Supplementary material

Figure S1. Plots for: a) Z-ave – mean droplet size and b) PDI - polydispersity index, with the coefficient and p values for the factors and their interactions. A: PEG-PL type; B: PEG-PL concentration; C- oil type and D: the presence of curcumin.

Formulations	d (10)	d (50)	d (90)	D [4,3]
	(nm)	(nm)	(nm)	(nm)
PS	78	116	173	122
CS	78	117	173	122
S21	76	114	173	120
CS21	76	113	168	118
S23	74	109	163	115
CS23	75	112	166	117
S26	74	109	163	115
CS26	75	111	165	117
S51	76	113	169	118
CS51	76	113	168	118
S53	74	109	164	115
CS53	75	112	167	117
S56	73	106	159	112
CS56	76	112	166	117

Table S1. Results of laser diffraction (LD) measurements for soybean oil formulations stored at room temperature for two years.

Formulations	d (10)	d (50)	d (90)	D [4,3]
	(nm)	(nm)	(nm)	(nm)
PF	224	309	421	317
CF	78	116	173	121
F21	74	109	163	115
CF21	76	112	167	118
F23	73	106	159	112
CF23	76	114	171	120
F26	74	109	162	114
CF26	76	112	167	117
F51	76	112	167	118
CF51	76	113	168	118
F53	79	122	207	1378
CF53	76	112	167	117
F56	79	120	195	1897
CF56	76	112	167	117

Table S2. Results of laser diffraction (LD) measurements for fish oil formulations stored at room temperature for two years.

Figure S2. Polarization microscopy images of the curcumin-loaded soybean oil NEs taken after two years of storage.

Figure S3. Polarization microscopy images of the curcumin-loaded fish oil NEs taken after two years of storage.

Figure S4. Content of curcumin in soybean oil nanoemulsions measured initially (In) and after two years of storage (2y); Values are shown as means \pm sd (n = 3); *, p < 0.05, compared to the initially measured values.

Figure S5. Content of curcumin in fish oil nanoemulsions measured initially (In) and after two years of storage (2y); Values are shown as means \pm sd (n = 3); **, p < 0.01, compared to the initially measured values.

Figure S6. DPPH assay results for freshly prepared nanoemulsions with soybean oil (SC, S21, S51), fish oil (FC, F21, F51) and pure curcumin (Cur).

Figure S7. DPPH assay results for nanoemulsions with soybean oil (SC, S21, S51) and fish oil (FC, F21, F51) after two years of storage.

	Formulations		
	CS	CF	
Zero order	K = 0.100	K = 0.250	
	$R^2 = 0.9918$	$R^2 = 0.9930$	
	$R^{2}_{adj} = 0.9918$	$R^{2}_{adj} = 0.9930$	
	AIC = 8.7911	AIC = 17.8459	
First order	K = 0.001	K = 0.003	
	$R^2 = 0.9907$	$R^2 = 0.9581$	
	$R^{2}_{adj} = 0.9907$	$R^{2}_{adj} = 0.9851$	
	AIC =10.0073	AIC = 23.3072	
Higuchi	K = 1.198	K = 3.031	
	$R^2 = 0.8009$	$R^2 = 0.8278$	
	$R^{2}_{adj} = 0.8009$	$R^2_{adj} = 0.8278$	
	AIC =28.3909	AIC = 38.0503	
Baker-Lonsdale	K = 0.000	K = 0.000	
	$R^2 = 0.7883$	$R^2 = 0.7914$	
	$R^{2}_{adj} = 0.7883$	$R^{2}_{adj} = 0.7914$	
	AIC =28.7596	AIC = 39.2015	
Korsmeyer-Peppas	K = 0.095	K = 0.325	
	N = 1.013	N = 0.952	
	$R^2 = 0.9925$	$R^2 = 0.9945$	
	$R^{2}_{adj} = 0.9906$	$R^{2}_{adj} = 0.9931$	
	AIC = 10.2221	AIC = 18.5235	
Hixson-Crowell	K = 0.000	K = 0.001	
	$R^2 = 0.9916$	$R^2 = 0.9927$	
	$R^2_{adj} = 0.9916$	$R^2_{adj} = 0.9927$	
	AIC = 9.2999	AIC = 19.0848	

 Table S3. Dissolution modelling for non-PEGylated formulations.

