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Abstract: The aim of this study was to compare the urine metabolic fingerprint of healthy neonates
exclusively breastfed with that of neonates fed with a synbiotic-enriched formula (Rontamil® Com-
plete 1) at four time points (the 3rd and 15th days of life and the 2nd and 3rd months). The
determination of urine metabolic fingerprint was performed using NMR metabolomics. Multivariate
data analyses were performed with SIMCA-P 15.0 software and R language. Non-distinct profiles for
both groups (breastfeeding and synbiotic formula) for the two first time points (3rd and 15th days of
life) were detected, whereas after the 2nd month of life, a discrimination trend was observed between
the two groups, which was further confirmed at the 3rd month of life. A clear discrimination of the
synbiotic formula samples was evident when comparing the metabolites taken in the first days of
life (3rd day) with those taken in the 2nd and 3rd months of life. In both cases, OPLS-DA models
explained more than 75% of the metabolic variance. Non-distinct metabolomic profiles were obtained
between breastfed and synbiotic-formula-fed neonates up to the 15th day of life. Discrimination
trends were observed only after the 2nd month of the study, which could be attributed to breast-
feeding variations and the consequent dynamic profile of urine metabolites compared to the stable
ingredients of the synbiotic formula.

Keywords: neonates; formula feeding; breastfeeding; urine metabolomics; synbiotics; NMR
spectroscopy; gut microbiota

1. Introduction

Nutritional strategies during the early stages of infant development are considered
a pivotal factor in regulating infant metabolism and gut immune system function, thus
determining the contingent development of adult metabolic syndromes, i.e., obesity, insulin
resistance, gastrointestinal diseases and hypertension [1,2].

Milk is the first food that is introduced into the gastrointestinal (GI) tract after birth,
and the composition of milk is believed to directly impact gut microbiota and affect infant
neurodevelopment [3,4] through the provision of essential nutrients for bacterial prolifera-
tion (i.e., carbohydrates, proteins, iron, phosphor, human milk oligosaccharides (HMOs),
etc.), immunomodulatory molecules, small amounts of probiotics and microbes that are
capable of colonizing infants [5,6].
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Human breast milk (HBM) is acknowledged as the ‘gold standard’ for early nutrition
(up to 6 months) and the ‘natural fuel’ for infant neurodevelopment due to its high content
of essential nutrients (i.e., carbohydrates, proteins, iron, phosphor, human milk oligosac-
charides (HMOs), etc.) and small amounts of probiotics and commensal bacteria [7,8].

Maternally derived microbial metabolites are transmitted to infants via human milk.
According to omics studies, breast milk mediates vertical transfer of microbial communities,
such as Streptococcus thermophilus, Staphylococcus epidermidis and Bifidobacterium longum,
to the neonatal gut [9,10]. Moreover, omics techniques have identified more diverse
but stable GI microbiota in formula-fed infants compared to breastfed infants [11–13].
According to the most recent literature, human bacterial colonization starts from fetal life,
and maternal microbiota seems to influence the neonatal microbiome before conception,
during pregnancy, and pre- and post-delivery. In a recent narrative review by Coscia et al.
(2021), the currently identified pre- and perinatal factors highlight the influencing on the
neonatal microbiota. The authors point out the type of early neonatal nutrition because
maternally microbial metabolites transmitted to the infant via human breast milk seem
to potentially impact infant health and developmental programming [14]. Furthermore,
Stinson et al. (2022) highlighted the potential for microbial metabolites to program immune
or metabolic regulatory functions in breastfeeding infants [15].

The infant’s gut microbial composition increases in number and diversity with age and
is highly dynamic in the first 6 months of life. A balanced microbiota composition in the
first weeks of life predicts microbiota stability throughout the first years of life. Thus, there
seems to be a window of opportunity during early infancy that is essentially influenced
by the type of feeding and associated with a healthy microbiota profile [16]. At around
3 years of age, the infant attains a mature, adult-like microbiota in terms of diversity and
complexity of composition [4,17,18].

Diet is increasingly recognized as a key environmental factor that can modulate the
composition and metabolic function of the gut microbiota. Infants can be breastfed, formula-
fed or even mixed-fed; these feeding methods influence the gut microbiota at various levels,
thus affecting infant health and potentially resulting in consequences later in life [5].

In conclusion, targeted nutritional or environmental interventions and readjustments
in obstetrical and neonatal medicine practice, such as vaginal seeding [19,20], microbial
environment [21], probiotic supplementation [22,23], prebiotic supplementation [24–27],
synbiotic supplementation [28–30], human milk feeding [31,32], specific infant formula
feeding [33,34] and human donor milk banks [35,36], may be the best strategies to compen-
sate for early-life microbiota disturbance in later life.

