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Abstract: Rectangular, millimeter-scale complementary split ring resonators were fabricated, employ-
ing the so-called Computer Numerical Control method, combined with a home-built mechanical
engraver. Their electromagnetic performance was thoroughly investigated with respect to their dimen-
sions in the frequency regime between 2 and 9 GHz via combining experiments and corresponding
theoretical simulations, wherein a considerably effective consistency was obtained. Moreover, their
sensing response was extensively investigated against various aqueous solutions enriched with
typical fertilizers used in agriculture, as well as detergents commonly used in every-day life. Cor-
responding experimental results evidently establish the capability of the studied metasurfaces as
potential sensors against water pollution.

Keywords: metamaterials; complementary metasurfaces; split ring resonators (SRRs); engraving
method; water pollution sensors

1. Introduction

Water pollution can be defined as the process, during which harmful substances
contaminate lakes, rivers, streams, aquifers, oceans etc., degrading the quality of water
and rendering it toxic to humans as well as to the environment [1]. Water contamination
could originate from several sources and human activities. Among others, two of the most
common water contamination sources are the extensive use of fertilizers in agriculture and
the wide and daily use of detergents [2,3].

Fertilizers, in general, contain nitrogen among other constituents, which is vital for plants
since it is included in chlorophyll, the most important substance for photosynthesis [4,5].
Plants absorb the needed amount of nitrogen from the ground. However, heavy cultivation
stemming from the dramatically increased human need for food reduces the nitrogen
concentration of the ground. Consequently, such a lack of nitrogen is replaced via the use
of chemical fertilizers. The wide use of fertilizers, however, turns out to be a severe water
contamination source. Significant amounts of fertilizer residue remain in the ground. The
rain leaches them and carries them into rivers, lakes, streams and aquifers, leading to direct
contamination. Consequently, water from such sources cannot be used by humans, since it
is harmful. Even more to the point, a large amount of these diluted residues are transferred
to the seas, resulting in excessive plant and algal growth and consequent oxygen depletion.
Such oxygen reduction leads to detriment of the local fish population, and finally, local
ecosystems are severely disturbed or even destroyed. Such a process is widely known as
eutrophication [6].
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On the other hand, the extreme use of detergents is another source of water pollution.
Most of the detergents used in everyday life contain chemicals and substances which can
cause various pollution problems in water. Moreover, most of those chemicals cannot be
decomposed or eliminated via public or private wastewater treatment, and therefore they
are transferred to clean bodies of water (lakes, streams, rivers, etc.), resulting in water
pollution. Therefore, contamination of the sea water via detergents contributes to the
destruction of sea ecosystems [7–9].

Considering the above, the early and precise monitoring of pollution in water sources
is of great importance for water quality improvement since global water supplies are
becoming less while water demands are increasing dramatically, leading to a global water
crisis [10]. In this context, sensors exhibiting high accuracy, sensitivity, and resolution
are required [11,12]. Moreover, such sensors should be portable and responsive, so as
to be placed into lakes, rivers, water reservoirs, and other bodies of water for quick and
direct pollution measurements. Furthermore, the remote control/monitoring of those
sensors would be beneficial for continuous and real-time observations of water resource
contamination. So far, several interesting reports have been conducted in water pollution
sensing based on various measurements, such as pH, conductivity, oxygen concentration,
turbidity, spectroscopy, etc. [12–16].

Among these, microwave sensors have become an active research approach for water
quality control with increasing interest. Microwave sensing technology possesses significant
advantages since it is a non-destructive, low-cost, and low-power technique; it provides a
direct and immediate response, and it can continuously provide real-time data in a remote
manner [15]. In this context, metamaterial sensors functioning in the microwave regime
have become a rather promising approach to water quality testing. In general, microwave
metamaterials (and their two-dimensional counterparts, the so-called metasurfaces) are
human-developed materials exhibiting extraordinary electromagnetic properties which
cannot be observed in natural materials, such as perfect absorption, negative refractive
index, visibility cloaking etc. [17,18]. The basic component of a metasurface, called a “meta-
atom”, possesses specific shape and dimensions. The electromagnetic (EM) properties
of such metasurfaces (MSs) are directly affected by those two factors. Additionally, the
spatial distribution of the meta-atoms also affects the EM response of the MSs. Therefore,
MSs can be used for several applications, such as antennas, splitters, isolators, modulators,
electromagnetic shielding, and energy harvesters, as well as sensors [11,19–23].

