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Abstract: The accumulation of cell biomass is associated with dramatically increased bioenergetic
and biosynthetic demand. Metabolic reprogramming, once thought as an epiphenomenon, currently
relates to disease progression, also in response to extracellular fate-decisive signals. Glioblastoma
multiforme patients often suffer misdiagnosis, short survival time, low quality of life, and poor
disease management options. Today, tumor genetic testing and histological analysis guide diagnosis
and treatment. We and others appreciate that metabolites complement translational biomarkers and
molecular signatures in disease profiling and phenotyping. Herein, we coupled a mixed-methods
content analysis to a mass spectrometry-based untargeted metabolomic analysis on plasma samples
from glioblastoma multiforme patients to delineate the role of metabolic remodeling in biological
plasticity and, hence, disease severity. Following data processing and analysis, we established a
bioenergetic profile coordinated by the mitochondrial function and redox state, lipids, and energy
substrates. Our findings show that epigenetic modulators are key players in glioblastoma multiforme
cell metabolism, in particular when microRNAs are considered. We propose that biological plasticity
in glioblastoma multiforme is a mechanism of adaptation and resistance to treatment which is
eloquently revealed by bioenergetics.

Keywords: untargeted metabolomics; glioblastoma multiforme; translational biomarkers; bioenergetics;
oncometabolism; metabolic reprogramming; epigenetic modulators; drug repurposing

1. Introduction

Glioblastoma multiforme (GBM), a World Health Organization (WHO) grade IV
central nervous system (CNS) tumor, is characterized by intra-tumoral heterogeneity and
inter-individual variability, which are key determinants of disease progression and low
survival rates (average survival time of 12–15 months) [1–3]. The current—and since almost
two decades—first line standard of care for GBM includes surgical resection followed by
adjuvant, fractionated radiotherapy (RT) with concomitant and maintenance temozolomide
(TMZ) chemotherapy [3–5]. Diagnosis and recurrence monitoring are routinely carried out
by computed tomography and magnetic resonance imaging modalities, yet their application
is limited when it comes to large-scale screening due to radiation side effects, cost, and,
sometimes, inaccessibility. Alternatives of clinical utility and, at the same time, clinical
validity are missing as tumor biopsy-based strategies (such as fine needle aspiration biopsy
and genetic profiling or sequencing of circulating tumor DNA) are themselves too invasive
in nature for repeated sampling [6,7]. Liquid biopsy-methods are emerging as they are
accompanied by technological advances in both dry- and wet-lab approaches [8,9]; however,
they are not ready for prime-time, when the unmet needs are listed either for the general
public or GBM patients.
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Metabolomics has come forward as a prevailing analytical strategy that maps holisti-
cally the molecular status in a given biological sample informing about the interplay of the
genome and environmental influences. Such individual profiles (metabotypes) serve as
snapshots, which are extremely informative in nature as they are the net result of tumor and
host biology in the presence of xenobiotics. Therefore, metabolomics datasets not only allow
for hypothesis-driven data interpretation, but also the generation of hypotheses. Of note,
metabotypes may complement other omics data layers (metabolomics-based multi-omics)
and/or predict response to treatment via mathematical modeling (pharmacometabolomics).

Metabolic reprogramming, a hallmark of cancer, is involved in tumor aggressiveness
and treatment resistance allowing for tumor cells to adapt to their bioenergetic and biosyn-
thetic demands [10]. In GBM, tumors appear to manipulate and exploit normal brain cells,
affecting almost all cell types at the tumor niche via intracellular biological plasticity and
multiple types of communication [11]. Thus, we and others map the genome-environment
interplay with high time sensitivity and spatial resolution via multi-omics as a key strategy
for precision oncology [12,13].