			Form	ulations		
	CS21	CS23	CS26	CF21	CF23	CF26
Zero order	K = 0.101	K = 0.105	K = 0.082	K = 0.282	K = 0.382	K = 0.324
	$R^2 = 0.9894$	$R^2 = 0.9907$	$R^2 = 0.9640$	$R^2 = 0.9911$	$R^2 = 0.9876$	$R^2 = 0.9956$
	$R^{2}_{adj} = 0.9894$	$R^{2}_{adj} = 0.9907$	$R^{2}_{adj} = 0.9640$	$R^{2}_{adj} = 0.9911$	$R^{2}_{adj} = 0.9876$	$R^{2}_{adj} = 0.9956$
	AIC = 10.4473	AIC =10.5040	AIC = 14.5805	AIC = 20.6449	AIC = 26.3692	AIC = 18.5561
First order	K = 0.001	K = 0.001	K = 0.001	K = 0.004	K = 0.006	K = 0.005
	$R^2 = 0.9860$	$R^2 = 0.9896$	$R^2 = 0.9546$	$R^2 = 0.9471$	$R^2 = 0.9434$	$R^2 = 0.9535$
	$R^{2}_{adj} = 0.9860$	$R^2_{adj} = 0.9896$	$R^2_{adj} = 0.9546$	$R^2_{adj} = 0.9471$	$R^2_{adj} = 0.9434$	$R^{2}_{adj} = 0.9535$
	AIC = 12.7480	AIC = 10.9469	AIC = 16.4633	AIC = 31.9855	AIC = 36.5120	AIC = 33.4300
Higuchi	K = 1.205	K = 1.254	K = 0.960	K = 3.351	K = 4.627	K = 3.904
	$R^2 = 0.7860$	$R^2 = 0.7996$	$R^2 = 0.7129$	$R^2 = 0.7756$	$R^2 = 0.8206$	$R^2 = 0.8086$
	$R^{2}_{adj} = 0.7860$	$R^{2}_{adj} = 0.7996$	$R^{2}_{adj} = 0.7129$	$R^{2}_{adj} = 0.7756$	$R^{2}_{adj} = 0.8206$	$R^{2}_{adj} = 0.8086$
	AIC = 29.1103	AIC = 28.9471	AIC = 28.8838	AIC = 41.5504	AIC = 43.5013	AIC = 41.9425
Baker-	K = 0.000	K = 0.000	K = 0.000	K = 0.000	K = 0.000	K = 0.000
Lonsdale	$R^2 = 0.7732$	$0.7863R^2 =$	$R^2 = 0.7023$	$R^2 = 0.7317$	$R^2 = 0.7565$	$R^2 = 0.7560$
	$R^{2}_{adj} = 0.7732$	R ² _{adj} =0.7863	$R^2_{adj} = 0.7023$	$R^2_{adj} = 0.7317$	$R^2_{adj} = 0.7565$	$R^{2}_{adj} = 0.7560$
	AIC = 29.4613	AIC = 29.3340	AIC = 29.1155	AIC = 42.6221	AIC = 45.3473	AIC = 43.4036
Korsmeyer-	K = 0.080	K = 0.100	K = 0.031	K = 0.178	K = 0.494	K = 0.315
Peppas	N = 1.050	N = 1.014	N = 1.300	N = 1.096	N = 0.959	N = 1.008
	$R^2 = 0.9913$	$R^2 = 0.9917$	$R^2 = 0.9924$	$R^2 = 0.9965$	$R^2 = 0.9901$	$R^2 = 0.9958$
	$R^{2}_{adj} = 0.9891$	$R^{2}_{adj} = 0.9896$	$R^{2}_{adj} = 0.9905$	$R^{2}_{adj} = 0.9956$	$R^{2}_{adj} = 0.9876$	$R^{2}_{adj} = 0.9948$
	AIC = 9.7759	AIC = 11.8500	AIC = 7.2300	AIC = 18.4773	AIC = 27.5574	AIC = 20.2089
Hixson-	K = 0.000	K = 0.000	K = 0.000	K = 0.001	K = 0.002	K = 0.001
Crowell	$R^2 = 0.9877$	$R^2 = 0.9906$	$R^2 = 0.9580$	$R^2 = 0.9660$	$R^2 = 0.9695$	$R^2 = 0.9746$
	$R^{2}_{adj} = 0.9877$	$R^{2}_{adj} = 0.9906$	$R^2_{adj} = 0.9580$	$R^{2}_{adj} = 0.9660$	$R^2_{adj} = 0.9695$	$R^{2}_{adj} = 0.9746$
	AIC = 11.8910	AIC = 10.4372	AIC = 15.8103	AIC = 29.0151	AIC = 32.7449	AIC = 29.7493

 Table S4. Dissolution modelling for PEGylated formulations containing PEG2000-DSPE.