A widely known and thoroughly studied metasurface is the so-called split ring res-
onator (SRR) [24,25], consisting of a metallic loop with a gap. Depending on their shape
and size, SRRs exhibit resonance effects at certain frequencies, which are indicated by a
sharp dip in their transmission spectrum. By inserting a tiny amount of a dielectric material
into the gap, the geometric capacitance of the SRR is strongly affected, the resonance effect
is disturbed, and such a disturbance is mainly exhibited via a shift in the resonance fre-
quency. Since the dielectric material has a higher dielectric constant than air (ε′air = 1), the

shift is expected to be toward lower frequencies
(

fres ∝ 1/2π
√

LC
)

, enabling the sensing
capability of the MS. In this context, there have been several recent investigations in which
SRRs were used as water quality sensors, distinguishing between different kinds of organic
and inorganic materials in aqueous solutions. Although, the main disadvantage of such
SRR-like sensors is that the liquids used for sensing should be quite viscous in order to
remain in the gap [26–30]. Interestingly, there are reports among these in which comple-
mentary SRRs (CSRRs; e.g., Figure 1a,b) are utilized as sensors [18,23,26,31–33]. Here, it
should be noted that CSRRs behave similarly to the corresponding SRRs, although they
are essentially the exact inverse counterpart of an SRR (an SRR consists of a metallic loop
surrounded by a dielectric material, while the CSRR consists of a dielectric loop surrounded
by metal).
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Figure 1. Optical microscopy photographs for (a) sample with dimensions as follows: length,
L = 9.9 mm; width, w = 1.1 mm; and gap; g = 1.2 mm and (b) sketch of the CSRR structure and
corresponding dimensions. The distance between the two SRRs is equal to the line width.

Fabrication of conventional mm-scale SRRs includes a great variety of techniques, such
as printed circuit board (PCB) [34], additive manufacturing [35], inkjet printing [36] etc. How-
ever, for the fabrication of high-performance CSRRs, the PCB method has mostly been used
so far [28–31,37]. The PCB procedure is known as the most appropriate method for develop-
ing electronic circuits on substrates (such as FR4) and includes various development steps,
namely chemical etching, milling, annealing, etc. Moreover, the corresponding infrastructure,
needed, consists of several expensive instruments, while the personnel required must be
highly trained. All of this increases the production cost when expanding from the laboratory
to mass production scale. Hence, despite their high quality, the fabrication of PCB-printed
CSRRs is limited by their increased production cost. To this point, alternative methods have
been proposed, such as the computer numerical control (CNC) engraving technique. In
general, CNC is used in the manufacture of metal, plastic, and wooden parts, while mills,
lathes, routers, drills, grinders, etc. are some of the cutting tools that can be automated via
CNC. Thus, CNC is dedicated to large-scale production since it reduces development time
and man-hours, which consequently reduces production cost. In addition, engraving has
been successfully used to develop mm-scale metasurfaces [38–40]. Therefore, the utilization
of CNC engraving to develop CSRRs seems like quite an interesting approach.

Considering all the above, in this study, the CNC method was employed in combina-
tion with an engraver in order to successfully fabricate rectangular CSRRs on metallized
surfaces. Several rectangular CSRRs were printed, with various dimensions, changing
their length, line, and gap width. The developed CSSRs were characterized in terms of
their EM response; all of them exhibited characteristic resonance at certain frequencies,
depending on their dimensions, indicating their effective EM performance. Moreover, their
sensing capability was investigated for several water pollutants, including fertilizers as
well as detergents. It was found that the sensing efficiency of the CSSRs was significant,
even in cases of low-concentration solutions, indicating their high sensitivity. Finally, the
sensing efficiency of the engraved CSRRs was studied against the degradation of fertil-
izers and detergents using a heterogeneous photocatalytic approach [41–43]. We hereby
present evidence that the fabricated CSSRs could be effectively used as quite sensitive and
high-resolution sensors of common water pollutants.

2. Materials and Methods
2.1. Metasurface Fabrication

The so-called rectangular complementary split ring resonator—CSRR—design was
chosen for the purpose of the current study. In general, there is plenty of knowledge regard-
ing conventional rectangular SRRs, and thus it is a well-known metasurface. In this context,
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the complementary rectangular SRR is quite familiar in terms of its use. Mechanical engrav-
ing was used in order to develop such MSs, using a home-built CNC router. Corresponding
drawings of the MSs were developed using the open-source drawing software EASEL (In-
ventables Inc., Chicago, IL, USA, https://site.inventables.com/technologies/easel), which
was also used to appropriately transform each drawing to corresponding g-code files that
can be read by the CNC router. Then, the router moved in all three dimensions upon
engraving with a thin metallic carpenter blade (diameter: Ø 0.5 mm); thus was the final
engraved subject fabricated. The substrate/material used for engraving was a typical
plain FR-4 surface (1 mm thick), covered with a 35 µm-thick film of pure Cu. Throughout
the engraving procedure, the blade removed certain areas of the Cu film; thus the final
complementary MSs were grown (see Figure 1a). In all cases, the depth of the engraved
CSRRs was 0.2 mm.