However, the decision to practice exclusive or partial breastfeeding is based upon sev-
eral demographic, socioeconomical, tradition/culture-related and personal criteria [37,38].
In cases of breastfeeding cessation, infant formulae are supplemented as an alternative nu-
tritional approach. The fundamental nutritional components of the most artificial formulae
are carbohydrates, water, fats, proteins (casein, whey proteins), minerals, vitamins and
nucleotides [39].

Up-to-date advents regarding formula milk composition amend at a rapid pace, focus-
ing on the development of ‘humanized’ formulae that resemble maternal milk, the com-
position of which is not static but extremely dynamic [40]. Recent studies confirmed that
the populations of microbial flora [7,41] and infants’ metabolic fingerprint [2,42] markedly
shift in breast- and formula-fed infants. Current trends in infant formulae point to a reduc-
tion in formula protein content, which is considered responsible for increasing the risk of
childhood obesity, as well as the incorporation of (a) probiotics and (b) lipid constituents
(phospholipids, sphingolipids and glycoproteins) or non-human oligosaccharides (galacto-
oligosaccharides (GOS) and fructo-oligosaccharides (FOS)) with well-established prebiotic
effects [41]. Because prebiotics selectively facilitate the introduction and colonization of the
gut by the ingested probiotic communities present in formula, the supplementation of a
combined mix of probiotics and prebiotics, called ‘synbiotics’, is recommended [7].
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Modification of the gut microbiota by administration of synbiotics, a mixture of
prebiotic and probiotic components, might offer a novel and cost-effective strategy in
an attempt to reduce the risk of viral infections [43], to restore the delayed colonization
of Bifidobacterium spp. in C-section-delivered babies [44], to prevent allergies [28,45], to
increase the total antioxidant capacity levels in breast milk [29], to prevent weight loss in
lactating mothers and to increase weight gain in infants [30].

Non-invasively collected urine and fecal samples are considered the most suitable
biological substrates for deciphering the relationship between diet and nutritionally driven
metabolic changes in groups of breastfed (BF) and formula-fed (FF) newborns, as they
represent the final points of gut microbial metabolism occurring inside human intestinal
tract (feces) and of the excreted metabolites produced by the host (urine) [46]. Apart
from reflecting nutritional metabolic changes, NMR urine metabolomics progressively
find their place as a diagnostic tool for neonatal morbidities involving renal function and
food intolerance, namely acute kidney injury (AKI) and necrotizing enterocolitis (NEC),
respectively [47,48]. Metabolites of the biological samples under investigation are analyzed
by implementing high-throughput, high-sensitivity and reproducible methodologies, such
as GC-FID-, LC-MS- or NMR-targeted and/or untargeted metabolomics to holistically
identify biomarkers related to different infant nutritional strategies [46].

In the present study, we aspired to determine whether the urine metabolome may act
as a functional representative of the gut microbiome as modified by two feeding methods.
Therefore, we implemented NMR-based metabolomics with the aim of investigating the
effect of exclusive feeding with a synbiotic formula enriched with probiotic Bifidobacterium
animalis (strain BB12), as well as prebiotic FOS and polyunsaturated fatty acids (PUFA),
such as arachidonic acid (AA), docosahexaenoic acid (DHA) and nucleotides, in com-
parison with exclusive breastfeeding in terms of any possible correlation with the urine
metabolic fingerprint.

2. Results
2.1. Metabolite Identification

A typical standard 1H NMR spectrum of neonate urine with annotations on the
identified metabolites is depicted in Supplementary Materials, Figure S1.

2.2. Metabolic Enquiries

Several nutritional studies confirmed that the metabolic signature of infants following
different feeding practices is strongly associated with their diet [5,49]. Therefore, our first
enquiry was directed toward the observance of any metabolic trends between samples of
exclusively breastfed (BF) or formula-fed (FF) neonates and infants, identifying signature
metabolites that can be related to each group.

A PCA model with two components was computed in the total set of samples to
provide an overview and elucidate trends of the sample clustering (Figure 1). In the
extracted PCA model, none of the urine samples with either type of feeding (breastfeeding
or formula) exhibited any clear clustering trends.

In the subsequent step, supervised analysis was implemented in the overlapping groups
to possibly resolve the metabolic variation. Specifically, an OPLS-DA model was computed, in-
cluding the breast- and formula-fed samples (Supplementary Materials, Figure S2). This model
was validated by extracting an ROC curve and permutation testing (Supplementary Materials,
Figure S3). In accordance with the AUC for each class, any value above 0.75 was considered
acceptable, and the model was considered capable of distinguishing between classes.

