight ratios) (blue bars); and DDA:TDB:PAMAM G4 (1:0.2:0.1 weight ratio) nanostructures
(orange bars).
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The cryo-TEM imaging showed that the incorporation of the polymer caused the forma-
tion of different hybrid structures. These structures and their sizes were strongly dependent
on the weight ratio of the PLMA-b-PDMAEMA copolymer (Figure 3b–d). Namely, for
DDA:TDB:PLMA-b-PDMAEMA 1:0.2:0.5 weight ratio, vesicles with spherical and irregular
shapes with sizes between 70–270 nm and irregular shaped particles with strong contrast,
joined on the surfaces of the vesicles were observed (Figure 3b). For DDA:TDB:PLMA-b-
PDMAEMA 1:0.2:0.5 weight ratio, the vesicles were between 70–290 nm (in accordance to
light-scattering measurements) and “disc” like particles were also observed (Figure 3c).
At the highest weight ratio of the polymeric guest, vesicles covered with “threadlike”
structures with sizes of 50–260 nm were observed (Figure 3d). It may be that the aforemen-
tioned amount of polymer that is not fully incorporated in the highest ratio, as indicated by
light-scattering measurements can contribute to these “threadlike” structures that cover
the vesicles. After all, the total disappearance of the pretransition found in the highest
ratio 1:0.2:0.5 in the DSC measurements suggests the creation of hydrophilic interactions
between PDMAEMA and DDA/TDB that are more intensive than those at the lowest ratios,
where the pretransition was decreased but still present. The incorporation of amphiphilic
block copolymers to lipid bilayers leads from sphere to ellipsoid deformation and disc
formation due to different molecular packing of the lipids [24,27,31]. In other words, it is
true that the structures containing the polymer are deformed. It is rather difficult to see
purely ellipsoidal structures and disks. For all the polymer–lipid nanostructures, we should
point out that the thickness of the membrane was 5–6 nm (Figure 3). The thickness of the
membrane was determined by the analysis of cryo-TEM images. The observed thickness
is in accordance with the recent published data from other groups and our previous stud-
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ies [32–34]. Moreover, the tendency of the pure liposomes to be joined together, yielding
a Dh and PDI increase, was prevented by the incorporation of the PDMAEMA-b-PLMA
copolymer. Incorporation of the copolymer may cause steric repulsion due to the formation
of a hydrophilic PDMAEMA polymeric corona, as it is depicted by the gradual size decrease
and the presence of individual particles, as the polymer ratio in the system is increased.

In Figure 4, the cryo-TEM images of DDA:TDB:PAMAM G4 are presented. The hybrid
system self-assembled in different structures. Namely, spherical (Figure 4a) and irregular
(Figure 4b) shape vesicles were formed with sizes of 20–60 nm and 60–450 nm, respectively.
The thickness of the membrane is 5–7 nm for the lipid/copolymer hybrid discussed above
and is greater than the thickness of pure liposomes. Large aggregates are also observed
(Figure 4c). The cryo-TEM images are in accordance with high polydispersity values
that were obtained from the DLS measurements and visualized from the size distribution
graphs (Figure S1e). Lipid-PAMAM G4 hybrid nanoparticles with spherical morphology
have been presented in the literature. On the other hand, according to the translocation
mechanism, PAMAM dendrimers can open holes in lipid bilayers by stealing lipids from
the bilayer and forming “dendrisomes” [12,13]. This mechanism is the driving force for the
formation of large aggregates with sizes around 1000 nm, according to cryo-TEM and DLS
measurements. According to Mecke et al. 2004, the dendrimers sometimes remove lipid
molecules from the substrate and form aggregates consisting of a dendrimer surrounded
by lipid molecules [35]. The structures around 1000 nm are probably composed of PAMAM
G4 dendrimers with DDA:TDB lipids all around them. This is another possible mechanism
for the formation of holes in the lipid bilayer [35].
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We also tested the stability of the prepared systems for a period of three months.
As mentioned before, the final dispersions were placed in a glass vial and stored in the
refrigerator at 4 ◦C. Figure S2 shows the results of the stability assessment experiments
using DLS. Pure DDA:TDB liposomes were stable for one week. After this period, an
increase of the particle size was observed. Sedimentation phenomena were observed
40 days after the preparation of the nanosystems. For this reason, in Figure S2, data until
30 days are presented. For DDA:TDB:PLMA-b-PDMAEMA 1:0.2:0.5 and 1:0.2:1 weight
ratios, the sizes remained unaffected for at least a month (Figure S2). After this period, a
small increase in the particle size was observed, but no sedimentation, nor aggregation
phenomena took place. The system with the highest weight ratio remained stable for three
months. The size and the size distribution of the DDA:TDB:PLMA-b-PDMAEMA 1:0.2:2.5
weight ratio nanosystem did not change (Figure S2). The last observation means that the
presence of the polymeric guest and its weight ratio are of paramount importance for the
long-term stability of the systems. In our opinion, the steric repulsion of the hydrophilic
polymeric blocks is responsible for the long-term stability of the dispersions because all
these systems exhibited high ζ-potential values (Figure 2b), a characteristic which is absent
in the pure liposomes case. For this reason, pure liposomes were stable only for one week.
Furthermore, for the DDA:TBD:PAMAM G4 systems, aggregation phenomena took place
two days after the preparation. These aggregates were observed in the cryo-TEM images.
Sedimentation phenomena took place seven days after preparation. It may be concluded
that the dendritic macromolecule does not infer stability to the hybrid nanosystems as the
linear amphiphilic PLMA-b-PDMAEMA copolymer does.