2.2. Optical Microscopy Experiments

All MSs were studied regarding their dimensions via optical microscopy experiments.
For this reason, an optical microscope was used (AP-8 microscope, Euromex Microscopen
bv., Arnhem, the Netherlands), with maximum magnification of ×80.

2.3. Electromagnetic Characterization

The EM performance of all the engraved MSs was investigated via transmission
experiments in the microwave regime. In particular, all engraved CSRRs were measured
using a combination of a P9372A Vector Network Analyzer (VNA) (Keysight, CA, USA)
and WR187 and WR137 waveguides (Figure 2d). Details regarding the set-up and the
measurement procedure were previously described [35,44,45].
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Figure 2. S21 vs. f, for the engraved CSRRs with respect to (a) the metasurface (MS) length L (black,
red, and blue lines correspond to C2, C5, and C11 samples, respectively), (b) the width of the MS
(black, red, and blue lines correspond to C4, C6 and C10 samples, respectively) and (c) the dimension
of the gap g (black and red lines correspond to C1 and C3 samples, respectively). (d) Experimental
set-up drawing for the measurement of the electromagnetic (EM) response of the engraved MSs. The
orientation of the MS into the waveguide is also shown.

2.4. Aqueous (Pollutants) Solution Preparation

Commercially available fertilizer (ammonium sulfate, A-SA, 21-0-0, TEOFERT, Athens,
Greece) and a well-known commercially available laundry detergent (Dixan; Henkel AG
& Co. KGaA, Düsseldorf, Germany) were obtained from a local agricultural shop and a

https://site.inventables.com/technologies/easel
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supermarket, respectively, to play the pollutants’ role in the present work. Stock aqueous
solutions of 0.0, 2.0, 5.0 and 10.0% w/w fertilizer and 10.0% v/v laundry detergent in tap
water were prepared in order to verify the sensing capabilities of the CSRRs of this work.

2.5. Sensing Performance of the Fabricted MSs

The sensing properties of the fabricated MSs were investigated using the set-up
described in Section 2.3. In order to explore the sensing behavior of the CSSRs, a trace
quantity (~1 mm3) of tap water was placed into the engraved area of each CSRR using a
microliter syringe suitable for dispensing volumes from 0.05 µL up to 10 µL (Hamilton
Bonaduz AG, Switzerland). Then the CSRR device was put into the waveguide, and the
EM response change was recorded. It should be noted that the waveguide was in a vertical
position (with respect to the position pictured in Figure 2d); thus the liquid inserted into
the CSRRs could not splited out of the engraved area. Similarly, the sensing properties
of the CSRRs were investigated with respect to the aqueous solutions of fertilizers and
detergents, as described in Section 2.4. Finally, the engraved CSRRs were also used to
monitor the degradation of the above pollutants in aqueous solutions, which were subjected
to photocatalysis experiments.

2.6. Photocatalytic Experiments

The sensing efficiency of the engraved CSRRs was studied against the degradation
of the above-mentioned stock solutions of fertilizer and laundry detergent using a het-
erogeneous photocatalytic approach, which employs semiconductor materials and a UV
light source. This is a promising route for the removal of persistent pollutants to produce
harmless end products [46].

First, filaments consisting of acrylonitrile butadiene styrene (ABS; INEOS Styrolu-
tion (Frankfurt, Germany)) and ZnO (Sigma-Aldrich, St. Louis, MO, USA) nanoparticles
(average particle size ~50 nm) were fabricated as previously described [47]. Then, these
filaments were employed in a dual-extrusion FDM-type 3D printer (Makerbot Replicator
2X; MakerBot Industries, Brooklyn, NY, USA), and polymeric grids were produced as
potential photocatalytic samples. The photocatalytic activity of the 3D-printed samples
was studied by means of the reduction of the stock solutions described in Section 2.4. The
photocatalytic samples were placed in a custom-made quartz cell, and the entire setup
(cell + solution + sample) was illuminated for up to 60 min using a UV lamp centered
at 365 nm (Philips HPK 125 W) (msscientific Chromatographie-Handel GmbH, Berlin,
Germany) with a light intensity of ~6.0 mW/cm2 [48].