Efforts to map the GBM metabolic landscape are multi-level (tumor, tumor niche,
biofluids). Key cell metabolism alterations in GBM relate to disordered lipid metabolism,
dysfunctional oxidative phosphorylation, and increased Warburg effect [14,15]. Recently,
the role of epigenetic modulators as regulators in tumor cell metabolism has gained great
interest. Such epigenetic modulators include histone modifications, DNA methylation,
nucleosome remodeling, and non-coding RNAs (long-noncoding RNAs, circular RNAs, mi-
croRNAs) [16,17]. In particular, microRNAs act as regulators of metabolic gene expression
either directly or by regulating metabolism-associated oncogenic signaling pathways, onco-
genes, or tumor suppressors. In gliomas, microRNAs have been reported to target mRNAs
of enzymes that participate in glycolysis, oxidative phosphorylation, lipid metabolism, and
mitochondrial energy metabolism as well as glutamine metabolism [18,19]. To name but
a few, Alfardus et al. reported miR-619-5p, miR-4440, and miR-4793-3p regulating lipid
metabolic pathways in GBM [20], while Kwak et al. identified miR-3189 and its role in
glucose metabolism by targeting GLUT3 in GBM cell lines [21]. Oncogenic K-Ras, EGFR,
c-myc, and mTORC2 as well as PI3K/Akt and LKB1-AMPK pathways are also regulated
by microRNAs [14].

Up to now, only a limited number of studies have explored the metabolic landscape of
GBM patients focusing on biofluids in line with the anticipation that the latter will pave
the way towards non-invasive procedures in the clinic, despite the advantage of untar-
geted mass spectrometry-based metabolomics to detect as many metabolites as possible
at once, identify unexpected metabolic alterations, and characterize novel metabolites in
biological samples [12,22–25]. Even fewer are the datasets that are well-balanced both
at the exploratory and validation phases [26,27] coupling untargeted metabolomics to a
mixed-methods content analysis.

Herein, we designed, employed, and optimized a strategy coupling a mixed-methods
content analysis (i.e., gold standard approach for content analysis) to a metabotype ap-
proach for GBM patients to delineate the role of metabolic remodeling in biological plasticity
and, hence, disease severity. For this, GBM bioenergetic profiles were explored at the time
of diagnosis and during follow-up (GBM patients, n = 21; plasma samples, n = 122). Next,
the informative relationships through which metabolites are connected were interrogated.
This holistic strategy presents a great opportunity to unveil patterns and provide new
insights for GBM biology and drug repurposing.

2. Materials and Methods
2.1. Mixed-Methods Content Analysis

We employed a mixed-methods content analysis, a gold standard approach for a
content analysis that consists of deductive (quantitative) and inductive (qualitative) phases,
while contemporary definitions are considered. For data and text mining as well as
data analysis, peer-reviewed literature, omics datasets, and clinical trial outcomes (as
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of 2022) were mined to interrogate GBM plasma metabotypes. We have also developed
a novel framework to meet our analytical demands, exploring data (both context and
content). Literature data from Scopus and PubMed/MEDLINE were queried. Scopus
and PubMed/MEDLINE are the largest citation and abstract databases of peer-reviewed
literature. To account for selection biases, private and publicly available texts have been
assessed (based on the inclusion/exclusion criteria set). Keywords and MeSH terms (www.
nlm.nih.gov/mesh, accessed on 23 January 2020) included “GBM OR glioblastoma AND
plasma AND metabolomics”, “GBM OR glioblastoma AND untargeted metabolomics”,
and “GBM OR glioblastoma AND metabotypes”. We questioned the interim output further
for open data (yes/no), sample size (validated by a power analysis), research approach,
and publication impact/metrics. Studies that failed to meet inclusion criteria or studies on
non-human samples were excluded. Two co-authors (V.B. and T.K.) co-analyzed the interim
and final outputs, and then, the percentage of inter-rater agreement was calculated. To
account for biases, Cohen’s kappa statistic and percentage agreement were also determined
with multi-categorical ratings.

To interrogate further GBM plasma metabotypes as well as the informative relation-
ships through which metabolites are connected, we queried the Human Metabolome
Database (HMDB) [28], the Metabolomics Workbench, https://www.metabolomicswo
rkbench.org/, (accessed on 9 October 2020, 9 October 2021 and 29 December 2022), and
Metabolights [29].

2.2. Clnical Cohort and Samples

The study protocol is in accordance with the Declaration of Helsinki and has been
approved by the ethics review board of the General University Hospital of Patras, Greece.
IRB protocol number: 8735/142. Study participants signed a written informed consent.
Patients (n = 21) have received the diagnosis of GBM based on the WHO criteria applicable
at the time of recruitment (according to the WHO classifications of 2016 and 2021), and
the standard-of-care treatment protocol was applied [3,30]. Overall survival (OS) was
determined from the time of diagnosis until death or last follow-up (12 months). Clinical
and demographic characteristics are shown in Table S1.

