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Simple Summary: Cutaneous melanoma (CM) accounts for the majority of skin cancer-related deaths
and, during recent decades, its incidence has increased worldwide. Although early-stage disease
is associated with favourable prognosis, a subgroup of tumours is characterised by increased ag-
gressiveness. High inter- and intra-tumour heterogeneity could contribute to the establishment of
such aggressive phenotypes, which are based both on the genomic background and the transcrip-
tomic plasticity of melanoma cells. Molecular profiling of melanomas has expanded our knowledge
about mechanisms related to disease onset and progression, and it is key to improving optimal
management. In this study, we aimed to characterise patients with primary CM for both germline
and somatic variations as well as alterations at the gene expression level, by applying whole ex-
ome, targeted, and transcriptomic approaches and integrative, multi-layered bioinformatics analysis.
Oncogenic alterations were identified, and distinct phenotypic cell states could be inferred from
transcriptomic data.

Abstract: Cutaneous melanoma (CM) is the most aggressive type of skin cancer, and it is characterised
by high mutational load and heterogeneity. In this study, we aimed to analyse the genomic and
transcriptomic profile of primary melanomas from forty-six Formalin-Fixed, Paraffin-Embedded
(FFPE) tissues from Greek patients. Molecular analysis for both germline and somatic variations was
performed in genomic DNA from peripheral blood and melanoma samples, respectively, exploiting
whole exome and targeted sequencing, and transcriptomic analysis. Detailed clinicopathological data
were also included in our analyses and previously reported associations with specific mutations were
recognised. Most analysed samples (43/46) were found to harbour at least one clinically actionable
somatic variant. A subset of samples was profiled at the transcriptomic level, and it was shown that
specific melanoma phenotypic states could be inferred from bulk RNA isolated from FFPE primary
melanoma tissue. Integrative bioinformatics analyses, including variant prioritisation, differential
gene expression analysis, and functional and gene set enrichment analysis by group and per sample,
were conducted and molecular circuits that are implicated in melanoma cell programmes were
highlighted. Integration of mutational and transcriptomic data in CM characterisation could shed
light on genes and pathways that support the maintenance of phenotypic states encrypted into
heterogeneous primary tumours.

Keywords: cutaneous melanoma; whole exome sequencing; RNA sequencing; somatic mutations;
SNPs; FFPE; bioinformatics
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1. Introduction

Cutaneous melanoma (CM) is an aggressive cancer arising from epidermal melanocytes,
which are melanin-producing cells located in the basal layer of the epidermis. Melanocytes
arise from the neural crest, a transient embryonic formation consisting of highly migratory
pluripotent cells, which give rise to a number of different cell types. Throughout embryonic
development, melanocyte progenitors migrate, differentiate and colonise the epidermis
of the skin, hair follicles, the uvea of the eye, and mucous membranes throughout the
body [1,2].

CM incidence rates differ widely across countries and geographic regions; however,
this rate has steadily increased in Caucasian populations worldwide in recent decades, mak-
ing CM a growing epidemic [3,4]. Regarding European populations, the highest occurrence
rate of CM is observed in countries of the Northern and Western Europe, such as Den-
mark, Sweden, and the Netherlands, while Greece belongs to the group of low-incidence
countries [5,6].

Transformation of melanocytes into melanoma is a multi-factorial process involving
a complex interplay of genetic and environmental risk. Exposure to ultraviolet radiation
(UVR) is the most well-established environmental risk factor [7]. In addition, family history
and phenotypic traits, such as blond hair, light eye colour, and tendency to freckle, as well
as the number of common and atypical melanocytic nevi, are among the well-recognised
melanoma risk factors [8,9]. Regarding the genetic background predisposing to melanoma,
the first genetic evidence came from the identification of germline alterations in familial
melanoma patients. Cyclin-dependent kinase inhibitor 2A (CDKN2A) was the first familial
melanoma gene characterised. CDKN2A encodes two distinct tumour suppressors which
are both involved in cell cycle regulation [10,11]. Another cell-cycle related gene found to
be mutated in melanoma-prone families is Cyclin-dependent kinase 4, CDK4. In the case of
sporadic melanomas, comprising more than 90% of all melanomas, several susceptibility
loci acting as moderate (BAP1, TERT, POT1, ACD, TERF2IP and MITF) or low penetration
genes have been identified [10,12,13]. Genome-wide association studies (GWASs) have
also revealed numerous low-penetrant single nucleotide polymorphisms (SNPs) associated
with melanoma risk in the general population with MC1R being one of the most prevalent
ones [14–17]. Further characterisation of the genetic risk factors in different patient popula-
tions could help develop more efficient prevention strategies and improve strategies for
early diagnosis.

In the last decade, Next Generation Sequencing (NGS) technologies enabled signifi-
cant steps towards the characterisation of the somatic mutational profile of the melanoma
genome [18,19]. It has been shown that the melanoma genome records the highest muta-
tional load among several cancers [20], which can in part explain the high heterogeneity
characterising melanoma. The landmark study from The Cancer Genome Atlas (TCGA)
consortium [21] suggested the classification of CM patients into four genomic subtypes
according to the most prevalent of the significantly mutated genes identified in the cohort
under study. The proposed subtypes are characterised as BRAF mutant, RAS mutant, NF1
mutant, and triple wild type (3WT). BRAF, RAS and NF1 proteins are involved in the MAPK
signalling pathway, which is often deregulated in melanoma, resulting in stimulation of
cell proliferation and survival.

Beyond the elevated mutational burden, intratumour heterogeneity is also supported
by the increased plasticity of tumour cells and their ability to switch between different
phenotypic states [22,23]. Recently, “unlocking phenotype plasticity” was proposed as a
discrete hallmark capability of cancer cells [24], determining melanoma progression and
therapy resistance [22]. A growing body of evidence, based on transcriptomic profiling
of melanoma cell lines and tumours, suggests that melanoma cells display different tran-
scriptional programmes that can define different phenotypic states. Two predominant
transcriptional programmes were initially described that characterise a more differentiated
“proliferative” state and a less differentiated “invasive” state [25,26]. Despite these well-
characterised distinct programmes, it is now established that a range of transcriptional
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programmes exists that is governed by different transcription factors [27]. Already since
the first transcriptomic studies reporting distinct transcriptional profiles of melanoma cell
states, it had been suggested that a third melanoma phenotype exists, distinct from the
“proliferative” and “invasive” [25]. Nowadays, it is understood that the “proliferative”
and “invasive” states describe part of a series of melanoma states that represent different
levels of differentiation ranging from neural-crest stem cells to pigmented melanocytes [28].
These “non-proliferative”, “non-invasive” states were often referred to collectively as
“intermediate” state and include cells that are endowed with both invasive and prolifer-
ative properties [23]. The “proliferative”—also referred to as the “melanocytic”—state
is characterised by medium to high expression of the melanocyte-inducing transcription
factor, also known as microphthalmia-associated transcription factor (MITF) [29], while
the “invasive”—also referred to as “undifferentiated” and “mesenchymal-like”—state is
characterised by low MITF and high expression of AXL [30], a gene coding for a tyrosine
kinase receptor [31], which is emerging as a key player in progression and metastasis of
several cancer types [32]. Regarding the other cell states, they include the “hyperdifferenti-
ated” state, the “intermediate” state (also mentioned as “transitory-intermediate migrating”
state), the “starved” state (also mentioned as “therapy-induced starved-like” state) and the
Neural Crest Stem Cell (NCSC)-like state [23,27].