2.7. Raman Spectroscopy Experiments

The concentration of ammonium sulfate (degradation), which is the main constituent
of the fertilizer used in this study, was monitored via room temperature Raman spec-
troscopy measurements. A Horiba LabRAM HR Evolution confocal micro-spectrometer
(HORIBA FRANCE SAS, Longjumeau, France) was used in backscattering geometry (180◦).
The spectrometer was equipped with an air-cooled solid-state laser (HORIBA FRANCE
SAS, Longjumeau, France) operating at 532 nm with 100 mW output power. Raman spectra
were collected at 0, 20, 40, and 60 min of illumination of the corresponding fertilizer stock
solution (10% w/w). Ammonium sulfate degradation was recorded based on observation
of its main Raman peak in the range of 960–1000 cm−1. The same solutions (at 0, 20, 40,
and 60 min illumination) were forwarded to the set-up described in Section 2.3 and used to
explore the sensing behavior of the CSSRs following the protocol of Section 2.5.

2.8. UV-Vis Spectroscopy Experiments

In addition, the decolorization of laundry detergent stock solution was monitored
via UV-Vis spectroscopy in absorption mode (absorption at λmax, 353 nm). In this con-
text, a BIOBASE BK-D590 Double Beam Scanning UV/VIS Spectrophotometer (BIOBASE,
Jinan, Shandong, China) was used, over the wavelength range of 190 to 1100 nm using
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a 1200 lines/mm grating. UV-Vis absorption data were collected at 0, 20, 40, and 60 min
of stock solution illumination (10% v/v). The degradation of the detergent was recorded
based on the reduction of its main absorption peak in the range of 290 to 400 nm. Once
more, the detergent solutions (for 0, 20, 40, and 60 min illumination) were forwarded to
the set-up described in Section 2.3 and used to explore the sensing behavior of the CSSRs
following the protocol of Section 2.5

Therefore, the sensing properties of the CNC-fabricated MSs were compared using
state-of-art spectroscopy techniques, such as Raman and UV-Vis spectroscopy. To ensure
repeatability, the photocatalysis experiments were performed at least 3 times.

2.9. Theoretical Simulations

The experimental results were further supported by theoretical simulations performed
with continuous wave (CW) excitation, using the frequency domain solver of the CST
Studio Suite (CST Microwave Studio, Computer Simulation Technology GmbH, Darm-
stadt, Germany), based on the finite integration technique. The simulated MS consists of
two CSRRs on a copper-coated FR-4 substrate (Figure 1b). The copper layer was modelled
on an electric conductivity of 5 × 107 S/m, while the relative electric permittivity of the
FR-4 substrate was 4 − 0.04i (loss tangent of 0.01). The waveguide walls were considered
to be perfect electric conductors. The TE10 mode of the waveguide excited the structure
in the frequency range of 3 to 9 GHz and the S-parameters were calculated using rectan-
gular waveguide ports. In order to perform the simulations introducing water within the
engraved volume of the CSRRs, the experimentally measured dispersive complex electric
permittivity of water was used (i.e., see Supplementary Figure S1).

3. Results
3.1. Optical Microscopy

Figure 1a shows a typical optical microscopy picture of engraved CSRRs. In general,
all MSs seemed to be rectangular and well-shaped; their lines were straight, with clean and
parallel edges. Corners inside the SRRs were sharp with right angles, while the corners
outside the SRRs were rounded, which is attributed to the engraving procedure as well as
to the carpenter blade size. The thinner the blade size, the higher the engraving resolution
obtained. Nonetheless, very thin blades are easily broken, especially when the engraved
area is metallic, such as in our case. Therefore, the use of relatively thicker blades diminishes
the resolution of the engraving.

In addition, the distance between opposite SRRs was uniform: in all cases, equal to
their line width. On the other hand, the MS gap was not properly formed in all cases, while
its edges were quite rounded. The roundness of the gap was more pronounced when the
width of the engraved SRR was narrow (i.e., see Figure 1b), while it became sharper with
increases to the width of the engraved SRR (i.e., Figure 1a,b). Such a construction failure
can be attributed to the thickness of the blade used. The dimensions of the fabricated
CSRRs are presented in Table 1.

Table 1. Measured dimensions and calculated engraved volume for all studied CSRRs (engraving
depth is 0.2 mm in all cases).

CSRR Name L (mm) w (mm) g (mm) V (mm3)

C1 9.9 ± 0.1 1.2 ± 0.1 0.7 ± 0.1 10.9
C2 9.9 ± 0.1 1.1± 0.1 1.2 ± 0.1 7.39
C3 9.9 ± 0.1 1.1± 0.1 2.2 ± 0.2 7.26
C4 7.9 ± 0.1 1.0 ± 0.1 1.2 ± 0.2 5.28
C5 7.9 ± 0.1 1.1 ± 0.1 1.1 ± 0.1 5.24
C6 7.9 ± 0.1 1.3 ± 0.1 1.0 ± 0.1 6.60

C10 8.0 ± 0.1 2.0 ± 0.1 1.2 ± 0.2 5.92
C11 6.5 ± 0.1 1.1 ± 0.1 1.3 ± 0.2 4.66
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3.2. Electromagnetic Characterization