Using supervised analysis, we attempted to uncover putative differences in the breast-
fed (BF) versus the formula-fed groups (FF) by comparing the samples at each time point
(3rd and 15th days, 2nd and 3rd months). The succinct criteria for model validity and
reproducibility regarding the values of R2 and Q2 (R2 values − Q2 values > 0.3 and Q2

values > 0.5) for the models of the first 2 time points of the study (Supplementary Materials,
Figure S4) were not met. On the other hand, the models of the 3rd and 4th sampling points
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(2nd and 3rd month) presented with high values of goodness of fit and predictability (Sup-
plementary Materials, Table S1). Therefore, the two feeding types presented a significant
difference in trend after the 2nd month of life. Specifically, the two groups (BF vs. FF)
were clearly discriminated along the first component at 2 and 3 months according to the
produced OPLS-DA models (Figures 2A and 2C, respectively). The metabolic profiles of
the breastfed and synbiotic-formula-fed samples presented with an almost identical pattern
at 2 and 3 months.
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Figure 1. PCA-X model of the complete set of urine samples; A = 2, N = 225, R2X(cum) = 0.35,
Q2(cum) = 0.23, pareto scaling, 95% confidence level (breastfed samples: squares; formula-fed
samples: triangles).
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Figure 2. (A) OPLS-DA score plot for month 2 for breast- and formula-fed samples, with A = 1 + 1 + 0,
N = 56, R2X(cum) = 0.57, R2Y(cum) = 0.75 and Q2(cum) = 0.58 for pareto scaling and a 95% confidence
level of p-value =3.42 × 10−10 (breastfed samples: blue squares; formula-fed samples: red triangles).
(B) S-line plot demonstrating the metabolites responsible for discrimination (1. bile acids, 2. methyl
succinate, 3. citric acid, 4. creatinine, 5. urea, 6. Dimethylamine). (C) (a) OPLS-DA scores plot for month
3 for breast- and formula-fed samples, with A = 1 + 1 + 0, N = 54, R2X(cum) = 0.54, R2Y(cum) = 0.72 and
Q2(cum) = 0.58 for pareto scaling and a 95% confidence level of p-value = 6.66× 10−10 (breastfed samples:
squares; formula-fed samples: triangles). (D) S-line plot demonstrating the metabolites responsible for
discrimination (1. bile acids, 2. methyl succinate, 3. citric acid, 4. creatinine, 5. urea, 6. Dimethylamine).
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The key metabolites related to the FF group according to the corresponding S-line plots
(Figure 2B,D) for both time points (2nd and 3rd months) were methyl succinate, citric acid,
creatinine, urea and bile acids. Dimethylamine emerged as the discriminant metabolite of
the BF group at the same time points (Figure 2B,D).

Finally, we attempted to frame the evolution of metabolites in relation to the four
time points for each of the two groups (BF vs. FF). To this end, supervised models were
extracted for all sample groups between time points from day 3 to month 3 (Supplementary
Materials, Tables S2 and S3).

Separation between breastfed samples on collected on the 3rd and 15th days could
not be framed in a validated OPLS-DA model (Supplementary Materials, Figure S5), but
discrimination was apparent within the same group of BF samples between the 3rd day
and the 2nd month (Supplementary Materials, Figure S6), as well as between the 3rd day
and the 3rd month (Figure 3A).
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Figure 3. (A) OPLS-DA score plot for breastfed samples (day 3 (green circles) vs. month 3 (yellow
circles)), with A = 1 + 1 + 0, N = 54, R2X(cum) = 0.57, R2Y(cum) = 0.55, and Q2(cum) = 0.41 for pareto
scaling and a 95% confidence level of p-value = 0.000139123. (B) S-line plot demonstrating the metabo-
lites responsible for discrimination (1. citric acid, 2. glutamine, 3. acetoacetate, 4. dimethylamine,
5. creatinine, 6. betaine, 7. taurine, 8. threonine, 9. Hippurate).

Interestingly, the OPLS-DA models of the two different time frames (3rd day versus
2nd and 3rd month) in the BF group and their corresponding S-line plots (Figures 3B and S6)
identified glutamine, acetoacetate, dimethylamine, creatinine, betaine, taurine, threonine
and hippurate as the key metabolites in the day 3 samples, whereas a high concentration of
citric acid characterized the samples collected in the 2nd and 3rd months. Similarly, when
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comparing 15th day to the 3rd month with respect to breastfed samples (Figure S7), the
produced OPLS-DA model provided similar results to those obtained with the previous
comparison results between the 3rd day and 3rd month (Figure 3A).