Mounting evidence suggests that among melanoma cells, those expressing the neu-
rotrophin receptor CD271 exhibit the most aggressive and invasive properties [33]. CD271—
encoded by the NGFR gene—is a neural crest stem cell marker, [34], acting as a key regulator
of the NCSC-like state in melanoma. CD271 is not only associated with stem-like properties
but, acting as a molecular switch, it is involved in the regulation of melanoma migration
and metastasis [35–37].

In this work, we aimed to characterise the mutational and transcriptomic profile
of primary CMs. We previously reported the mutational characterisation of primary
melanomas from patients in Greece [38]. To the best of our knowledge, no other study has
since reported large-scale genomic data from Greek patients with CM. Furthermore, we
compare the mutational data of this study with available data from large genomic studies
and report the observed differences between BRAF V600E and V600K cases. Finally, we
evaluate the transcriptomic profile of the analysed CMs for gene signatures that have been
reported to capture and reflect the main cellular state of melanomas.

2. Materials and Methods
2.1. Patients

The Greek samples consisted of Formalin-Fixed Paraffin-Embedded (FFPE) tissue
from patients with a histologically confirmed diagnosis of melanoma at Andreas Syggros
Hospital, a large referral centre for melanoma and skin cancer in Athens, Greece. All
subjects were older than 18 years of age, with a median age of 59 years. Demographic
variables, pigmentation traits (eye, hair, and skin colour), skin phototype, tanning ability,
and information from clinical examination were obtained through a questionnaire that
was filled out by all participants under the supervision of a certified dermatologist who
performed the clinical examination. The study protocol was approved by the Scientific
and Ethics Committee of Andreas Syggros Hospital, and all participating individuals gave
written informed consent before study participation.

2.2. DNA and RNA Extraction from FFPE Tissue

Tissues were microdissected with a syringe needle from 10 µm unstained FFPE sec-
tions. Dissections were supervised by a pathologist to maximise neoplastic cell content.
Genomic DNA and RNA were isolated using the AllPrep DNA RNA FFPE kit (Qiagen,
Hilden, Germany), according to the manufacturer’s suggestions with the modification that
proteinase K digestion was performed at 56 ◦C overnight under stirring. Quantification of
the samples was performed with a Qubit 4 Fluorometer (Thermo Fisher Scientific, Waltham,
MA, USA) using a Qubit dsDNA HS Assay kit (Thermo Fisher Scientific, Waltham, MA,
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USA) for DNA and a Qubit RNA HS Assay kit (Thermo Fisher Scientific, Waltham, MA,
USA) for RNA samples.

2.3. DNA Extraction from Blood Samples

Patients donated 2 mL of peripheral blood and DNA was obtained from peripheral
lymphocytes of melanoma patients using the QIAamp DNA blood mini kit (Qiagen, Hilden,
Germany). DNA concentration was quantified in samples prior to analysis using a Quant-iT
dsDNA HS Assay kit (Thermo Fisher Scientific, Waltman, MA, USA).

2.4. Whole Exome Sequencing

Libraries were generated from a minimum of 200 ng DNA using a KAPA Hyper Prep
Kit (Kapa Biosystems, Inc., Wilmington, MA, USA), targets were captured by SureSelect
Human All Exon V6 (Agilent Technologies, Santa Clara, CA, USA), and sequencing was per-
formed on a DNBseq-G400 sequencing platform at BGI TECH SOLUTIONS (Hong Kong).

2.5. Targeted RNA Sequencing

Transcriptomic analysis was performed using the AmpliSeqTM Transcriptome Hu-
man Gene Expression kit (Thermo Fisher Scientific, Waltham, MA, USA). Libraries were
prepared following the manufacturer’s instructions with minor protocol modifications:
75–100 ng of RNA was used, 16 cycles of PCR were applied for cDNA amplification, and
RNA was heated at 80 ◦C for 10 min before cDNA synthesis. Amplified cDNA libraries
were evaluated for quality and quantified using the Tape Station 4150 instrument. Libraries
were diluted to 100 pM, pooled, emulsion PCR-amplified and enriched as described in the
Targeted DNA Sequencing section. Sequencing was performed on the Ion Torrent Proton™
sequencing system, using an Ion PI kit and PI chip V2 (8 libraries/chip).

2.6. Targeted DNA Sequencing and Data Analysis

The Oncomine™ melanoma panel (Thermo Fisher Scientific, Waltham, MA, USA),
consisting of 2 primer pools targeting 439 and 440 amplicons (amplicon range: 125–175 bp)
of 29 genes, was used for library preparation using 20–50 ng of FFPE DNA. We followed
the manufacturer’s protocol with the modification that we increased the PCR cycles to 22
when the starting material was 20 ng. The libraries were quantified with a Tape Station
4150 (Agilent-G2992AA), diluted to 100 pM, pooled, and emulsion PCR-amplified with Ion
PGM™ Hi-Q™ ion sphere particles (ISPs) using the Ion OneTouch™ 2 Instrument (Life
Technologies; Thermo Fisher Scientific, Inc.) according to the manufacturer’s protocol.
The template-positive ISPs were enriched using the Ion OneTouch™ ES instrument (Life
Technologies; Thermo Fisher Scientific, Inc.) and sequenced with the Ion Torrent Proton™
sequencing system and the PI chip V2 (16 libraries per chip).

Sequence data were processed using the Torrent Suite 5.10.1 pipeline software, which
is optimised for the Ion Torrent platform to perform raw data analysis and base calling,
remove low-quality reads, and make alignments to the human genome (GRCh37/hg19).
Variant calling was performed with Ion Reporter Server 5.18. The average total mapped
reads per sample was 4.5 million. Variants supported only by reads in one strand or with an
allele frequency <2% and an alternative allele count <10 were not included in the analysis.