As seen in Figure 1, a single unit cell of the engraved CSRRs was studied in this work.
The EM response of the engraved CSRRs is denoted in Figure 2. In all cases, well-defined
and sharp dips were observed in S21 vs. f spectra (transmission coefficient depends on
the |S21|2). Corresponding S11 vs. f spectra (not shown here) do not exhibit any feature
(reflection coefficient is proportional to the |S11|2

)
. Therefore, the observed S21 dips are sug-

gestive of absorption of the incident electromagnetic wave; thus, CSRRs effectively absorb
EM energy at certain resonant frequencies. All minima are deep (<−25 dB) and comparable
to conventionally PCB-printed SRRs [49], indicating the effective EM performance of the
CSRRs. Figure 2a shows the EM response of the studied SRRs with respect to their length L.
It is obvious that the resonance frequency shifts toward higher values upon decreasing L,
corroborating previous experimental reports [35,49]. On the other hand, increasing the line
width results in a resonance frequency shift to higher frequencies (Figure 2b), while widen-
ing of the gap leads to a resonance shift, as shown in Figure 2c. All the above-presented
results are consistent with previously reported data for conventional PCB-printed SRRs. In
addition, our findings were qualitatively verified via corresponding theoretical simulations
(Supplementary Figure S2). Therefore, it can be safely concluded that the engraved CSRRs
resemble conventional PCB-printed SRRs, in terms of both resonance frequencies and
transmission dips’ intensity.

3.3. Sensing Performance of the Fabricated MSs

Prior to the investigation of the sensing properties of the CSRRs for typical water
pollutants, such as detergents and fertilizers, it is crucial to investigate whether the CSRRs
possess any response to the presence of water or not. Furthermore, it is important to identify
the minimum volume of water (and aqueous solutions) required to activate the CSRRs (if
any). In addition, it is important to explore if there is a maximum water quantity above
which the MS does not respond. In this context, we proceeded to the following experiments:

First, the EM response of the CSRRs was measured with respect to the presence of
water, which was homogeneously distributed on the engraved area of the CSRR. Typical
results for the C2 sample are presented in Figure 3a (results for all the CSRRs are presented
in Supplementary Figures S3–S7). It can be clearly seen that by inserting the proper amount
(1 mm3) of water into the engraved area of the MS, a clear shift toward lower values
in the resonance frequency was observed (∆f ~ 97 MHz). Moreover, the corresponding
dip became broader. Similar behavior could be observed in the C5 sample (L = 7.9 mm,
∆f ~ 270 MHz) and C11 sample (L = 6.5 mm, ∆f ~ 863 MHz). Thus, resonance frequency
increased with decreasing MS length. On the other hand, the dip became shallower and
wider. The presence of water in the CSRR engraved area, in all three cases, led to the
resonant frequency decrement due to the high permittivity (real part of permittivity) of
water as well as results in the dip broadening due to loss (imaginary part). The shift
was stronger (in absolute and fractional terms) in smaller CSRRs, since the inserted water
occupied a larger portion of the slot (see last column in Table 1) and, thus, overlapped more
with the fields in the slot. Therefore, the EM response of the CSRR was affected by the
presence of water.
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In addition, the performance of the CSRRs was evaluated via the determination of the quality
factor Q = fres/FWHM, the normalized sensitivity S (%) = 100× ( fair− fwater)/[ fair(εwater− 1)],
and the figure of merit FoM = S/FWHM [50], where fres is the resonance wavelength in
the presence of water, ∆f = fair − fwater, is the resonance frequency shift observed due to
the presence of water in the MS, εwater is the corresponding dielectric constant of water
at resonance frequency, and FWHM is the full width at half maximum of the shifted dip.
All Q, S and FoM values are presented in Table 2. In addition, dielectric permittivity
measurements for water are also presented (Supplementary Figure S1), from which the
refractive index could be calculated with respect to the frequency. It is obvious that larger
CSRRs exhibit larger Q and FoM values, suggesting that they are more efficient sensors.
However, this is only partially reasonable. As we show later, the water volume inserted into
the engraved area is a crucial parameter to achieve reliable sensing capability. Regarding
Q factor values, they are comparable to other CSRRs dedicated to liquid sensing [51–53].
Moreover, although low, S values are also comparable to others reported in the literature
for microwave sensors [52–54]. In addition, FoM values are very small, which is mainly
attributed to the low sensitivity S values obtained for water.

Table 2. Resonance frequency f res, frequency shift ∆f, dielectric constant εwater of water at resonance
frequency, full width at half maximum (FWHM), quality factor Q, normalized sensitivity S, and figure
of merit (FoM) for all engraved CSRRs.