2.3. Untargeted Metabolomics
2.3.1. Sample Preparation

Sample collection, processing, and storage for both blood and plasma samples (n = 122)
were performed as described in Chalikiopoulou et al. [31]. For LC-MS-based untargeted
metabolomics analysis, plasma samples were thawed on ice at 4 ◦C, and 400 µL of plasma
were aliquoted into a 2.0 mL low-adherence microcentrifuge tube. Sample extraction
was carried out by ice-cold methanol (3:1) (v/v) for best metabolite yield, and then, the
mixture was vortexed for 15 s. Samples were centrifuged at 15,800× g for 15 min at room
temperature to pellet the protein precipitate. The supernatant was transferred into a new
1.5 mL low-adherence microcentrifuge tube and dried down (lyophilized) in a centrifugal
vacuum evaporator for 18 h. No heating was applied during the drying process. Next,
samples were reconstituted with 180 µL 80:20 methanol in water (v/v), sonicated for 10 min,
and centrifuged for 1 min at 14,000× g (room temperature). The 100 µL-aliquots were
transferred to each insert of liquid chromatography (LC) glass vial, N8. Quality control (QC)
and internal standard (IS) samples were prepared as described in Chalikiopoulou et al. [31].

2.3.2. Chromatographic Conditions

The liquid chromatography separation was performed with an Accela ultra-high-
performance LC (UHPLC) system. A polymeric SeQuant® ZIC®-pHILIC column (5 µm,
150 mm × 2.1 mm) (150,460, Merck) and a SeQuant® ZIC®-pHILIC Guard Kit (20 × 2.1 mm)
(50,438, Merck) were used operating at 45 ◦C. The injection mode was set at 5 µL, and the
mobile phase flow rate was set at 0.3 mL/min. Mobile phase solvents were A (95% H2O, 5%
methanol, 0.1% formic acid) and B (100% methanol). The eluting gradient program in both
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positive and negative ion mode was the following: 0–1.0 min (95% A, 5% B), 1.0–4.0 min
(45% A, 55% B), 4.0–9.0 min (45% A, 55% B), 9.0–10.0 min (20% A, 80% B), 10.0–10.1 min (20%
A, 80% B), 10.1–15.0 min (0% A, 100% B), 15.0–15.1min (0% A, 100% B), and 15.1–20.0 min
(95% A, 5% B).

2.3.3. Mass Spectrometry

The UHPLC system was coupled to an LTQ-Orbitrap Velos mass spectrometer (Thermo
Fisher Scientific, Bremen, Germany) equipped with an APCI source, operating in both
positive and negative modes. To monitor the instrument performance over time and
chromatographic integrity, including retention time shifts, QC samples were prepared as a
mix of each sample. Data were pre-processed with Xcalibur software (version 2.1, Thermo
Scientific, Waltham, MA, USA).

2.3.4. Data Processing and Statistical Analysis

Data processing and analysis were performed as described in Chalikiopoulou et al. [31].
ProteoWizard MSConvert [32] was used to centroid all raw MS data and convert them into
MzML files prior to MetaboAnalyst 5.0 [33]. LC-MS spectral processing was performed
using the auto-optimized parameter setting and blank subtraction. All test-groups were
cross-compared, first to gain insights into the GBM metabolomes and then to identify key
metabolites. Both positive and negative ion modes were employed during LC-MS analysis.
Subsequent analyses included metabolites detected in more than 33% of the samples.
Following the removal of uninformative features, the resulting number of metabolites
was decreased drastically to ~1/4. For those metabolites surviving our criteria, empty
values were annotated with a small value (1). Data centering and unit variance scaling
were carried out. Univariate and multivariate statistical analysis were applied where
appropriate. Student’s t-test and ANOVA (One-way Analysis of Variance) test followed by
post hoc analysis (Fisher’s least significant difference) were used. Critical value was set
at <0.05, including FDR correction. For all comparative analysis, we performed Log2fold
calculation and PCA and PLS analyses. Next, we determined PLS VIP (variable importance
in projection) values. Only metabolites with a log2fold ≥ 2 were selected for subsequent
enrichment analysis. Enrichment analysis was performed using Metaboanalyst 5.0 [33]
employing pathway-associated metabolite sets (SMPDB). For the interrogation of metabolic
pathways, the mummichog algorithm was applied. This algorithm facilitates one-step
functional analysis through tandem mass spectra feature tables [34]. The top 10 most
significantly associated m/z features were used as input to the mummichog algorithm
v.2. KEGG (Kyoto Encyclopedia of Genes and Genomes) database was selected as the
pathway library of interest. Only those metabolic pathways containing at least 3 significant
metabolites were included. Significance threshold was set at a p-value < 0.05, including
FDR correction.