2.7. Bioinformatics Analysis
2.7.1. Whole Exome Sequencing Data Analysis

The analysis was based on a specially developed framework for NGS data analysis
created for the project purposes, to identify SNPs/mutations and functions involved in
cancer pathophysiology [38,39].

The first step for WES data analysis was to align the sequences on the reference genome
(GRCh38) using BWA [40]. The sequences were then pre-processed using Picard, which iden-
tifies possible duplicates and reorders the sequences correctly. The next step was processing
the reads using GATK (Genome Analysis Toolkit; version 4.1.9.0) [41–44] for quality control.
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Then, SNP calling was performed based on the reference genome (GATK HaplotypeCaller),
and mutation calling based on the reference genome and a paired control sequence from the
same patient (GATK MuTect2, [45]); blood samples were used as controls. Strand-specific arte-
facts, possibly due to DNA damage resulting from formalin fixation and storage time, were
excluded from further analyses following the following rule: at least one incident per strand
and over five incidents in both strands. Mutational signatures in the samples were uncovered
using SigProfiler [46,47]. Funcotator from GATK was used for primary gene annotation.

2.7.2. Somatic Variant Prioritisation and Pathway Analysis

OpenCRAVAT [48] was also used for integrative gene annotations of the vcf files for the
incorporation of ancillary and up-to-date knowledge bases [49–61] for the functional predic-
tion and clinical interpretation of mutations. In the case of coding somatic variants, these
were graded using the Simple Variant Ranking Annotation Cancer Score tool [62]. Briefly,
SVRACAS utilises various distinct annotation resources from OpenCRAVAT, aggregated in
4 major sources of evidence (clinical, variant effect prediction, cancer and expression) in
order to assign each variant/gene a total ranking score in each sample. Next, subsequent
functional analysis aimed to find cellular pathways and molecular mechanisms that are
affected by the specific selected mutations in the previous step using BioInfoMiner [63].
vcfR [64] and GenVisR [65] packages were used for data manipulation and visualisation.

2.7.3. Transcriptomic Data Analysis

Raw counts for each sample were downloaded from the ampliSeqRNA plugin of the
Torrent Suite software. edgeR [66] was used for filtering of low count genes (≥1 cpm in
over 2 samples) and normalisation, using the Trimmed Mean of M-values (TMM) between-
sample normalisation method. Z-score values were calculated on normally distributed
data by subtracting the overall average gene abundance from each gene’s expression and
dividing by the standard deviation of all the measured counts across all samples.

For unsupervised clustering, a set of 1500 genes was used in log2CPM (counts-per-
million) values, which were the most variably expressed (highest median absolute deviation,
MAD) across 13 melanoma tumour samples. Consensus nonnegative matrix factorisation
(CNMF) [67] clustering was implemented using the ExecuteCNMF() function of the Can-
cerSubTypes R package [68], with 2- to 5-cluster-solutions and 1000 iterations. Silhouette
plots and cophenetic correlations (for r = 2, 3, 4, 5, 6) were assessed to define the number of
clusters in the optimal cluster solution (k = 3), defining three subtypes: cluster 1 (n = 2),
cluster 2 (n = 4) and cluster 3 (n = 7). Each point on the cophenetic correlation graph was
obtained from 50 runs of Brunet et al.’s algorithm [67].

Complete downstream RNA-seq analysis including filtering, normalisation and differen-
tial gene expression analysis between the MES-like and MEL-like melanoma tumour samples
was performed in R (R version 4.2.1)/Bioconductor software (version 3.16), utilising the
limma-voom pipeline [69,70]. At first, a non-specific count filtering was performed to exclude
samples with zero count reads by keeping only genes expressed in at least one condition. With
this step, 16,144 unique genes remained. Next, the TMM normalisation was implemented
using the edgeR package (version 3.39.1), followed by the utilisation of the voom pipeline, to
also incorporate sample weights and increase statistical power. Finally, the log2CPM values of
the annotated genes for each sample were calculated, using the cpm() function of the edgeR
package; a small prior.count value proportional to the library size was added to DGEList
object to avoid errors by calculating the logarithmic value of zero. These normalised expres-
sion values were used for gene-level exploratory data analysis (EDA) with visual quality
assessment providing insight into the possible relationships between the samples.

Gene set enrichment analysis (GSEA) [71] was performed twice, both on the gene
expression dataset of normalised counts (log2CPM) in gct format and the preranked (based
on log2FC) differentially expressed gene dataset derived from the MES- vs. MEL-like com-
parison. In the first case, the GSEA GenePattern module (version 20.4.0) [72] was utilised
with the following parameters: 1000 permutations, collapse dataset to gene symbols—false,
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permutation type—gene set, enrichment statistic—weighted, metric for ranking genes—
Signal2Noise, gene list sorting mode—real, gene list ordering mode—descending, max
size of gene sets—500, and min size of gene sets—15. Fast pre-ranked gene set enrich-
ment analysis (GSEA) was implemented with the fgsea R package [73] in the second case,
by setting the estimated p-value (eps) argument to zero in order to estimate the p-value
more accurately. As gene set database files in both GSEA analyses, we used the hall-
mark (h.all.v7.5.1.symbols.gmt) and Reactome (c2.cp.reactome.v2022.1.Hs.symbols.gmt)
signature files in gmt format retrieved from the Molecular Signatures Database (https:
//www.gsea-msigdb.org/gsea/msigdb/, accessed on 16 September 2022 and 2 October
2022, respectively) [74], as well as the MITF and Invasive signatures of Hoek et al. [26].
The enrichment score (ES) reflects the degree to which a gene set-signature-pathway was
overrepresented at the extremes (top-up-regulated or bottom-down-regulated) of the en-
tire ranked list of differentially expressed genes (DEGs) by the comparison of MES-like
vs. MEL-like melanoma tumours. The score was calculated by walking down the list of
DE genes, increasing a running-sum statistic when we encountered a gene in our gene
signature and decreasing it when we encountered genes not included in our gene signature.
The magnitude of the increment depends on the correlation of the gene with the pheno-
type (MES-like or MEL-like). The enrichment score depicts the maximum deviation from
zero encountered in the random walk. For the visualisation of the differentially altered
pathways, customised bar plots were created using the R package ggplot2 (v.3.3.6).