CSRR Name fres
(GHz)

∆f
(MHz) εwater

FWHM
(MHz) Q S (%) FoM (10−4)

C1 4.053 134 76.3 177 30.2 0.042 2.40
C2 3.627 97 77.0 40 90.7 0.034 8.57
C3 4.200 200 76.1 216 19.4 0.060 2.80
C4 5.080 400 74.7 147 34.5 0.099 6.74
C5 6.070 270 72.8 147 14.6 0.059 4.03
C6 5.490 526 74.0 487 11.3 0.120 2.46

C10 5.627 114 73.7 343 16.4 0.028 0.796
C11 7.643 863 69.2 1019 7.50 0.149 1.46

After confirming the EM response of the CSRRs in the presence of water, we proceeded
to another experiment in which the EM behavior of the studied MSs was investigated
with respect to the volume of water inserted into the engraved area. In particular, a
measured volume of water was uniformly distributed into the engraved CSRRs, and the
EM response was measured. As the volume of water inserted into the CSRRs was varied,
corresponding EM spectra were recorded. Figure 4a shows typical EM spectra of the C6
sample. By increasing the volume of the water introduced into the engraved area, the
resonance’s frequency shifted toward lower values. Moreover, the minimum S21 value
decreased monotonically with increasing water volume, and for water volumes above
~5 mm3, the resonance almost vanished, most likely due to the high imaginary part of
water. Interestingly, the volume of the engraved area of the C6 sample was calculated
to be ~6.60 mm3. Corresponding theoretical simulations qualitatively verified the above-
described results (i.e., Supplementary Figure S8), indicating high sensitivity of the MS to
the presence of water. Therefore, it can be proposed that resonance is quenched when the
engraved area is full of water. Moreover, it can obviously be anticipated that the volume of
water inserted into the CSRR is crucial for its sensing performance. In particular, resonance
frequency shift increases with increasing water volume (Figure 4b). On the other hand,
S21 intensity decreased (Figure 4b), while the dips broadened. Corresponding analysis
(supplementary Figure S10) clearly shows that the CSRR performed at its maximum FoM
for water volumes up to ~2 mm3. Above that volume, FoM decreased, suggesting that
the C6 sample exhibited its most efficient performance when the water volume inserted
into the engraved area was less than 2 mm3. Similar calibration was performed for all
studied CSRRs. It was found that the threshold water volume for samples C1, C2, and C3
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(L = 10 mm) was ~3 mm3, while for the sample C11 (L = 6 mm) it was ~1 mm3. For samples
C4 and C5, the upper volume limit was ~2 mm3.
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(b) Resonance frequency (black squares) and minimum S21 values (blue circles)with respect to the
volume of the water introduced into the engraved area.

The above-described experiments reveal the sensing performance of the fabricated
CSRRs in the presence of water. Due to its high dielectric constant, water severely affected
the EM response of the CSRRs, resulting in the considerable resonance shift observed,
regardless of MS size. Thus, it becomes prudent to explore the performance of the CSRRs, in
the presence of polluted water, i.e., water contaminated with ammonium sulfate fertilizers.
In this context, water solutions containing various concentrations of fertilizer (2%, 5%, and
10% wt.) were prepared and injected into the engraved area of the CSRRs; corresponding
EM spectra are presented for the C4 sample (Figure 5a).
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Figure 5. (a) S21 vs. f, on several aqueous solutions including fertilizers as contaminants at various
concentrations, i.e., 10% w/w (blue line), 5% w/w. (green line), 2% w/w (red line), and 0% (black
line—pure water) (C4 sample). (b) Resonance frequency fres vs. solution concentration as extracted
from panel (a,c). Corresponding S21 intensity as a function of solution concentration.

It can be clearly observed that resonance frequency shifted toward higher values
as the concentration of fertilizer increased (Figure 5b). Moreover, corresponding S21 in-
tensity significantly decreased with increasing fertilizer concentration (Figure 5c). Cor-
respondingly, the solution’s dielectric constant decreased with increasing concentration
(i.e., Supplementary Figure S1). Thus, the shift toward higher frequencies mainly resulted
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from the dielectric constant decrease. Therefore, the presence of ammonium sulfate fertil-
izer, even in traces, directly affected both the resonance frequency and the intensity of the
minimum of the MS, enabling its sensing capability against water polluted with fertilizers.
The corresponding quality factor, sensitivity, and FoM values are 10.5, 10.8%, and 18.5 respec-
tively. Here it must be noted that these values were calculated with respect to pure water;
therefore, the corresponding relations mentioned above have been appropriately modified,
i.e., S = 100× ( fcont − fwater)/[ fwater(εwater − εcont)], where fcont, εcont is the resonance fre-
quency and the dielectric constant of the contaminated water, respectively.