2.4. Machine Learning
2.4.1. Supervised Machine Learning

To evaluate the predictive value of those metabolites that have statistically signifi-
cant differences in their levels between low-risk (OS > 12 months; n = 11) and high-risk
(OS < 12 months; n = 10) groups, a discriminant analysis was implemented. A supervised
machine learning approach was employed, and hence, several classifiers were tested to
find which can model best metabolite levels. Algorithms were trained to stratify patients
to either low-risk or high- risk groups based on seven metabolites: perlolyrine, piperi-
dine, hippuric acid, 2,6-diisopropyl-3-methylphenol, dopamine, 7-ketocholesterol, and
(±)-(Z)-2-(5-tetradecenyl)cyclobutanone. Metabolites were pre-processed and normalized,
before being fed to the classification scheme. To assess the predictive ability of metabolite
combinations, Recursive Feature Elimination (RFE) [35] was applied. This feature selec-
tion method was evaluated through 10-fold cross validation. Next, four classifiers were
trained: SVM [36], Random Forest (RF) [37], eXtreme Gradient Boosting (XGBoost) [38],
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and Stochastic Gradient Boosting (GBM) [39]. Taking into account sample size and external
test feasibility, we opted for a 10-fold cross validation method to evaluate the predictive
ability of the algorithms tested as well as the robustness of the models. The metrics that
were used for the evaluation of the models were:

Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

Matthews Correlation Coefficient =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

F1 score =
2TP

2TP + FP + FN

where TP indicates the case of a high-risk patient who is correctly classified, and TN denotes
the correctly identified low-risk patients by the models. FN corresponds to the case of
a high-risk patient who is wrongly predicted as low-risk, and FP denotes the case of a
low-risk patient who is classified as high-risk by the models. Next, an analysis of feature
importance was implemented to identify which metabolites mostly affect the prediction
in question for the model with the optimal performance. The analysis was performed in
Rstudio using caret library for machine learning [40].

2.4.2. Unsupervised Machine Learning

An unsupervised method may provide an unbiased indication about whether the
integration of miRNA data and metabotypes could have a predictive value. Thus, an unsu-
pervised machine learning approach was also implemented for the validation of the predic-
tive value for the seven metabolites that stratify low- and high-risk patients (perlolyrine,
piperidine, hippuric acid, 2,6-diisopropyl-3-methylphenol, dopamine, 7-ketocholesterol,
(±)-(Z)-2-(5-tetradecenyl)cyclobutanone). For this, we focused on a cluster analysis for a
sub-population of the GBM cohort sharing both miRNA (hsa-miR-20a, hsa-miR-21, hsa-
miR-10a) [41] and untargeted metabolomics datasets (n = 7; low-risk, n = 4; high-risk,
n = 3). The clustering algorithms used were k-means (k was set to two) [42] and hierarchical
clustering [43]. All analyses were carried out with the R programming language.

3. Results
3.1. Untargeted Metabolomics Suggest Metabolic Remodeling Patterns in GBM Patients with
Different Clinical Outcomes and Response to Treatment

The interrogation of GBM plasma metabotypes as well as the informative relationships
through which metabolites are connected by our mixed-methods content analysis, followed
by queries in the Human Metabolome Database (HMDB) [28], the Metabolomics Work-
bench, https://www.metabolomicsworkbench.org/ (accessed on 9 October 2020, 9 October
2021 and 29 December 2022) and Metabolights (MTBLS858, MTBLS730, MTBLS3873, MT-
BLS1558, MTBLS4708) [29] revealed data scarcity and sparsity. There were no available
cohorts of low-risk vs. high-risk at diagnosis and during RT + TMZ follow-up neither mass
spectrometry-based untargeted metabolomics datasets for plasma. This has been a rather
unfortunate outcome despite it adds value to our study presented herein.

Our RT + TMZ patient cohort demonstrated no age- or sex-dependence. Molecular-
clinical correlations were drawn to classify low-risk (OS > 12 months) vs. high-risk
(OS < 12 months) GBM patients; 52% (n = 11) and 48% (n = 10) were assigned to low-
and high-risk groups, respectively.