Single-sample GSEA (ssGSEA) was implemented to clarify the degree to which the
genes in a particular gene set were up- or down-regulated in a coordinated manner within
each sample [71,75]. ssGSEA was performed based on the ssGSEA projection methodol-
ogy described in Barbie et al. [75] by running the wrapper “ssgsea-gui.R” to ssGSEA
script (https://github.com/broadinstitute/ssGSEA2.0, accessed on 29 June 2022). As
gene set database files, we used the hallmark (h.all.v7.5.1.symbols.gmt) and Reactome
(c2.cp.reactome.v2022.1.Hs.symbols.gmt) signature files in gmt format retrieved from the
Molecular Signatures Database (https://www.gsea-msigdb.org/gsea/msigdb/, accessed
on 29 June 2022) [74], as well as the MITF and Invasive signatures of Hoek et al. [26]
reflecting the proliferative and invasive melanoma states. ssGSEA was performed on the
normalised counts (log2CPM) of gene expression generated with the edgeR Bioconductor R
package [66]. The script “ssgsea-gui.R” was sourced in R (version 4.2.1) running under Win-
dows 10 64-bit (build 19044) by setting the following arguments: sample.norm.type: none;
weight: 0.75; statistic: area.under.RES; output.score.type: NES; nperm: 1000; min.overlap:
10; correl.type: rank; run.parallel: TRUE. The normalised enriched scores (NES) of gene
signatures were then median scaled between the 13 melanoma tumour samples and hier-
archical clustering (ComplexHeatmap R package version 2.13.2) was conducted on rows
using the Euclidean distance with minimisation of the total within-cluster variance using
Ward’s minimum variance method (ward.D2).

2.7.4. Correlation between BRAF and PPP6C Mutations in Public Datasets

Melanoma public data were downloaded from cBioPortal [76,77] for PanCancer TCGA
and GENIE [78] studies. Statistical analyses were performed using R software (http://www.
R-project.org/, version 4.2.1). Chi-square (χ2) hypothesis test of independence and Fisher’s
Exact Test were performed to analyse the correlation between the frequency occurrence of
BRAF (V600E or V600K) and PPP6C (R264C) mutation. Contingency tables of the distribution
of BRAF mutation groups (V600E and V600K samples in rows) by the distribution of with
and without the PPP6C R264C mutation groups (groups in columns) were analysed.

3. Results
3.1. Patient Characteristics and Type of NGS Analysis Performed

Forty-five patients diagnosed with CM in Andreas Syggros hospital between 2016
and 2020 participated in this study. The main clinical data of the patients are summarised
in Table 1. One patient carried two melanoma lesions that were sequenced and analysed

https://www.gsea-msigdb.org/gsea/msigdb/
https://www.gsea-msigdb.org/gsea/msigdb/
https://github.com/broadinstitute/ssGSEA2.0
https://www.gsea-msigdb.org/gsea/msigdb/
http://www.R-project.org/
http://www.R-project.org/
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separately. Melanoma tissue from FFPE blocks was used to isolate DNA and RNA for
molecular characterisation exploiting NGS. In the case where the isolated DNA of tumour
was >200 ng and a blood sample of the patient was also available, WES was performed
on both melanoma and blood DNA (n = 31 paired samples). For the patients for whom
tumour DNA was limited, targeted sequencing using the Oncomine melanoma panel was
performed instead; this is an amplicon-based methodology requiring much less input DNA
(n = 16 samples; 2 samples were acquired from 1 patient). A subset of samples (n= 13) was
also assessed by transcriptomic analysis.

Table 1. Basic clinicopathological characteristics of the 46 samples (45 patients); Histologic Type: SSM: Su-
perficial Spreading Melanoma, ALM: Acral Lentiginous Melanoma, LMM: Lentigo Maligna Melanoma.

Clinicopathological Characteristics

Age Median age (range): 59 (29–81) yrs old

Sex Male 27 (58.7%) Female 19 (41.3%)

Staging 0
5 (10.9%)

I
27 (58.7%)

II
11(23.9%)

III
3 (6.5%)

IV
0 (0.0%)

Breslow Thickness 0 mm
5 (10.9%)

<1 mm
18 (39.1%)

1–2 mm
15 (32.6%)

2–4 mm
7 (15.2%)

>4 mm
1 (2.2%)

Histologic Type SSM
36 (78.3%)

ALM
3 (6.5%)

LMM
3 (6.5%)

IN SITU
4 (8.7%)

Location Head and Neck
9 (19.6%)

Trunk
19 (41.3%)

Extremities
18 (39.1%)

3.2. Identification of Germ-Line Melanoma Risk Variants

Aiming to examine whether the patients had germline variations on possible melanoma
susceptibility loci, WES data from blood DNA of 31 patients were analysed. We focused
on a panel of SNPs associated with CM risk, which was derived from the GWAS cat-
alogue database [79], enriched by putative melanoma risk SNPs based on the MelGene
database [15,80]. The analysis was restricted to SNPs located in exon regions due to the nature
of our data (WES data). The results are summarised in Figure 1, where the melanoma-risk as-
sociated alleles identified in the cases under study are shown, as well as their frequency in the
Greek population [80] and the frequency in the European population as recorded in the Gno-
mAD database [81]. The related SNPs include pigmentation-linked genes (OCA2, SLC45A2,
TYR, MC1R), along with cell cycle associated and DNA repair genes (ATM, CDKN2A, ERCC5).
Specific melanoma susceptibility alleles [82–87] were found in a number of patients.
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3.3. Identification of Somatic Variants

Exome sequencing analysis of 31 paired—melanoma and blood—samples revealed a
total number of 41,434 somatic variants in all patients. Regarding protein-altering variants,
a total of 17,653 variants were identified, comprising Single Nucleotide Variants (SNVs),
Multiple Nucleotide Variants (MNVs) and small insertions or deletions (InDels). Specifically,
we identified 13,471 missense SNVs, 565 MNVs resulting in amino acid substitutions, 981
nonsense variants (948 SNVs and 33 MNVs), and 306 splice-site and 1792 frameshift variants.
The complete list of somatic variants identified by WES is summarised in Supplementary
Table S1. The number of somatic protein-altering variants ranged among the patients from
54 to 1965 and accordingly, the tumour mutation burden (TMB)—calculated as the rate of
non-synonymous variations per Mb of the exome—was between 1.5 and 55 mutations/Mb.

Next, we analysed exome sequencing data to identify specific mutational signatures
that could reflect the underlying mutational processes [20] (Figure 2). As expected, the
majority of non-acral CMs were characterised by UV-related mutational signatures, which
is typically observed in CM; additionally, a high rate of SBS5 signature was detected, which
is characterised as a signature of unknown aetiology, but it has been correlated with age
and smoking [20]. Two more mutational signatures were observed, namely SBS1, related to
an endogenous mutational process such as spontaneous deamination of 5-methylcytosine,
and SBS30, which has been associated with deficiency in base excision repair mechanisms.
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Figure 2. Mutational signatures per patient (n = 31). The identified signatures are colour-coded, and
their proposed biological aetiology is as follows: SBS1: endogenous mutational process, spontaneous
deamination of 5-methylcytosine; SBS5: unknown aetiology; SBS7a/b: exposure to ultraviolet light;
SBS30: deficiency in base excision repair.