With respect to the formula-fed samples, OPLS-DA models comparing the 3rd day
to the 2nd (Figure S8) and 3rd months (Figure 4A) were produced. These comparisons
facilitated the interpretation and evaluation of the results between these time frames, as
discrimination was not apparent when comparing samples between the 3rd and 15th day
(Figure S5). Specifically, in the OPLS-DA model (Figure 4A) the two groups (3rd day vs.
3rd month) are clearly separated. The S-line plot (Figure 4B) correlates citric acid and urea
to the samples of the 3rd month and methyl succinate, dimethylamine, creatinine and
taurine to the samples of the 3rd day. The same metabolic pattern was observed in the case
of formula-fed samples between the 3rd day and 2nd month (Figure S8). Similar results
were acquired with the extracted OPLS-DA model by comparing 15th day to 3rd month for
the formula-fed samples (Figure S9).
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Figure 4. (A) OPLS-DA score plot for formula-fed samples (day 3 (green circles) vs. month 3 (yellow
circles)), with A = 1 + 1 + 0, N = 48, R2X(cum) = 0.51, R2Y(cum) = 0.75, and Q2(cum) = 0.67 for
pareto scaling and a 95% confidence level of p-value = 7.33 × 10−12. (B) S-line plot demonstrating
the metabolites responsible for discrimination (1. citric acid, 2. urea, 3. dimethylamine, 4. taurine,
5. creatinine, 6. methyl succinate).

Finally, the use of validation steps (p < 0.05, permutation testing and ROC curves)
confirmed that the results of all OPLS-DA models were unbiased and reliable, as described
in the Supplementary Materials (Figures S10–S15).
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2.3. Metabolite Pathway Analysis

Metabolite pathway analysis (MetPA) was performed using Metaboanalyst 5.0 for
the metabolites exhibiting an AUROC > 0.7 in order to delineate metabolic differences
for each feeding method. In the context of pathway analysis, tested whether compounds
involved in a particular pathway were enriched compared to random hits. The results in
the formula-fed group based on the KEGG database demonstrated alterations in taurine
and hypotaurine metabolism, arginine biosynthesis, citric acid cycle, alanine, aspartate and
glutamate metabolism, glyoxylate and dicarboxylate metabolism and primary bile acid
biosynthesis (Figure 5).
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Our results pinpointed taurine and hypotaurine metabolism, among other pathways,
as being associated with the BF group. In our case, this pathway was significantly upregu-
lated in the FF group relative to the BF group, mainly in relation to the metabolic pathways
of fat and protein. This could be explained by the presence of more polyunsaturated
fatty acids in infant formula that resembles breast milk, contributing to the digestion and
absorption processes [50].

The FF group was also characterized by the citric acid cycle (TCA), a common
metabolic pathway for sugars, lipids and amino acids in the mitochondria. On the other
hand, pathway analysis using significantly altered metabolites in the breastfed group
revealed alterations in alanine, aspartate and glutamate metabolism; glyoxylate and dicar-
boxylate metabolism; glycine, serine and threonine metabolism; synthesis and degradation
of ketone bodies; aminoacyl-tRNA biosynthesis; D-glutamine and D-glutamate metabolism;
nitrogen metabolism; valine, leucine and isoleucine biosynthesis; and taurine and hypotau-
rine metabolism, as presented in Figure 5. The alterations in metabolic pathways resulting
from the investigated feeding methods characterize the dynamic relationship between the
gut microbiome and the gut metabolome in early life. Although our analyses revealed
significant metabolites, reflecting the impact of the gut microbiota on the metabolome, most
metabolites were not predictable when evaluated across pathway and enrichment analysis.

3. Discussion

Current knowledge confirms time-dependent changes in the metabolic fingerprints
and in the biochemical pathways of newborns [51]. Several nutritional studies have
confirmed that the metabolic signature of infants following different feeding practices
is strongly associated with their diet [5,49]. Such findings verify the hypothesis that in
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early life, because infants only consume either breast milk or formula, the microbiome
participates more actively in metabolic activity than in later life, as infants rely more on
microbes to breakdown complex nutrients [52]. Because milk is the first food introduced
into the GI tract after birth, it is important to discuss the discriminant metabolites associated
with the two investigated feeding practices in newborns at different time points.

The metabolic changes in urine from the complete sample set did not exhibit any
clustering trends, as shown in Figure 1. Regarding the evolution of metabolites in relation
to the time frame of the study, a comparison between the 3rd and 15th day did not provide
any validated models for either feeding type, which suggests that a 2-week period is too
short to mirror the impact of feeding in urine metabolic profiling. In accordance with
previous reports, the diversity in the microbiota is consistently transmuted with the onset
of breastfeeding; thus, variations in the metabolome can probably be framed as a distinct
metabolic pattern after the first month of feeding [53].

Clustering between breast- and formula-fed samples was observed after the third
time point, i.e., the second month of the study. As shown in Figure 2B,D, for both time
points (2nd and 3rd months), the key metabolites related to the FF group were methyl
succinate, citric acid, creatinine, urea and bile acids, whereas dimethylamine emerged as
the discriminant metabolite in the BF group.