3.3. Nanotoxicity Studies and Protein Loading Properties

The nanotoxicity profiles of all the prepared systems were tested. In Figure 5, the
cell viability vs. different concentrations of the prepared systems at different weight
ratios is presented. Based on the MTS assay, all five samples showed a dose-dependent
toxicity on the HEK293 cell lines. The lowest toxicity levels were exhibited by sample
DDA:TDB:PLMA-b-PDMAEMA (1:0.2:2.5) since even the maximum concentration tested
(500 µg/mL) resulted in a viability that exceeded 80% (Figure 5). The incorporation of the
block copolymer at the highest weight ratio exhibited the higher biocompatibility results
in the HEK293 cell lines. On the contrary, DDA:TDB:PAMAM G4 had the most cytotoxic
effects. Even from the lowest concentration (25 µg/mL), its toxicity was higher than that
of all other samples (approximately 70%), while the highest concentration was cytotoxic
for half of the cellular population exposed. According to Liu et al., 2015, the majority
of the lipids in the lipid–dendrimer structures are in the plasma membrane, while the
PAMAM dendrimers can be distributed intracellularly upon uptake. This mechanism
could be a possible explanation for the nanotoxicity profile of DDA:TDB: PAMAM G4
systems. The cytotoxic profile of all the other systems are rather similar with the pure
DDA:TDB to be the least cytotoxic. We should also point out that the nanotoxicity of pure
DDA:TDB carriers is higher than other liposomes prepared with zwitterionic lipids, i.e.,
DPPC, DSPC, etc. [36]. For this reason, the incorporation of the PLMA-b-PDMAEMA in
the lipid bilayer led to a system with more or less the same biocompatibility profile at the
concentrations tested. Thus, the incorporation of the PDMAEMA-b-PLMA successfully
improved the physicochemical and morphological characteristics of the liposomes to
more homogenous dispersions of smaller sizes and organized morphologies but without
burdening the biocompatibility profile, which all are very promising properties for future
pharmaceutical applications. The fact that these results were obtained using the aqueous
heating method and by just simply increasing the copolymer content with no need for any
additional technique for size reduction reinforces the above statement.



Biomedicines 2022, 10, 1228 12 of 15
Biomedicines 2022, 10, 1228 12 of 15 
 

 
Figure 5. Cell viability vs. different concentrations of the prepared hybrid systems of DDA:TDB 
1:0.2; DDA:TDB:PLMA-b-PDMAEMA (1:0.2:0.5; 1:0.2:1, and 1:0.2:2.5 weight ratios) and 
DDA:TDB:PAMAM G4 (1:0.2:0.1 weight ratio) nanostructures. 