Targeted sequencing of 29 genes was performed on 16 melanoma samples and revealed
a total of 34 non-synonymous somatic mutations in 16 genes. Specifically, 28 missense,
5 nonsense and 1 splice-site mutations were identified. The complete list of the identi-
fied somatic variants identified by targeted sequencing is summarised in Supplementary
Table S2.

To understand the significance of the identified mutations and mutated genes, we first
compared our data with the COSMIC database [88,89]. We selected the top-20 mutated
cancer-related genes (referred to as census genes) recorded in COSMIC for melanoma, as
well as 19 more genes targeted by the Oncomine melanoma panel, resulting in a total of
39 genes. Figure 3 illustrates the distribution of somatic variants in these genes, where the
information for 34 genes is shown because 5 genes did not carry any variant. Forty-four
out of forty-six samples are depicted in the Oncoplot since in two samples no variant
was detected in these genes. Clinical details for each sample are presented, including
Breslow thickness, age group at diagnosis and melanoma subtype (SSM, LMM, ALM, IN
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SITU). A large proportion (16/23, 69.6%) of BRAF-mutated melanomas were in situ or
thin melanomas (<1 mm Breslow) and the majority (5/8, 62.5%) of patients aged under
40 carried a BRAF V600E mutation. In contrast, V600K was found only in older patients and
three out of four cases were located in the head and neck region. In addition, BRAF V600E
carrying melanomas were mainly nevi-related as fourteen out of nineteen cases (73.7%)
were raised on pre-existing nevi in areas with intermittent UVR exposure. A detailed
description of clinicopathological data in the different mutational subtypes is summarised
in Supplementary Table S3.
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Figure 3. Oncoplot of somatic variance distribution in the melanoma patients under investigation.
The top 20 cancer-related genes from COSMIC and additional 14 genes targeted by the Oncomine
melanoma panel are shown (total = 34 genes), carrying at least one variant. The bar plot at the top
of the figure displays the tumour mutation burden (TMB) for the samples analysed by WES. The
observed frequency of mutations for each gene is presented at the left. Clinical data are shown:
Breslow thickness, age group at melanoma diagnosis, and type of histological characterisation
(SSM: Superficial Spreading Melanoma; ALM: Acral Lentiginous Melanoma; LMM: Lentigo Maligna
Melanoma; IN SITU) and the sequencing technology applied (WES: Whole Exome Sequencing and
TRG: Targeted Sequencing).

Regarding the prevalent melanoma-related mutated genes BRAF, NRAS and NF1,
38 known oncogenic mutations were found in all 46 melanoma samples. All of them were
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mutually exclusive, except one sample that carried an NRAS Q61K substitution along with
an NF1 nonsense mutation. Regarding BRAF, twenty-three melanomas carried mutations
at the hotspot position V600. Specifically, 18 melanomas carried the chr7:140753336 A>T
SNV, resulting in a V600E substitution, one melanoma carried the MNV chr7:140753335
CA>TT, also resulting in a V600E substitution, and four melanoma samples carried the
chr7:140753336 MNV AC>TT, which results in a V600K amino acid change. One sample was
found to carry the BRAF V600E mutation co-occurring with a BRAF R347Q substitution.
This specific variant has been previously reported in nevus sebaceous [90], a class of
epidermal nevi, as well as in a few cases of non-skin cancers, as detected by searching
the cBioPortal (https://www.cbioportal.org, accessed on 2 September 2022) and GDC
Data Portal (https://portal.gdc.cancer.gov, accessed on 2 September 2022) platforms. Ten
melanomas carried mutations in the Q61 position of NRAS (5 Q61K, 2 Q61L, 2Q61R and
1 Q61H) and one sample carried the rare, but likely, oncogenic substitution A59T [50,91].
Regarding NF1, three nonsense mutations were identified.

A number of melanoma recurrent mutations have been reported in the literature in
several genes including KIT, TERT, MAP2K1 and MAP2K2, RAC and PPP6C [92,93]. We
searched in our data for such recurrent mutations that have been reported as clinically rele-
vant. In particular, we exploited the OncoKB knowledgebase to identify oncogenic or likely
oncogenic variants. In addition, we searched for non-hotspot, but putatively oncogenic,
variants, such as truncating (nonsense or frameshift) mutations in well-established tumour
suppressor genes (Figure 4). It is noteworthy that from the 46 melanomas under study,
43 samples carried at least one oncogenic or likely oncogenic somatic variant (Figure 3).
Interestingly, two melanomas carried the PPP6C R264C variant, which has been reported
to have a unique role in melanocytes and melanoma cells [94], co-occurring with the BRAF
V600K substitution. This observation prompted us to search large cohorts for possible
co-occurrence between BRAF V600K and PPP6C R264C. Data from two large-scale studies
were used: the TCGA PanCancer Atlas for Skin Cutaneous Melanoma and the GENIE
Cohort v12.0 for Melanoma. In both studies, PPP6C R264C co-occurred with both BRAF
and NRAS mutations. Interestingly, we observed differences regarding the co-occurrence
of PPP6C R264C with BRAF V600E and V600K. In the case of the TCGA Pan-Cancer Atlas
(448 melanoma samples in total), among the 35 BRAF V600K mutated samples, 5 also had
the R264C mutation in PPP6C (14.3%), while only 2/158 (1.3%) samples carried concomi-
tant BRAF V600E and PPP6C R264C mutations (Fisher’s Exact Test—p-value = 0.00242). In
agreement, regarding data of the GENIE project (2281 melanoma samples in total), among
the 224 BRAF V600K mutated samples, 14 also carried the PPP6C R264C mutation (6.3%),
while only 13/1269 (1%) samples carried concomitant BRAF V600E and PPP6C R264C
mutations (Fisher’s Exact Test—p-value = 0.000006506) (Supplementary Figure S1).
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3.4. Functional Characterisation of Mutated Genes

In order to gain insights into the molecular mechanisms that are related with the
genes carrying somatic variants, we performed functional enrichment analysis exploiting
the BioInfoMiner platform (https://e-nios.com/products/bioinfominer/, accessed on
22 July 2022; [63]). Aiming to limit our analysis to genes carrying putatively oncogenic
alterations, we prioritised the identified variants combining information from different

https://www.cbioportal.org
https://portal.gdc.cancer.gov
https://e-nios.com/products/bioinfominer/
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levels, as described in Materials and Methods, resulting in a total of 1297 genes that
represent candidate genes with altered function. Functional enrichment analysis revealed
significantly enriched GO and Reactome terms encompassing key biological processes. The
complete list of enriched terms is documented in Supplementary Tables S4 and S5. Among
the highest ranked of these, there were ontological terms related to extracellular matrix
organisation, cell adhesion and cell–cell communication, developmental processes (highly
represented by terms related to neurogenesis), axon guidance, signalling by Receptor
Tyrosine Kinases (RTKs) and small GTPases, and angiogenesis (Figure 5).
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3.5. Transcriptomic Profiling of Melanoma