The above-described behavior was further investigated by exploring the EM response
of the engraved CSRRs with respect to the degradation of pollutants via a photocatalytic
procedure. In this context, an aqueous solution containing fertilizer (10% wt) was used to
resemble polluted water. Photocatalytic experiments were performed using 3D-printed
photocatalytic structures, containing ZnO, as previously described [41]. The degradation of
the pollutant was monitored via Raman spectroscopy. The photocatalytic procedure lasted
for 1 h, and corresponding spectra were obtained every 20 min. Each time, a tiny amount
(~1 mm3) of the solution was transferred to the CSRR, and the EM response of the later
was measured accordingly. Corresponding results for the aqueous solution including the
fertilizer (C4 sample) are presented in Figure 6.
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Figure 6. (a). Main panel: S21 vs. f, for 0 min (black line), 20 min (red line), 40 min (blue line), and
60 min (magenda line) of photocatalysis for the aqueous solution of fertilizer. Corresponding S21 (f )
curve for pure water (green dash line) also included for comparison. Blue panel: Resonance frequency
with respect to photocatalysis time as extracted from main panel. Blue dashed line refers to the
resonance frequency of pure water. Yellow panel: S21,min values as a function of time as extracted from
main panel. Blue dashed line corresponds to the S21,min value of pure water. (b). Main panel: Raman
spectra for 0 min (black line), 40 min (red line), and 60 min (blue line) of photocatalysis regarding
the aqueous solution of fertilizer. Yellow panel: Peak intensity with respect to photocatalysis time as
extracted from main panel.

It can clearly be seen (Figure 6a) that the resonance frequency shifted to lower values
as the time of photocatalysis increased, approaching the resonance frequency of pure
water (blue panel of Figure 6a). Moreover, the intensity of the resonance was suppressed
toward the intensity of pure water (yellow panel in Figure 6a). The photocatalytic procedure
resulted in the degradation of the pollutant into the solution and therefore the concentration
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of the pollutant (e.g., the fertilizer in our case) into the aqueous solution decreased. Thus,
the solution became more and more diluted, which was demonstrated by both the resonance
frequency shift toward the resonance frequency of pure water, as well as the S21 intensity
approaching that of pure water as the photocatalytic procedure occurred. Interestingly, after
60 min, the resonance frequency of the solution almost equaled that of pure water, probably
indicating the complete degradation of the fertilizer. Accordingly, Raman spectra (Figure 6b)
show the decrement of the characteristic peak of the ammonium sulfate (detailed analysis
of the Raman spectra of the ammonium sulfate is presented in Supplementary Figure S9),
which is the main chemical ingredient of ammonium sulfate fertilizers. Such a decrease is
in agreement with the results presented in Figure 6a. Therefore, the studied CSRRs can be
effectively used as microwave sensitive indicators in photocatalytic systems and devices for
water pollution from fertilizers. Correspondingly, quality factor Q, normalized sensitivity
S, and FoM were found to be 9.75, 11.9% and 22.4, respectively.

Subsequently, the EM response of the engraved CSRRs with respect to the degradation
of an aqueous solution containing laundry detergent (10% v/v) was investigated. In this
case, the pollutant’s concentration was recorded by means of UV-VIS spectroscopy as
previously reported [41]. Experimental results are shown in Figure 7. In particular, a clear
shift toward lower frequencies was observed (Figure 7a) as the time of the photocatalytic
procedure increased. Interestingly, after 60 min, the resonance frequency of the solution
was equal to that of pure water, indicating the degradation of the pollutant via the photo-
catalytic process. Additionally, the corresponding UV-Vis spectra (Figure 7b) exhibited a
distinct reduction in the characteristic peak intensity with respect to time, suggesting the
degradation of the pollutant into the solution. Therefore, the UV-Vis experimental data
came to significant agreement with EM experimental results. This is a strong indication that
engraved CSRRs can be utilized as sensors in photocatalytic devices and systems for the
degradation of detergents in the water. Notably, the calculated Q, S (%), and FoM values
are 11.2, 16.2% and 34.3, respectively.
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Figure 7. (a). S21 vs. f, for 0 min (black line), 20 min (red line), 40 min (blue line), and 60 min (green
line) of photocatalysis for the aqueous solution including laundry detergent. Corresponding S21 (f )
curve for pure water (magenta dashed line) is also included for comparison. Blue panel: Resonance
frequency with respect to photocatalysis time as extracted from main panel. (b). UV-VIS spectra for
0 min (black line), 20 min (red line), 40 min (blue line), and 60 min (magenta line) of photocatalysis,
regarding the aqueous solution of laundry detergent. Yellow panel: Peak intensity, with respect to
the photocatalysis time, as extracted from main panel.
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4. Summary and Conclusions

In this study, mm-scale rectangular CSSRs were fabricated, utilizing the CNC en-
graving method. Several CSRRs were developed with various dimensions regarding their
length, line width, and gap. Macroscopic observation revealed that all the fabricated CSRRs
exhibited well-shaped and uniform metasurfaces with uniform line thickness; however,
outside corners were rounded. The measured dimensions of the metasurfaces were quite
close to the desired ones. Therefore, high-quality (in terms of design and dimensions)
CSRRs can be developed by employing the CNC engraving method.