In particular, primary and conjugated bile acids, key regulators in the formation of
gut microecology by participating in bacterial metabolism, were detected in high amounts
in healthy neonates [54]. Secretion of bile acids (mainly sulfated) is elicited by the presence
of human milk lipids and is indirectly associated with increased presence of Veillonella,
Bacteroides, Clostridium, Enterobacteriaceae and Streptococcus taxa in BF newborns [55,56].
According to in vivo studies in weanling rats, higher concentrations of secondary bile
acids (i.e., deoxycholic acid) were determined in the formula fed group. In line with our
results, secondary bile acids may be representative metabolic products of probiotics, such
as Bifidobacteria, or bacterial communities, such as Clostridia and Firmicutes, in FF infants
from 1st to 3rd month of life [56].

In line with our findings (Figures 3 and 4), taurine, a sulfur-containing amino acid
that participates in the synthesis of bile acids and is received through human milk or infant
formula, showed a decreasing urinary excretion trend 3 months after birth [57].

Variations in the levels of citric acid produced during the tricarboxylic acid (TCA)
cycle are affected by factors related to gestational age, lactation, height, weight, growth rate
and energy demands of the newborn [58].

In the present study, citric acid was found to share a common metabolic fate through
time, as its levels increased with age in both groups (3rd month compared to the 3rd day),
as supported by Figures 3 and 4. In accordance with our results, a previous clinical in-
tervention with subjects receiving bovine or donkey breast milk indicated citric acid as
a maturation biomarker for this group [52,58]. However, citric acid is also a key com-
pound of the metabolic excretion profile during the first days (1st to 7th day) of life in BF
infants [1,52,59]. Notably, the urine fingerprint of FF neonates in our study highlighted
citric acid as a discriminatory metabolite of this feeding type after the second month of
the study.

Urea is considered the most important source of nitrogen, and its presence in the
urine metabolome of newborns is anticipated. A strong correlation of urea with the BF
group was closely associated with the modification of their intestinal microbiome and
the increase in commensal bacterial populations, such as Bifidobacteria [60]. Nonetheless,
in the case of the FF group, the consistent intake of protein-enriched infant formula for
a certain period of time (3 months in our study) normally leads to increased levels of
nitrogen metabolites, such as urea and creatine, which are related to the protein degradation
pathways (Figure 5) [42,61,62]. In contrast, due to its high lipid content, breastfeeding
seems to favor fatty acid catabolism rather than protein catabolism [62]; therefore, reduced
concentrations of urea months after birth are can be attributed to the reduced yet more
efficient use of proteins in nourishing infants [63].
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Regarding the assignment of methyl-succinate as a signature marker for the synbiotic
formula group (Figure 2), the results of the present study are in line with the findings of
other research groups [64]. The increase in this metabolite in FF newborns is driven by
the catabolic pathways of amino acids, such as isoleucine, which is found in high-protein
infant formulae. Moreover, recent studies of fecal cultures of healthy 2-month-old neonates
revealed the interrelation of succinate compounds with the establishment of commensal
Enterobacteriaceae communities in the FF infant gut [65]. Apart from the feeding mode, the
concentrations of methyl-succinate has been shown to significantly depend on the age of
the infant [64].

Our findings indicate creatinine as a discriminant compound, as it was found in higher
levels in the FF group than in the BF group after 2 months of life (Figure 2), which may be
closely related to the rapid degradation rate of proteins in protein-rich formulae [62,66].
The decreased creatinine levels in both FF and BF newborns in the 3rd month compared to
the 3rd day of the study (Figures 3 and 4) are in agreement with other published scientific
data [64,67]. As indicated by the plasma metabolic signature of BF and FF infants, creatinine
showed a decreasing tendency over the course of the infant’s lifespan [67]. An in vivo
study in monkeys also reported that creatinine levels were elevated in the first days of
life [68].

Special attention should be paid to dimethylamine, which plays an essential role in
the clustering of FF vs. BF urine samples (Figure 2). Recent findings also highlighted
dimethylamine as a discriminant microbial metabolite of BF newborns compared to FF
infants [66]. Specifically, dimethylamine is a secondary amine found in excess in urine
samples as a result of ADMA hydrolysis, an endogenous inhibitor of nitric acid biosynthesis,
or due to TMAO oxidation, a compound found in food matrices that is also produced in
human gut microflora as choline metabolite [69]. Finally, dimethylamine is considered an
important bacterial byproduct of amino acid pathways [42].

In relation to gut microflora, dimethylamine was found to be positively associated
with Proteobacteria, whereas it was negatively correlated with Actinobacteria (i.e., Bifidobac-
terium) [70]. However, the continual reshaping of infants’ gut microbial populations in
the first months of postnatal life normally results in significant variations at the level of
dimethylamine in association with both investigated feeding approaches at various sam-
pling points [71]. Most importantly, dimethylamine is an early microflora metabolite of
microbiota–host reciprocal interactions; thus, its levels could increase during the first days
of breast or formula feeding [70]. This phenomenon was apparent in both the BF and FF
models in our study between the 3rd day and the 3rd month (Figures 3 and 4).