Transcriptomic analysis was performed on total RNA isolated from 13 melanoma
samples. Non-negative matrix factorisation (CNMF) [67] was implemented in order to
distinguish potential molecular patterns for class discovery. CNMF of the top 1500 most
variable genes based on their median absolute deviation (MAD) identified three main
distinct clusters (Supplementary Figure S2). Based on recent studies highlighting specific
gene signatures that characterise melanoma cell states [23,31], we tested gene expression
data from melanoma tumours for similarities with specific transcriptomic profiles of distinct
melanoma phenotypic subtypes. In particular, we mapped the melanocytic-like (MEL)
and mesenchymal-like (MES) gene sets reported by Andrews et al. [31] on our dataset.
The MEL gene set consists of 94 genes and is characterised by the presence of classic
melanocytic markers (e.g., MITF, MLANA, TYR, DCT, SILV, OCA2, SOX10), while the MES
gene set consists of 149 genes and includes genes implicated in Epithelial to Mesenchymal
Transition (EMT) (e.g., ZEB1, AXL, ADAM12, COL1A1/5A1/6A2). As reported [31], the
MEL state is highly associated with the “melanocytic”/”proliferative” state, while the
MES state is highly associated with the “undifferentiated”/“invasive” state and weakly
with the “neural crest like” state. The relative expression of MEL and MES genes in the
in-house primary cutaneous melanoma dataset (n = 13) is shown in Figure 6. Melanoma
samples were separated into three distinct clusters. The first one (MEL-like) resembles
the MEL cluster of Andrews et al., characterised by high expression of MITF and MITF
targets and low expression of MES genes. The second cluster (MES-like) displays an
opposite expression pattern, with low expression of MITF target genes and relatively
high expression of MES-related genes. The third cluster shows mixed expression of MEL
and MES gene sets, so its members could not be assigned to MEL or MES phenotypic
classes; however, they probably represent transcriptional programs of phenotypes between
melanocytic- proliferating and undifferentiated cells, such as the “hyperdifferentiated” state,
the “intermediate” (“transitory-intermediate migrating”) state, the “starved” (“therapy-
induced starved-like”) state and the NCSC-like state [23,27].
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Figure 6. Heatmap of relative mRNA expression of MEL-like and MES-like associated genes in
melanoma samples (n = 13) with sample cluster assignments by k-means clustering. K-means in
columns (melanoma cases) identified three distinct groups based on the expression profile of the MEL-
like (red vertical bar on the left) and MES-like gene sets (blue vertical bar on the left). Gene expression
values were z-transformed and are coloured red for high expression and blue for low expression, as
indicated in the scale bar. Clinical (Breslow; Clark and stage) and molecular information (mutated
driver genes) of samples is added at the top as colour bars.

In order to evaluate the phenotypic diversity of our samples, we mapped the expres-
sion profile of key melanoma cell-state regulatory genes such as the NGFR, RXRG, MITF,
SOX10, SOX9 and AXL genes (Supplementary Figure S3A). The SOX10 gene presented a
similar expression profile with MITF, while RXRG had almost the same expression pro-
file as NGFR across the samples. The NGFR and RXRG genes were upregulated in all
non-MEL, non-MES samples, suggesting their stem-like characteristics, while they were
found with low expression levels in MES- and MEL-like tumours, as expected. Principal
Component Analysis (PCA) on the thirteen melanomasbased on the expression level of
the aforementioned key melanoma cell-state regulatory genes (Supplementary Figure S3B)
validated the separation of samples into three groups. The PCA loadings of MITF and
SOX10 contributed positively to the higher proportion of variance between the samples,
explained by PC1, while the AXL contributed negatively. These loadings were mainly
responsible for the separation of samples into MES-like and MEL-like. On the other hand,
the NGFR and RXRG features contributed positively to the higher proportion of variance
between the samples, explained by PC2, segregating significantly the MES- and MEL-like
samples from all the others (Supplementary Figure S3B). Among the non-MEL, non-MES
samples, two samples (17 and 50) were also fully concordant with the “neural-plastic”
(NPLAS) subtype of Andrews et al., which is characterised by up-regulation of 78 and
down-regulation of 6 genes (Supplementary Figure S4). In contrast, sample 51 displayed
the opposite expression pattern of the NPLAS gene set.

Although the previous analyses identified known markers of distinct melanoma
phenotypes, we could not discriminate specific states other than the MEL and MES states,
probably due to the mixed cell populations coexisting within a tumour. We next focused
on MEL- and MES-like clusters and on the expression of representative genes for each
one (Figure 7). Regarding the MEL-cluster, the selected genes were the MITF gene and
its targets TYRP, TYR, PMEL, MLNA, BCL2, BC2A1, PPARGC1A and CDK2 that were also
found to be down-regulated in the MES-cluster (Figure 7A). On the other hand, the selected
genes of the MES-cluster were the ABCC3, ADAM19, ADAMTS6, AFAP1, AKR1C3, AOX1,
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AXL, CCL2, CFH, CLU, COL12A1, COL13A1, CSF1, DPYD, FBN1, VEGFC and ZEB1 genes
that were found to be down-regulated in the MEL-cluster. (Figure 7B). Interestingly, all
samples of the MEL-cluster are NRAS mutated, while all MES samples are BRAF mutated.
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Figure 7. Boxplot diagrams of expression levels of classic melanocytic and mesenchymal gene
markers in melanoma samples. Log2CPM mRNA expression values of MEL and MES groups were
used. Boxplots indicate the median (thick bar), first and third quartiles (lower and upper bounds
of the box, respectively), and lowest and highest data value within 1.5 times the interquartile range
(lower and upper bounds of the whisker). Boxplot diagrams of expression levels of MITF target genes,
highly expressed in MEL-like samples (A) and of mesenchymal gene markers, highly expressed in
MES-like samples (B).