Untargeted GBM plasma metabolomics enabled relative quantitative analysis with a
high degree of confidence resulting in the annotation and quantification of 1545 metabolites.

https://www.metabolomicsworkbench.org/
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When comparing the low- to high-risk groups by univariate analysis, n = 38 metabolites
were significantly modulated (adjusted p-value < 0.05), while n = 30 metabolites exhib-
ited fold change values (FC) > 2.0. The metabotypes of the low-risk patients consist of
increased levels of perlolyrine, piperidine, 2,6-disopropyl-3-methylphenol, dopamine, and
7-ketocholesterol, whereas higher levels of (±)-(Z)-2-(5-Tetradecenyl)cyclobutanone and
hippuric acid are noted for high-risk patients (Figure 1). Despite being small, significant
correlations are found between the known patient characteristics and quantified metabolites.
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Figure 1. GBM plasma metabotypes enable risk stratification (low-risk, OS > 12 months; high-risk,
OS < 12 months). Boxplots of the annotated metabolites with (FC) > 2.0 and p-value < 0.05. Individual
dots serve as a visual representation of data distribution (such values when inter-individual variability
is considered are important features of the data to be analyzed and interpreted). Group comparisons
are color-coded: purple, high-risk; orange, low-risk.
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Additional metabolite changes detected refer to aminoacids, lipids, mitochondrial
energy metabolism, and energy substrates. Such metabolic alterations were found when
low-risk GBM plasma metabotypes were compared to their high-risk counterparts (group
comparison-a) or when baseline GBM plasma metabotypes were compared to those after
first RT + TMZ (group comparison-b). For group comparison-a, the most prominent ones,
sharing FC > 2.0, yet showing no statistical significance or being statistically significant
with FC < 2.0 were: alanine, valine, pyroglutamic acid, 3-methylene-indolenine, and
indoxyl. For group comparison-b, acetylphosphate, thymine, histidine, pentadecanoic acid,
N-undecanoylglycine, linoleic acid, 3-Methylene-indolenine, tyrosine, and alanylproline
were among the most prominent ones.

To explore metabolic remodeling patterns when considering response to treatment
(RT + TMZ) in addition to clinical outcomes (OS), one-way ANOVA test and post hoc
analysis were conducted, comparing low-risk patients at the time of diagnosis vs. low-risk
patients after first RT + TMZ vs. high-risk patients at the time of diagnosis vs. high-risk
patients after first RT + TMZ (Figure 2). 2-acetyl-4-methylpyridine, piperidine, and 3-
(4-methyl-3pentenyl)thiophene were revealed as those significantly modulated among
test-groups. Of note, the relative intensity of piperidine appeared to have lower mean
values in high-risk patients at the time of diagnosis as well as following first RT + TMZ
empowering risk stratification and response to treatment. When interrogating GBM plasma
metabotypes during disease progression after therapeutic intervention, independently
of risk-groups, there was no statistically significant outcome after false discovery rate
(FDR) correction.
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Figure 2. Modulation of metabolites in low-risk patients (OS > 12 months) vs. high-risk
(OS < 12 months) GBM patients, at the time of diagnosis (baseline) and after first RT + TMZ. Boxplots
of top-metabolites (adjusted p-value < 0.05). Individual dots serve as a visual representation of data
distribution (such values when inter-individual variability is considered are important features of the
data to be analyzed and interpreted). Group comparisons; low-risk patients at the time of diagnosis
vs. low-risk patients after first RT + TMZ vs. high-risk patients at the time of diagnosis vs. high-risk
patients after first radiotherapy RT + TMZ.

3.2. GBM Plasma Metabotypes Are Indicative of Disease Severity

Aiming to explore further the metabotypes of the low- and high-risk GBM patients,
functional enrichment analysis was performed, and the most perturbed metabolic pathways
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were highlighted (adjusted p-value < 0.03; enrichment ratio > 2.0). Data are summarized in
Figure 3A.

Metabolites 2023, 13, x FOR PEER REVIEW 9 of 16 
 

 

 
Figure 3. GBM plasma metabotypes reveal metabolic dysregulation that reflects disease severity. 
(A) Mummichog functional analysis was carried out by MetaboAnalyst v.5. Enriched pathways 
were ranked by significance (see color scale); (B) Metabolite-metabolite interaction network of me-
tabolites whose levels are significantly increased (red) and decreased (green), when low-risk vs. 
high-risk GBM patients are considered. 