Considering, nanotoxicity studies of the prepared systems, we tested their ability to 
load protein molecules. We used BSA as a model protein/antigen. We kept the colloidal 
concentration of the pure carriers at 2 mg/mL and the concentration of the protein utilized 
at 1 mg/mL. The physicochemical characteristics of the systems with BSA are presented 
in Table 2, and the size distribution of the complexes are illustrated in Figure S3. The pure 
liposomes did not load BSA. We observed aggregates with sizes around 10 mμ, and the 
scattering intensity was decreased dramatically. This phenomenon means that the pres-
ence of BSA destroyed the vesicular/liposomal structure of the pure DDA:TDB systems. 
On the other hand, the presence of PLMA-b-PDMAEMA block copolymer stabilized the 
lipid bilayer, and polymer-grafted lipoplexes were obtained. The weight ratio of PLMA-
b-PDMAEMA copolymer played a key role on the physicochemical characteristics of the 
resulted structures. Namely, the size of the BSA complexes decreased as the weight ratio 
of the PLMA-b-PDMAEMA increased (Table 2). In all cases, the scattering intensity in-
creased significantly (more than 100 KCps) in the presence of protein, showing successful 
attachment of the BSA on the surface of the polymer–lipid nanostructures. Additionally, 
another crucial parameter showing the successful complexation of BSA onto the polymer–
lipid nanostructure surface is the ζ-potential (Table 2, Figure 2). The ζ-potential values of 
the complexes decreased around 30 mV in the presence of the model protein. This is ex-
pected due to electrostatic interactions between the cationic polymer–lipid nanostructures 
and the anionic protein surface. The size distribution became also more homogeneous at 
the highest weight ratio of the PLMA-b-PDMAEMA (Figure S3). The encapsulation effi-
ciency of the BSA increased with the increase of the weight ratio of PLMA-b-PDMAEMA 
copolymer. The increase of positively charged PDMAEMA probably blocks on the surface 
of hybrid lipid-polymer structures at the higher polymer ratios and enhances the electro-
static interactions between the cationic polymer–lipid nanostructures and the anionic pro-
tein surface. In other words, considering all the above results, the role of the polymeric 
guest is crucial for the utilization of these systems for protein-delivery purposes. The re-
sulting complexes also have the ideal size and size distribution for intramuscular and/or 
nasal administration. 

  

Figure 5. Cell viability vs. different concentrations of the prepared hybrid systems of DDA:TDB 1:0.2;
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G4 (1:0.2:0.1 weight ratio) nanostructures.

Considering, nanotoxicity studies of the prepared systems, we tested their ability to
load protein molecules. We used BSA as a model protein/antigen. We kept the colloidal
concentration of the pure carriers at 2 mg/mL and the concentration of the protein utilized
at 1 mg/mL. The physicochemical characteristics of the systems with BSA are presented in
Table 2, and the size distribution of the complexes are illustrated in Figure S3. The pure
liposomes did not load BSA. We observed aggregates with sizes around 10 mµ, and the
scattering intensity was decreased dramatically. This phenomenon means that the presence
of BSA destroyed the vesicular/liposomal structure of the pure DDA:TDB systems. On
the other hand, the presence of PLMA-b-PDMAEMA block copolymer stabilized the lipid
bilayer, and polymer-grafted lipoplexes were obtained. The weight ratio of PLMA-b-
PDMAEMA copolymer played a key role on the physicochemical characteristics of the
resulted structures. Namely, the size of the BSA complexes decreased as the weight
ratio of the PLMA-b-PDMAEMA increased (Table 2). In all cases, the scattering intensity
increased significantly (more than 100 KCps) in the presence of protein, showing successful
attachment of the BSA on the surface of the polymer–lipid nanostructures. Additionally,
another crucial parameter showing the successful complexation of BSA onto the polymer–
lipid nanostructure surface is the ζ-potential (Table 2, Figure 2). The ζ-potential values of the
complexes decreased around 30 mV in the presence of the model protein. This is expected
due to electrostatic interactions between the cationic polymer–lipid nanostructures and the
anionic protein surface. The size distribution became also more homogeneous at the highest
weight ratio of the PLMA-b-PDMAEMA (Figure S3). The encapsulation efficiency of the
BSA increased with the increase of the weight ratio of PLMA-b-PDMAEMA copolymer. The
increase of positively charged PDMAEMA probably blocks on the surface of hybrid lipid-
polymer structures at the higher polymer ratios and enhances the electrostatic interactions
between the cationic polymer–lipid nanostructures and the anionic protein surface. In other
words, considering all the above results, the role of the polymeric guest is crucial for the
utilization of these systems for protein-delivery purposes. The resulting complexes also
have the ideal size and size distribution for intramuscular and/or nasal administration.
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Table 2. The physicochemical characteristics of the complexes with BSA.