To further investigate the similarities and differences between the two principal
melanoma clusters (MES- and MEL-like) at the functional level, we performed differ-
ential gene expression analysis, which revealed 1400 differentially expressed genes (DEGs)
with |log2FC|>=2 and p-value < 0.05 (Supplementary Table S6). Among them, the MITF
gene and its targets were found to be down-regulated in the MES-like group, while down-
regulation was observed in the representative MES-like genes (Figure 7B), validating the
results of melanoma cell state clustering (Figure 6). The functional enrichment analysis of
differentially expressed genes via the BioInfominer platform revealed that the majority of
up-regulated DEGs in the MES-like cluster is implicated mainly in the epidermal, epithelial
cell and keratinocyte differentiation, such as the SPRR1A and SPRR1B, TGM5, FLG, LCE
gene members, type II keratin-family genes, keratin-associated protein (KAP) family genes,
S100A7, S100A8, EREG and many others, but also genes with a crucial role in cell-cell adhe-
sion and extracellular matrix organisation (protocadherin gamma cluster genes, members
of the S100 family, desmocollin and cadherin family genes, claudin family genes, and NPNT
and ICAM gene members) and lipid transport (ATP binding cassette subfamily B and C
genes, very low density lipoprotein receptor members, and solute carrier family genes)
(Supplementary Table S7). Going one step further, we also conducted Gene Set Enrichment
Analysis (GSEA), incorporating hallmark, Reactome and well-known melanoma published
gene signatures (see section “Transcriptomic data analysis” in Materials and Methods). In
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Figure 8, selected gene sets manifesting different levels of enrichment between the MES-
and MEL-like cell state conditions are highlighted. The top positively enriched gene sets
in MES-like samples concern KRAS signalling, extracellular matrix organisation and the
invasiveness of tumours coupled with an increased inflammatory response, while the top
negatively enriched pathways include mechanisms such as DNA repair and protein fold-
ing, metabolic processes such as glycolysis and oxidative phosphorylation, and cell-cycle
mitotic events that promote cell proliferation (Figure 8A,C). This kind of analysis also
validated the behaviour of the MITF gene signature [26] with increased enrichment in
MEL-like tumours (Figure 8B).
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Figure 8. Gene set enrichment analysis (GSEA) results of MES-like versus MEL-like melanoma
sample comparison. (A). Bar plot showing selected top enriched gene sets/pathways as derived from
GSEA based on the differential expression analysis of MES-like versus MEL-like tumour melanoma
samples. Bars in blue indicate significant enrichment at p-adj (FDR) <5%, bars in red represent gene
sets with FDR >5% and a nominal p-value < 5%. A positive normalised enrichment score (NES)
value indicates enrichment in the MES-like phenotype, a negative NES indicates enrichment in
the MEL-like phenotype. (B). Gene set enrichment plot of MITF melanoma signature (Hoek et al.
2008), enriched in MEL-like vs. MES-like GSEA showing the profile of the running ES and positions
of gene set members on the log2FC (Fold Change) rank-ordered list. The signal2Noise metric is
graphed for each correlated gene in the ranked dataset. Heat map of 44 MITF signature genes
(for each phenotype in the comparison of MES-like (grey column) vs. MEL-like (orange column).
Normalised expression values are represented as colours and range from red (high expression), pink
(moderate), light blue (low) to dark blue (lowest expression). (C). Four GSEA enrichment plots for
representative molecular signatures (Cell-cycle, DNA-repair, Collagen-degradation, Tumour invasive
signature) enriched in MES- and MEL-like tumours are shown. The top part of each GSEA plot shows
the running enrichment score for validated genes specific for a particular pathway/signature as it
moves down the ranked list. The bottom part of each plot shows the value of ranking matrices as
it moves down the list of ranked genes. The red horizontal bar that terminates with a blue colour
indicates a shift from positively correlated genes (red) to negatively correlated genes (blue). The
y-axis represents enrichment score (ES) and the x-axis shows differential expressed genes (vertical
black lines) represented in different pathways.
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Finally, we carried out another systematic approach to test whether our tumour
sample characterisation, which was based on clustering methods by profiling the MES-
and MEL-like gene signatures, is also validated in single-sample GSEA (ssGSEA), further
highlighting their heterogeneity at a functional level (Figure 9). This analysis supported
the characterisation of MEL- and MES-like cases, as gene sets such as that of MITF by
Hoek et al. were clearly positively enriched only in MEL-like samples. These samples
were also characterised by enriched pathways including DNA repair, UV response and
Myc-targets. Regarding the pathways enriched in MES-like samples, they include KRAS
signalling, inflammatory response, Hoek et al.’s invasive signature and the epithelial
to mesenchymal transition process. Sample 19 presents a deviation from the other two
MES-like samples (3 and 18) concerning these positively enriched pathways, but as far as
the pathways with relevantly low enrichment are concerned, it is clearly clustered with
the MES-like phenotype (Figure 8). Regarding samples 17 and 50, which resembled the
“neural-plastic” (NPLAS) subtype of Andrews et al. [31], they present a relatively high
enrichment of pathways, including TGF-b signalling, UV response, P53 pathway and the
invasive gene set of Hoek et al. [26], while processes related to cell cycle and proliferation
are negatively enriched.
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Figure 9. Heatmap of the scaled normalised enrichment scores (NES) of ssGSEA for selected hall-
mark/pathway gene sets. Rows are reordered by the method of hierarchical clustering (ward.D2
method, Euclidean distance), whereas columns are ordered based on the respective molecular sub-
type. Samples with relatively high enrichment of a given gene signature are marked in red and
samples with relatively low enrichment are marked in blue. Clinical and molecular information
(mutated driver genes) of samples is added at the top as colour bars.

4. Discussion

In this study, we wanted to expand our previous work on CM [38] for the characteri-
sation of somatic mutations and germline variants in patients with primary melanomas
from Greece. This was accomplished not only by incorporating additional samples in
our analyses, but also by broadening our approach towards other levels of molecular and
phenotyping screening, and combining WES, targeted and transcriptomic analyses with
clinical information.
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The vast majority of analysed samples (43/46) was found to carry at least one clinically
actionable somatic variant, involving not only the prevailing mutations in BRAF, NRAS
and NF1, but also KIT, MAP2K1 and MAP2K2, RAC and PPP6C. A disassociation trend
between BRAF V600E and PPP6C R264C mutations was disclosed. PPP6C is a phosphatase
recurrently mutated in melanoma and has been reported as a major MEK phosphatase
in cells exhibiting oncogenic ERK pathway activation [95]. Concerning the association of
specific mutations with clinical characteristics, a higher trend of BRAF V600E was linked to
low Breslow thickness (<1 mm) or in situ melanomas. Melanomas that arise on sites with
intermittent UVR exposure are more frequently of SSM type, more likely to harbour a BRAF
V600E mutation and arise from a pre-existing nevus. They also occur more frequently in
a younger population and on sites such as the abdomen, chest and back [96]. This case
was verified in our study, with 44% of SSM carrying BRAF V600E mutations and 28%
carrying NRAS mutations. A great proportion of BRAF V600E mutations (74%) were also
identified in nevi-related melanomas and 68% of carriers of BRAF V600E had a melanoma
in areas of low sun exposure, such as the trunk, and sun-protected areas of upper and
lower extremities. Melanomas that arise on sites such as the head, with large amounts of
cumulative UVR, more commonly occur in an older population, and five out of eight in
our case were over 60 years old. Such melanomas are less likely to have a BRAF mutation
(when present, they more frequently harbour a V600K than a V600E mutation) and have
significantly higher mutation burden. They also show more frequent mutations of NF1,
NRAS and non-V600E BRAF mutations. This mutation scenario was also proven in our
cohort, with melanomas in face and scalp mostly carrying BRAF V600K, NRAS and NF1
mutations, whereas only one out of eight patients (12.5%) carried the BRAF V600E mutation.
In accordance with the published data, the three ALM melanomas in our cohort were not
BRAF mutated; rather, they carried NRAS, KIT and NF1 mutations. Moreover, the two
ALM melanomas located on the foot showed no UV mutational signature, as expected,
whereas the subungual melanoma had a UV mutation signature to a small extent, as has
been recently observed [97].