The fabricated metasurfaces were extensively investigated regarding their electromag-
netic behavior. It was found that all CSRRs exhibited a distinct S21 dip at a certain frequency,
indicative of absorption of the incident microwave signal. The observed resonance fre-
quency is directly affected by the dimensions of the CSSR, i.e., its length, line width, and
gap. Despite its inverse structure, CSSR behavior is similar to that of conventional SRRs of
the same dimensions.

The introduction of water into the engraved area of the CSRRs directly affected the
EM response of the metasurfaces. In particular, resonance frequency shifted toward lower
values while the S21 increased as the volume of the water introduced into the CSRR increased.
Moreover, when the water volume reached the volume of the engraved area, S21 vanishes.

Additionally, the developed CSRRs were tested against aqueous solutions containing
traces of pollutants such as fertilizers and detergents. All of them exhibited a remarkable
resonance shift along with S21 decrement in the presence of pollutants. Furthermore, both
resonance shift and S21 increment changed monotonically the concentration of the pollutant
in the aqueous solution changed. Thus, the developed CSRRs show a noteworthy sensitivity
with respect to fertilizers and detergents and could potentially be used as sensors of water
pollution from agriculture and sewage.

Finally, the EM response of the produced CSRRs was compared to products from
the photocatalytic procedure. In this way, the sensing properties of the fabricated CSRRs
were compared with state-of-art spectroscopy techniques, such as Raman and UV-Vis
spectroscopy. In particular, aqueous solutions containing traces of fertilizers and detergents
were photo-catalyzed so the pollutant material decomposed, resulting in the decrement
of the concentration of the pollutant in the water. The CSRRs exhibited a clear resonance
shift toward lower frequencies as the degradation of the pollutants evolved, approaching
the resonance frequency of pure water. Therefore, CSRRs could be effectively used as
microwave sensors in photocatalytic systems and devices.

In conclusion, engraved CSRRs could be used as high-resolution microwave sensors for
observing/controlling/manipulating water quality in terms of two of the most commonly
used pollutants, namely fertilizers and detergents.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ma16155290/s1, Figure S1: Dielectric permittivity vs. fre-
quency for aqueous solutions containing fertilizer in various concentrations. Figure S2: S21 vs. f curves
of rectangular complementary split ring resonators as determined from theoretical simulations.
Figure S3: S21 vs. f for the C1 sample with (red solid line) and without (black solid line) the presence
of water in the engraved area. Figure S4: S21 vs. f for the C3 sample with (red solid line) and
without (black solid line) the presence of water in the engraved area. Figure S5: S21 vs. f for the C4
sample with (red solid line) and without (black solid line) the presence of water in the engraved area.
Figure S6: S21 vs. f for the C6 sample with (red solid line) and without (black solid line) the presence
of water in the engraved area. Figure S7: S21 vs. f for the C10 sample with (red solid line) and without
(black solid line) the presence of water in the engraved area. Figure S8: Theoretical simulations
regarding the injection of various water quantities in the engraved area of the CSRR. Dimension
of the CSRR: L = 7 mm, w = 1 mm, gap = 1.2 mm, engraved depth = 0.2 mm. The metal coating is
35 µm. Figure S9: Raman spectrum of the ammonium sulphate [(NH4)2SO4 ], the main ingredient
of the fertilizer used in aqueous solutions, studied in the main text. All peaks observed can be
ascribed to the intra-molecular vibrations of the ammonium sulphate. Figure S10: (a). Resonance
frequency (black rectangles) and corresponding FWHM (red circles) as a function of water volume.

https://www.mdpi.com/article/10.3390/ma16155290/s1
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(b). Calculated FoM as a function of volume. Figure S11: Electric field distribution (imaginary part of
Ez component) at the resonance frequency of 7.05 GHz without the presence of water. Dimensions
of the CSRR: L = 7 mm, w = 1 mm, gap = 1.2 mm, engraved depth = 0.2 mm. The metal coating
is 35 µm thick. Figure S12: Current density distribution (Jx and Jy components) at the resonance
frequency of 7.05 GHz without the presence of water. Dimensions of the CSRR: L = 7 mm, w = 1 mm,
gap = 1.2 mm, engraved depth = 0.2 mm. The metal coating is 35 µm thick.
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