			Form	nulations		
	CS51	CS53	CS56	CF51	CF53	CF56
Zero order	K = 0.120	K = 0.414	K = 0.147	K = 0.308	K = 0.374	K = 0.434
	$R^2 = 0.9614$	$R^2 = 0.9752$	$R^2 = 0.9767$	$R^2 = 0.9929$	$R^2 = 0.9848$	$R^2 = 0.9931$
	$R^{2}_{adj} = 0.9614$	$R^{2}_{adj} = 0.9752$	$R^{2}_{adj} = 0.9767$	$R^{2}_{adj} = 0.9929$	$R^{2}_{adj} = 0.9848$	$R^{2}_{adj} = 0.9931$
	AIC = 21.0680	AIC =20.6748	AIC = 20.7972	AIC = 21.5793	AIC = 28.5973	AIC =25.2423
First order	K = 0.001	K = 0.002	K = 0.002	K = 0.004	K = 0.006	K = 0.007
	$R^2 = 0.9435$	$R^2 = 0.9559$	$R^2 = 0.9581$	$R^2 = 0.9686$	$R^2 = 0.9176$	$R^2 = 0.8965$
	$R^{2}_{adj} = 0.9435$	$R^{2}_{adj} = 24.2330$	$R^{2}_{adj} = 0.9581$	$R^{2}_{adj} = 0.9686$	$R^{2}_{adj} = 0.9176$	$R^{2}_{adj} = 0.8965$
	AIC = 23.5581	AIC = 24.2330	AIC = 24.3848	AIC = 30.1040	AIC = 38.9857	AIC = 41.9234
Higuchi	K = 1.389	K = 1.648	K = 1.713	K = 3.728	K = 4.457	K = 5.202
	$R^2 = 0.6986$	$R^2 = 0.7237$	$R^2 = 0.7298$	$R^2 = 0.8196$	$R^2 = 0.7780$	$R^2 = 0.7951$
	$R^{2}_{adj} = 0.6986$	$R^{2}_{adj} = 0.7237$	$R^{2}_{adj} = 0.7298$	$R^{2}_{adj} = 0.8196$	$R^{2}_{adj} = 0.7780$	$R^{2}_{adj} = 0.7951$
	AIC = 34.0295	AIC = 35.3250	AIC = 35.5760	AIC = 40.9533	AIC = 44.9222	AIC = 46.0397
Baker-	K = 0.000	K = 0.000	K = 0.000	K = 0.000	K = 0.000	K = 0.001
Lonsdale	$R^2 = 0.6826$	$R^2 = 0.7045$	$R^2 = 0.7099$	$R^2 = 0.7716$	$R^2 = 0.7147$	$R^2 = 0.7151$
	$R^{2}_{adj} = 0.6826$	$R^2_{adj} = 0.7045$	$R^2_{adj} = 0.7099$	$R^2_{adj} = 0.7716$	$R^{2}_{adj} = 0.7147$	$R^2_{adj} = 0.7151$
	AIC = 34.3458	AIC = 35.7292	AIC = 36.0033	AIC = 42.3767	AIC = 46.4540	AIC = 48.0304
Korsmeyer-	K = 0.031	K = 0.044	K = 0.051	K = 0.366	K = 0.294	K = 0.377
Peppas	N = 1.307	N = 1.227	N = 1.201	N = 0.971	N = 1.061	N = 1.034
	$R^2 = 0.9899$	$R^2 = 0.9920$	$R^2 = 0.9903$	$R^2 = 0.9942$	$R^2 = 0.9877$	$R^2 = 0.9941$
	$R^{2}_{adj} = 0.9874$	$R^{2}_{adj} = 0.9900$	$R^{2}_{adj} = 0.9879$	$R^{2}_{adj} = 0.9927$	$R^{2}_{adj} = 0.9846$	$R^{2}_{adj} = 0.9927$
	AIC = 15.5387	AIC = 15.8758	AIC = 17.2340	AIC = 22.1855	AIC = 29.4679	AIC = 25.9541
Hixson-	K = 0.000	K = 0.001	K = 0.001	K = 0.001	K = 0.002	K = 0.002
Crowell	$R^2 = 0.9501$	$R^2 = 0.9632$	$R^2 = 0.9653$	$R^2 = 0.9842$	$R^2 = 0.9483$	$R^2 = 0.9359$
	$R^2_{adj} = 0.9501$	$R^2_{adj} = 0.9632$	$R^2_{adj} = 0.9653$	$R^2_{adj} = 0.9842$	$R^2_{adj} = 0.9483$	$R^2_{adj} = 0.9359$
	AIC = 22.7485	AIC = 23.1150	AIC = 23.2384	AIC = 25.5464	AIC = 36.1667	AIC = 39.0479

 Table S5. Dissolution modelling for PEGylated formulations containing PEG5000-DPPE.

Formulations	Maximum injection force (Fmax)
CS	19.65 ± 1.54
CS21	22.94 ± 0.26
CS23	27.66 ± 1.00
CS26	29.34 ± 1.20
CS51	25.21 ± 0.33
CS53	28.58 ± 2.34
CS56	34.60 ± 2.58
CF	19.58 ± 1.55
CF21	23.39 ± 2.45
CF23	26.53 ± 2.51
CF26	30.57 ± 0.45
CF51	24.35 ± 0.46
CF53	29.06 ± 2.37
CF56	35.81 ± 3.27
X7 1	1 1 ()

Table S6. Maximum injection force (N) for soybean and fish oil nanoemulsions.

Values are shown as means \pm sd (n = 3).