The lower number of differentiating metabolites in the BF group in the 3rd month
compared to 3rd day (Figure 3 and Figure S6) may be ascribed to the gradual coloniza-
tion/establishment of microbial communities and the maturation of the overall infant
metabolism that takes place between the 3rd day and the 3rd month [72], which, in our
study, was mirrored by the presence of one discriminant metabolite (citric acid) in urine at
in the 2nd and 3rd months compared to that on the 3rd day.

On the other hand, incomplete kidney maturation and high choline intake appeared
to be responsible for the increased production of betaine, a product of choline oxidation.
In neonatal urine samples reported in previous study, betaine was increased progressively
from the 3rd day to 3rd month before exhibiting a sharp decrease in infants at the age
of 6 months [51,67]. Increased amounts of betaine on the 3rd day of life in the BF group
(Figure 3) may also be related to the elevated levels of TMAO from 3rd day to the 3rd;
because TMAO is a gut-generated metabolite, its concentration is strongly associated with the
ongoing maturation of intestinal microflora (i.e., increase in Akkermansia abundance) [73–75].
A previous study investigating healthy term infants in relation to their feeding regimen using
capillary electrophoresis time-of-flight mass spectrometry (CE-TOF/MS) revealed that betaine,
together with other choline metabolites (N,N-dimethylglycine and sarcosine), differentiated
the BF group from the FF group only at the age of 1 month, at which time level of excretion
of choline metabolites was higher in BF infants than FF infants [76]. Although betaine was
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identified as a discriminant metabolite in BF infants in our study, as was increased on the
3rd day compared to 3rd month (Figure 3), it was not found to discriminate between formula-
and breastfed infants.

Finally, threonine was observed in higher concentrations at the beginning of the study
compared to the 3rd month in the BF group (Figure 3). A reducing trend in threonine levels
during the postnatal period was also reported by Lönnerdalet al. (2016) in the plasma of
4- and 6-months-old infants [77]. The excretion of urinary threonine was also decreased
after the first month of life in BF newborns [1].

4. Materials and Methods
4.1. Sample Collection

Study subjects were allocated into 2 groups: one group exclusively breastfed (BF)
and the other group receiving a synbiotic formula (Rontamil® Complete 1—Bifidobacterium
animalis 1.00 × 107 cfu/g, FOS 0.52 g/100 kcal, Rontamil, Zug, Switzerland) (FF). In the
FF group, neonates were exclusively breastfed prior to enrolment. In the case of medical
indication or parental wish for formula introduction along with breastfeeding, the neonates
received Rontamil® Complete 1 infant formula. The average nutritional composition
per 100 mL of human breast milk and formula (Rontamil® Complete 1) is presented in
Table S4 [78,79]. Urine samples from 72 neonates (36 from each group) were collected at
4 time points (3rd and 15th days of life, 2nd and 3rd months). Healthy, full-term singleton
neonates born either by vaginal delivery or caesarian section with an Apgar score > 7
at the 1st and 5th minute, not requiring any intervention at birth and exhibiting normal
intrauterine growth (BW 10–89th centile) were eligible for the study. WHO growth charts
were used to calculate the percentile of birth body weight. Exclusion criteria included
intrauterine growth restriction, positive family history of cow’s milk allergy, admission
to neonatal intensive care unit and intra/ postpartum maternal or neonatal antibiotic
use. The mean enrolled postnatal age was 38 weeks and 5 days. The birth weight (mean,
SD), together with the ratios of sex and delivery mode, are provided for both groups in
Supplementary Materials, Table S5.

Approval (No.EE-2/15/31-01-2017) from Aretaieio Hospital Review Board, along with
the Ethics committee, as well as approval (No.A∆A: Ω∆ZX46906Ψ-450/09-03-2017) from
Nikaia General Hospital “Agios Panteleimon”, were received prior to initiation of the study.
All experiments were performed in accordance with existing guidelines and regulations.
Signed informed consent was obtained from the participating mothers prior to enrolment.
The clinical study was registered with ClinicalTrials.gov under the title, “Metabolomic
Profile of Urine Samples from Neonates fed with breastmilk and infant formula enriched
with synbiotics” with registration number NCT03320837.

4.2. Metabolomic Analysis
4.2.1. Sample Preparation

The samples were thawed at room temperature 60 min before performing the NMR
experiments. Samples were centrifuged (10000 g, 4 ◦C, 10 min), and 450 µL of urine was
mixed with 150 µL of a 1.5 M phosphate buffer (pH 7.4) in D2O containing 0.1% sodium
trimethylsilyl propionate (TSP) and sodium azide (NaN3, 2 mM); then, samples were
transferred to 5 mm NMR tubes [80].