Figure 3. GBM plasma metabotypes reveal metabolic dysregulation that reflects disease severity.
(A) Mummichog functional analysis was carried out by MetaboAnalyst v.5. Enriched pathways were
ranked by significance (see color scale); (B) Metabolite-metabolite interaction network of metabolites
whose levels are significantly increased (red) and decreased (green), when low-risk vs. high-risk
GBM patients are considered.
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To draw functional relationships for the test-groups in question, we constructed a
subgraph for those metabolites that exhibited (FC) > 2 by querying the KEGG knowledge-
based network. As shown in Figure 3B, we identified a subnetwork that consists of
dopamine, piperidine, and hippuric acid (99 nodes; 104 edges). Dopamine presented the
highest degree value (degree value of 96), which indicates the number of direct neighbors
as well as the highest value of betweenness centrality (betweenness of 4717.5), which
corresponds to the shortest paths going through this metabolite. Our mixed-methods
content analysis was also employed for data interpretation to avoid selection biases.

3.3. GBM Plasma Metabotypes Enable Low- and High-Risk Predictions

A predictive value for perlolyrine, piperidine, hippuric acid, 2,6-diisopropyl-3-
methylphenol, dopamine, and (±) -(Z)-2-(5-Tetradecenyl) cyclobutanone was obtained by
discriminant analysis based on GBM plasma metabotypes and feature selection analysis
(82% accuracy) (Figure S1). Gradient boosting had the best performance and highest area
under the curve (AUC) of 93.2%, whereas Random Forest had an AUC of 71.3% (Figure 4).
The performance of all models after 10-fold cross validation is provided in Table S2. Gra-
dient boosting had best performance metrics (84% accuracy), reflecting model ability to
yield predictions. Matthews Correlation Coefficient suggested that both low- and high-risk
patients can be equally predicted. This fact is also evident from the confusion matrix in
Table S3, which shows the number of low- and high-risk patients predicted correctly. As
shown by the variable importance analysis (Gradient boosting), the contribution of each
metabolite in algorithm decisions was also identified (Figure S2). Thus, hippuric acid has
the most powerful effect on the model.
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Figures S3 and S4 suggest that both unsupervised models (k-means and hierarchical
clustering) provide a discrimination accuracy equal to 86%, when miRNA (hsa-miR-20a,
hsa-miR-21, hsa-miR-10a) data and metabotypes are integrated. Specificity is equal to 67%
and 100% for the low- and high-risk groups, respectively.
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4. Discussion

Tumor heterogeneity and inter-individual variability are well-established GBM hall-
marks, and hence, optimum decision-making post-diagnosis remains a challenge [44].
Deciphering GBM metabotypes as direct indicators of those biochemical changes which
define the disease phenotype of an individual may serve as a promising strategy to reveal
unique features as well as the mechanistic interplay underlying the observed phenotypic
and biological plasticity of GBM [45]. Herein, we employed mass spectrometry-based
untargeted plasma metabolomics to gain insights into the rewired metabolic landscape of
GBM patients with different clinical outcomes, response to treatment, and disease severity.
To avoid selection biases, instead of a population-based estimate, taking into account the
sample size of this study and the median OS, 12 months was the cut-off value set for
the low- and high-risk groups, as also reported by pivotal studies (RT + TMZ) in GBM
and/or clinical trials [46–48]. To this end, we also interrogated GBM plasma metabo-
types and the informative relationships through which metabolites are connected by a
mixed-methods content analysis, followed by queries in the Human Metabolome Database
(HMDB) [28], the Metabolomics Workbench, https://www.metabolomicsworkbench.org/
(accessed on 9 October 2020, 9 October 2021 and 29 December 2022) and Metabolights
(MTBLS858, MTBLS730, MTBLS3873, MTBLS1558, MTBLS4708) [29]. Data and text min-
ing have been applied in cancer research to facilitate cancer systems biology [49], while
Automated Metabolome Assembly has been presented in 2010 as the means to achieve a
comprehensive system for metabolome prediction via a text-mining workflow [50].