System Weight Ratio Dh (nm) Z-Potential (mV) I (KCps) % Loading

DDA:TDB:PLMA-b-PDMAEMA:BSA 1:0.2:0.5:1 418.8 ± 29.5 14.8 ± 1.6 203.4 ± 1.7 82.0 ± 3.9
DDA:TDB:PLMA-b-PDMAEMA:BSA 1:0.2:1:1 277.9 ± 13.9 13.2 ± 8.1 240.8 ± 1.9 88.7 ± 5.7
DDA:TDB:PLMA-b-PDMAEMA:BSA 1:0.2:2.5:1 231 ± 25 18.2 ± 1.7 221.7 ± 1.7 91.5 ± 1.8

DDA:TDB:PAMAM G4:BSA 1:0.2:0.1:1 2721.1 ± 153.6 32.3 ± 6.2 130.7 ± 3.7 93.0 ± 8.9

For the DDA:TBD:PAMAM G4 systems, we observed increased size after BSA com-
plexation, a small reduction of the ζ-potential values, reduction of the mass (I values
decreased), heterogeneous size distribution, and the highest loading efficiency (Table 2,
Figure S3). The size of the DDA:TDB:PAMAM G4:BSA was around 2700 nm, and the EE is
93%. The different surface characteristics due to the presence of the dendrimer (DSC stud-
ies and cryo-TEM images) and the formation of supramolecular aggregates between the
lipid–dendrimer–BSA complexes are probably the reason for the obtained physicochemical
characteristics. BSA can form complexes with dendrimer–lipid surfaces via electrostatic
interactions and after that aggregates or flocculates can be formed. For this reason, sizes of
the complexes around 2700 nm with high polydispersity were observed.

4. Conclusions

In this study, we used the aqueous heat method without size reduction protocol but
in low-energy, non-harsh, non-organic solvent conditions for the development of hybrid
polymer–lipid delivery platforms with enhanced physicochemical and structural charac-
teristics useful for protein delivery. To the best of our knowledge, this is the first report in
the literature where this preparation protocol is used as the formulation process of nanos-
tructures of the type with detailed knowledge of their physicochemical, morphological,
thermotropic, nanotoxicity, and protein-loading characteristics.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/biomedicines10061228/s1, Figure S1: The size distributions of a. DDA:TDB
1:0.2 weight ratio; b. DDA:TDB:PLMA-b-PDMAEMA 1:0.2:0.5 weight ratio; c. DDA:TDB:PLMA-
b-PDMAEMA 1:0.2:1 weight ratio; d. DDA:TDB:PLMA-b-PDMAEMA 1:0.2:2.5 weight ratio, and e.
DDA:TDB:PAMAM G4 1:0.2:0.1 weight ratio; Figure S2: Stability assessment of the prepared systems;
Figure S3: The size distributions of a. DDA:TDB:PLMA-b-PDMAEMA:BSA 1:0.2:0.5:1 weight ratio; b.
DDA:TDB:PLMA-b-PDMAEMA:BSA 1:0.2:1:1 weight ratio; c. DDA:TDB:PLMA-b-PDMAEMA:BSA
1:0.2:2.5:1 weight ratio, and d. DDA:TDB:PAMAM G4:BSA 1:0.2:0.1:1 weight ratio.
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