4.2.2. NMR Measurements and Data Processing

All NMR spectra were acquired on a Varian-600 MHz NMR spectrometer (Varian,
Palo Alto, CA, USA) equipped with a triple-resonance probe {HCN}. One-dimensional
1H-NMR spectra were collected at 25 ◦C with the 1D NOESYPRESAT pulse sequence for
solvent signal suppression.

All 1H NMR spectra were phase- and baseline-corrected using Mnovav.10.1 software
(Biotechnology, Gaithersburg, MD, USA). The NMR spectrum of each sample was aligned
with reference to the TSP signal at δ 0.00 ppm. The 1H NMR spectra were reduced into
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buckets of 0.0001 ppm, and the D2O region was removed. The spectra were normalized
to the standardized area of the reference compound and converted to ASCII format using
Mnovav.10.1 software. The ASCII files were imported into MATLAB (R2006a, Mathworks,
Inc., Natick, MA, USA, 2006), and all spectra were aligned using the correlation optimized
warping (COW) method [81].

4.2.3. Metabolite Identification

2D NMR spectroscopy was utilized to assist in the assignment of metabolites. Specifi-
cally, gCOSY, zTOCSY, gHMBCad and gHSQCad were recorded at 25 ◦C. The acquisition
parameters for gCOSY were: spectral width (SW), 7225.4 Hz; t1 increment, 256; acquisition
time, 0.150 s; number of scans, 128; 1084 data points; receiver gain, 30; and relaxation delay,
1 s. The acquisition parameters for zTOCSY were set at: spectral width (SW), 7225.4 Hz;
t1 increment, 256; number of scans, 128; acquisition time, 0.283 s; 2048 data points; receiver
gain, 30; and relaxation delay, 1 s. The acquisition parameters for gHSQCad were: f2
spectral width (SW), 7225.4 Hz; f1 spectral width (SW), 30165.9 Hz; t1 increment, 256;
number of scans, 128; acquisition time, 0.150 s; 1084 data points; receiver gain, 30; and
relaxation delay, 1 s. The acquisition parameters for gHMBCad were: f2 spectral width
(SW), 7225.4 Hz; f1 spectral width (SW), 36199.1 Hz; t1 increment, 256; number of scans,
128; acquisition time, 0.150 s; 1084 data points; receiver gain, 40; and relaxation delay, 1 s.

2D spectra were interpreted with MestReNova v.10.1 software (Mestrelab,
A Coruña, Spain). The identification procedure was also assisted by literature data [82,83], a
reference metabolite 1H NMR database (Chenomx NMR Suite 8.0, Chenomx Inc.,
Edmonton, AB, Canada) and an in-house, fully automated metabolite identification plat-
form [84].

4.3. Statistical Analysis
4.3.1. Post Processing of Spectral Data

Multivariate statistical data analysis was performed using ASICS and the ropls [85] R
packages (version 4.1), together with SIMCA-P version 15.0 (Umetrics, Umeå, Sweden).

Spectral data were mean-centered and Pareto-scaled (Par) [86]. Multivariate statistical
analysis included principal component analysis (PCA) [87], partial least squares discrimi-
nant analysis (PLS-DA) and orthogonal projection to latent structures discriminant analysis
(OPLS-DA).The mathematical background and applications of these methods have been
extensively discussed in the literature [88–92].

4.3.2. Identification of Important Features and Model Validation for SIMCA-P

Feature selection for the OPLS-DA models was based on variable importance in pro-
jection (VIP) scores > 0.7 and P(corr) > 0.2 to reveal the variables with class-discriminating
power. S-line plots were facilitated to pinpoint metabolites that contributed to
sample discrimination.

The quality of models (PCA/OPLS-DA) was described by the goodness-of-fit R2

(0 ≤ R2 ≤ 1) and the predictive ability Q2 (0 ≤ Q2 ≤ 1) values. R2 explains the variation,
constituting a quantitative measure of the quality of the mathematical reproduction of
the training set data. The overall predictive ability of the model was assessed by the
cumulative Q2, representing the fraction of the variation of Y that can be predicted by the
model, which was extracted according to the internal cross-validation default method of
SIMCA-P software, version 14.0 (Umetrics, Malmo, Sweden). Q2 is considered a de facto
default diagnostic parameter to validate OPLS-DA models in metabolomics. In particu-
lar, all OPLS-DA models demonstrated high statistical values (R2 > 0.7 and Q2 ≥ 0.50),
the difference between the goodness-of-fit and the predictive ability always remained
below 0.3 (R2X(cum) − Q2 (cum) < 0.3) and the goodness of fit was never equal to one
(R2X(cum) 6= 1). Therefore, because the extracted models abided by these rules, their
robustness and predictive response were enhanced, and overfitting was avoided.
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Classification models were validated using cross-validation analysis of variance (CV-
ANOVA), with a p-value < 0.05, as noted in each multivariate statistical model. Furthermore,
permutation tests were employed (999 permutations) in order to evaluate whether the
specific classification of two classes in a model was significantly better than any other
models obtained by randomly permuting the original group attribution. All models were
extracted at a confidence level of 95%.