Piperidine was found to be increased in low-risk GBM patients enabling risk stratifica-
tion (Figure 1) and was identified among the top 3 metabolites that were significantly altered
at the time of diagnosis (baseline) and following the first cycle of radiotherapy(+TMZ)
(Figures 1 and 2). This metabolite has been reported in 1977 as a possible neuromodulator in
a study by Schmid-Glenewinkel et al. [51] about its biosynthesis by cadaverine and pipecolic
acid in mice. The conversion of lysine into piperidine was observed only in the intestines,
probably caused by the intestinal flora, while the formation of cadaverine and pipecolic
acid from lysine was observed in the brain, liver, kidney, and large intestine. Pipecolic acid
was also formed in the heart. In 1983, Nomura et al. [52] suggested that cadaverine is not a
precursor of piperidine in brain, the conversion of pipecolic acid into piperidine in the brain
does not constitute a major metabolic pathway, and the main source of piperidine in the
CNS may be of nonneural origin. Since 1977, the possible contributions of the diet and the
intestinal bacteria to the endogenous pool(s) of piperidine have been also discussed. Today,
we agree that piperidine—a microbial metabolite—is a naturally occurring metabolite in
the human body (a metabolite of cadaverine, a polyamine found in the intestine of humans
and mammals) [https://hmdb.ca/metabolites/HMDB0034301(accessed on 9 October 2020,
9 October 2021 and 29 December 2022)].

Our findings agree with Sugimoto et al. who identified piperidine as an oral cancer-
specific marker by mass spectrometry-based saliva metabolomics [53]. Saliva is a filtration
of blood that can reflect the physiological conditions of the body enabling patient moni-
toring and the prediction of systemic diseases, while it exhibits diurnal variation and the
presence of diverse diagnostic analytes, endogenous plus xenobiotics (similar to blood
or urine) [54]. In GBM cell lines, the combination of piperidine or piperidine nitroxide
tempol (TPL) with TMZ has resulted in synergistic anti-proliferative action [55]. Of note, a
piperidine derivative targeting EZH2 (enhancer of zeste homologue 2) has been reported
to reduce GBM cell viability and impair tumor development and aggressiveness via an im-
munomodulatory mechanism [56]. EZH2 is a S-adenosyl-L-methionine (SAM)-dependent
methyltransferase, and its role as an epigenetic modulator in different types of cancer has
been widely investigated. In GBM, EZH2 overexpression has been correlated with poor
prognosis [57,58]. Although little is known about the mechanistic aspects of EZH2 activity
in GBM, the inhibition of EZH2 expression by miR-340 in triple negative breast cancer has
led to decreased levels of miR-21, revealing a key miRNA network pathway [59]. In our
previous study, we have established a 3-miRNA (hsa-miR-20a, hsa-miR-21, hsa-miR-10a)

https://www.metabolomicsworkbench.org/
https://hmdb.ca/metabolites/HMDB0034301
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signature which was able to discriminate low- and high-risk GBM patients, as lower ex-
pression levels of miR-21 as well as miR-20a and mir-10a were associated with favorable
prognosis [41]. Building on the GBM epigenome-metabolome interplay, we propose a
piperidine-EZH2-miR340 mechanistic link—which we have yet to prove.

Taking into account the crosstalk of epigenetic and metabolic signaling in GBM [60], we
also noted higher levels of 7-ketocholesterol in the plasma metabolome of low-risk patients
(Figure 1). The reprogramming of lipid and cholesterol metabolism has been linked to
many cancers, including GBM, while GBM cell growth is highly dependent on cholesterol.
Oxysterols, such as 7-ketocholesterol, are oxidized forms of cholesterol that participate
in the regulation of cholesterol metabolism through liver X receptors (LXRs) and sterol
regulatory element-binding proteins (SREBPs) [61–64]. SREBPs are highly upregulated in
GBM. Furthermore, the feedback loop of miR-29-SCAP/SREBP-1 modulates GBM growth,
which is driven by EGFR signaling via the regulation of cholesterol synthesis [65,66].
Oxysterols have been also reported to have antitumor activity in GBM by activating LXRs,
thus disrupting cholesterol homeostasis [62]. Our mixed-methods content analysis revealed
no output for 2-acetyl-4-methylpyridine, piperidine, and 3-(4-methyl-3pentenyl) thiophene
or hippuric acid. For the latter, however, the study of Mallafré-Muro et al. [67] survived
some of our multiple levels of interrogation, according to which low levels of hippuric acid
are detected in urine samples of colorectal cancer patients.