A subset of samples was profiled at the transcriptomic level, and it was shown that
specific melanoma phenotypic states could be inferred from bulk RNA isolated from FFPE
primary melanoma tissue. Specific gene signatures that characterise melanoma cell states
were explored, and two distinct clusters of patients, characterised by melanocytic- and
mesenchymal-gene signatures, were highlighted. Accumulating evidence indicates that
melanoma plasticity relies on a phenotypic switch between a proliferative/differentiated
and an invasive/undifferentiated cell state [26,30]. Loss of MITF, the master regulator
of melanocyte differentiation, and reprogramming of epithelial–mesenchymal transition
(EMT)-inducing transcription factors, such as SNAIL, SLUG, ZEB1 and ZEB2, regulate the
phenotype switching toward a MITF-low, invasive or neural crest stem cell-like pheno-
type [98]. In addition to transcription factors, a prominent role in melanoma phenotype
switching is played by the CD271/NGFR neurotrophin receptor which promotes a stem-
like and migratory phenotype [36]. Phenotype switching in melanoma is considered a key
mechanism regulating not only invasion and metastasis, but also acquisition of resistance
to targeted therapies and immunotherapy [99,100]. Thus, it is of paramount importance to
efficiently characterise different melanoma states in primary tumours, as reflected in their
altered transcriptomes, since they affect the crosstalk with the immune tumour microenvi-
ronment by possibly promoting immune escape [101]. Moreover, ssGSEA highlighted the
activation of the EMT pathway in MES-like samples, in agreement with the upregulation
of AXL, a receptor tyrosine kinase considered as an EMT marker [102]. In addition, the
inflammatory response pathway was found to be enriched in MES samples as compared to
MEL, accompanied by significantly high expression of CXCL1 and its receptor, CXCR2, as
well as chemokine receptors CCR4 and CCR6, in melanomas characterised by the invasive
gene signature. These molecules have been assigned a major role in growth, survival,
motility, and invasion of human melanoma [103], while they may also trigger the infiltra-
tion of immunosuppressive cells, such as tumour-associated macrophages (TAMs) and



Cancers 2023, 15, 815 17 of 22

cancer-associated fibroblasts (CAFs) into the tumour microenvironment [104,105]. Better
understanding of how melanomas can exploit chemokine pathways could lead to the
identification of new therapeutic interventions.

Another interesting finding of our research is that, the extracellular matrix (ECM),
remodelling processes were found to be highly enriched, based on bioinformatics functional
analysis, both in the list of prioritised genes carrying somatic variants, and in the DEGs
derived from the comparison of MES- vs. MEL-like tumour samples. Since the crosstalk of
cancer cells with their microenvironment—including stromal and immune cells, as well
as the ECM—is a key player during tumour development, from initiation, growth and
progression to metastasis [106], it is worth noting that relevant processes were highlighted
in our analysis both at the mutational and gene expression level.

Through integrative bioinformatics analyses exploiting different levels of informa-
tion, including well-established databases, state-of-the-art tools, functional and gene set
enrichment analysis, we demonstrated molecular circuits that are implicated in melanoma
cell programmes, shedding light on genes and pathways that support the molecular main-
tenance of phenotypic states. Our findings provide support of the melanoma cell state
concept, along with genetic and transcriptomic programmes that remain highly conserved
within melanoma tumours. Putative associations with specific immune features could
influence the tumour microenvironment with a direct impact on melanoma progression
and metastasis.

In the current research we tried to incorporate as many distinct levels of data as
was feasible. Still, some limitations should be acknowledged. Presently, the assessment
of clinically actionable mutations is performed on FFPE tumour biopsies; however, the
amount of tumour tissue is often limited, and DNA quality may not be always optimal. For
this reason, WES analyses were conducted for the detection of simple somatic mutations
(SNVs and InDels) and not for the identification of copy number alterations, which has been
shown to be an important genomic alteration during melanoma progression [107]. Another
important restraint was the limited number of patients analysed through transcriptomics.
To deal with this, a multi-level analysis was performed, exploiting the literature, databases,
and advanced tools to incorporate information aiming at a better understanding of the
underlying mechanisms of the identified different melanoma cell states.

Finally, our future goal is to further investigate the association of fundamental mech-
anisms involved in melanoma manifestation with the mutational landscape of tumours
under the management of the immune system and its interplay with the core phenotypic
melanoma cell states.

5. Conclusions

We present a comprehensive mapping of genomic mutational and transcriptional
profile of patients with primary melanomas from Greece, through integration of multi-level
molecular and phenotyping information, combining WES, targeted and transcriptomic
analyses with clinical data. Our results revealed melanoma-associated susceptibility alleles,
mainly in pigmentation-linked genes and DNA repair genes. Clinically actionable somatic
variants were identified in 38 samples, along with functionally enriched processes perturbed
from the mutated genes related to neurogenesis and developmental processes. Interestingly,
we observed an increased co-occurrence of PPP6C R264C with BRAF V600K compared
to V600E, which, to the best of our knowledge, has not been previously reported. Finally,
despite the high level of heterogeneity, the systemic bioinformatics approach that we
followed, based on the integration and correlation of different biologically informative
layers, allowed us to evaluate the phenotypic melanoma state of tumours, highlighting
transcriptional programmes and master regulators, such as MITF, NGFR, AXL, and SOX10,
acting as driving forces that permit, or not, a cell population to switch from one state to
another, defining tumour progression and aggressiveness with a direct impact on melanoma
progression and anti-cancer drug resistance.
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