An additional measure of PLS-DA model validity included the extraction of receiver–
operator characteristic (ROC) curves to assess the ability of the PLS latent variable Tpred to
correctly classify the test set. The area under the ROC (AUROC) was calculated. A perfect
discrimination corresponded to an AUROC equal to 1.

4.3.3. Model Validation for R

The package ropls (R) was employed for the implementation of the PCA, the partial
least squares-discriminant (PLS-DA) and its orthogonal implementation (OPLS-DA). These
techniques are used in to maximize the correlation between two sets of variables by reducing
the data to a few latent variables. The orthogonal use of this method provides improved
interpretation of variations between the discriminated groups. The evaluation of PLS-
DA and OPLS-DA models was based on the goodness-of-fit coefficient (R2Y_ and the
goodness-of-prediction coefficient (Q2Y). The prediction was estimated by 7-fold cross
validation, and the robustness of the models was measured through permutation testing
for 999 iterations. For the PLS models, the optimal number of latent variables used was
based on the accumulation of high R2 values without model overfitting.

In addition, the ASICS package was employed in order to identify and quantify
metabolites from the NMR data. To identify statistically significant variables that affected
the two discriminations, a Kruskal–Wallis test [93] was performed, and the p-values of
multiple tests were corrected with the Benjamini–Hochberg method [94].

4.3.4. Metabolite Pathway Analysis

Metaboanalyst 5.0 was used (http://www.metaboanalyst.ca, accessed on 20 July 2022)
for biomarker discovery, classification and pathway mapping. A hypergeometric test using
over-representation analysis and pathway topology analysis related these metabolites to
metabolic pathways. MetaboAnalyst 5.0 (http://www.metaboanalyst.ca/metaboanalyst/,
accessed on 20 July 2022) was used for bioinformatics analysis, and the pathway anal-
ysis module based on the KEGG database was applied to reveal relevant differential
metabolic pathways.

5. Conclusions

We performed a metabolomics analysis utilizing urine samples from a relatively large
birth cohort study at four time points and considering two feeding methods (breast feeding
and an infant formula rich in synbiotics, polyunsaturated fatty acids and nucleotides).
According to established knowledge, we attempted to elucidate alterations in the urine
metabolic fingerprint correlating with putative changes in the gut microbiota.

In this context, it was evident that the urine metabolic profiles of BF and synbiotic-
enriched FF infants were similar during the two first time points of the study. Elucidation
of the evolution of metabolites versus time showed that a 2-week period is too short to
mirror the effect of different types of feeding in the urine metabolome. An impact on the
metabolic fingerprint was evident after the second month, with citric acid, methyl succinate,
urea and bile acids, as well as dimethylamine, as discriminant metabolites. Citric acid
shared a common metabolic fate through time, as its levels were increased with age in
both groups in the 3rd month compared to the 3rd day. With respect to the FF group, the
consistent intake of a protein-enriched infant formula for more than 2 months may have
led to increased levels of nitrogen metabolites, such as urea and creatine. The increase in
methyl-succinate in FF newborns seems to have been driven by the catabolic pathways of
amino acids, such as isoleucine, present in protein-rich infant formulae.

http://www.metaboanalyst.ca
http://www.metaboanalyst.ca/metaboanalyst/
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Although the relationship between the gut microbiota and the effect on the metabolome
is not well understood, increasing evidence suggests that the infant’s intestinal microbiome
plays a key role in metabolism and immune development, with impacts on lifelong health.

In many cases, alterations of metabolites may be attributed to the shaping of the gut
microecology over time and by the participation of metabolites in bacterial metabolism.
For instance, conjugated bile acids are a key regulator of gut microecology by participating
in bacterial metabolism and were correlated with the FF group. Moreover, dimethylamine
is an early microflora metabolite of microbiota–host reciprocal interactions; thus, it is
present in higher levels in the first days of both in BF and FF infants. Nevertheless, it
remains a characteristic metabolite for discrimination between BF and FF infants, even
in later stages (month 2). Overall, this study reveals that both investigated feeding types
may exert beneficial effects directly or indirectly through alterations in the gut microbiota.
However, this study is limited by the use of urine samples as the sole substrate, and further
validation is required. The role of metabolomics is also highlighted to provide comparative
data regarding the effect of different feeding regimes on infant metabolism. Additionally,
despite the short sampling intervals, the metabolic frame at each sample point provides only
a snapshot of the constantly changing microbiota ecosystem. Generally, understanding the
crosstalk between feeding type, gut microbiota and consequent metabolome will facilitate
the development of novel and personalized dietary interventions during early life, which
may prove useful to prevent metabolic disorders in later years.
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