Among key pathway perturbations, half of the highly enriched and statistically signif-
icant pathways relate to amino acid metabolism, namely tryptophan and arginine/proline
metabolism (Figure 3). Our findings align with what reported so far. Amino acid metabolism
was found disrupted following a nuclear magnetic resonance (NMR)-based metabolomic
analysis in plasma samples of glioma patients and healthy controls [68]. The decreased
plasma levels of various amino acids in glioma patients may indicate an increased demand
for amino acids at the tumor niche [68–70]. Synergistically to amino acid metabolism
and, in particular, arginine/proline metabolism, the dysregulation of nitrogen and/or
pyrimidine metabolism pathways may reflect urea cycle dysregulation, providing essential
substrates for tumor proliferation and growth [71,72]. As also suggested by Shen et al. argi-
nine, methionine, and kynurenate were found to be significantly associated with two-year
overall and disease-free survival in GBM, indicating the prognostic role of these metabo-
lites [22]. Additionally, glutamine, ornithine, tyrosine, and urea were identified in a serum
metabolomic analysis in GBM patients, post-treatment [24].

Interrogating the predictive ability of GBM plasma metabotypes alone (Figure 4)
or upon their integration with miRNA data (hsa-miR-20a, hsa-miR-21, hsa-miR-10a)
(Figures S3 and S4) [41], both supervised and unsupervised analyses agreed on the pre-
dictive value of perlolyrine, piperidine, hippuric acid, 2,6-diisopropyl-3-methylphenol,
dopamine, and (±)-(Z)-2-(5-Tetradecenyl) cyclobutanone.

Overall, such key pathway perturbations have been already identified as subjects
of epigenetic modulators [60,73]. To our knowledge, only a few studies to date have in-
terrogated GBM plasma metabotypes in well-balanced cohorts at diagnosis and during
follow-up (RT + TMZ) by liquid chromatography mass spectrometry (LC-MS), an ana-
lytical platform of high sensitivity, as performed herein. Even fewer are those that seek
for a combinatorial space of molecular interactions and contexts with emphasis on the
epigenome-metabolome interplay. To us, this is where answers to challenging questions
are to be found. Why healthy cells acquire and sustain cancer phenotypes? Do canonical
driver mutations truly drive tumor development, or do they reflect environmental influ-
ences toward clonal selection, and hence, such mutations provide a fitness advantage? At
every biological layer investigated so far, cancer cells exhibit dysregulated behavior [74],
while emerging datasets suggest that molecular and phenotypic alterations are highly
heterogeneous across patients or cancer types or even within the tumor itself [75]. Cancer
metabotypes are known to be closer to cellular phenotypes and, thus, provide a more
functional understanding of cellular states and transitions. Why? Metabolism is a dynamic
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process; there is a constant catalysis of metabolic reactions, during which reaction rates and
metabolite abundance (intracellular and extracellular) define a metabolic state.

5. Conclusions

Our results point to the role of metabolic remodeling in GBM plasticity and disease
severity via bioenergetic profiles that map patterns and shed light upon GBM biology and
RT + TMZ response. GBM plasma metabotypes alone or upon miRNA data integration
are of predictive value, as shown by both supervised and unsupervised analyses. An
in-depth understanding of aberrant metabolism promises to provide the framework for
personalized metabolic modulation, in particular when the GBM epigenome-metabolome
interplay is considered. We envisage that this is how drug repurposing in translational
precision medicine will be of benefit [76]: right drug, right dose, right patient (when also
timing is right).

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/metabo13030362/s1, Table S1. Demographic and clinical characteristics of
the standard-of-care treated GBM patients; Table S2. Performance metrics in 10-fold cross validation
process for the four models trained to classify low- and high-risk patients when metabotypes are
considered; Table S3. Confusion matrix of each of the classifiers tested (correct and false predictions
per model are shown following a 10-fold cross validation); Figure S1. Prediction accuracy during
recursive feature elimination process (based on metabotypes); Figure S2. Variable importance analysis
(Gradient Boosting); Figure S3. Scatter plot of patients clustered by k-means algorithm based on
miRNA expression levels and metabotypes; Figure S4. Hierarchical clustering dendrogram for the
low- and high-risk groups based on miRNA expression levels and metabotypes.
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