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Abstract

Human cytochrome P450 (CYP450) enzymes play a crucial role in drug metabolism and pharmacokinetics.
CYP450 inhibition can lead to toxicity, in particular when drugs are co-administered with other drugs and
xenobiotics or in the case of polypharmacy. Predicting CYP450 inhibition is also important for rational drug
discovery and development, and precision in drug repurposing. In this overarching context, digital transfor-
mation of drug discovery and development, for example, using machine and deep learning approaches, offers
prospects for prediction of CYP450 inhibition through computational models. We report here the development
of a majority-voting machine learning framework to classify inhibitors and noninhibitors for seven major
human liver CYP450 isoforms (CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6, and CYP3A4).
For the machine learning models reported herein, we employed interaction fingerprints that were derived from
molecular docking simulations, thus adding an additional layer of information for protein-ligand interactions.
The proposed machine learning framework is based on the structure of the binding site of isoforms to produce
predictions beyond previously reported approaches. Also, we carried out a comparative analysis so as to identify
which representation of test compounds (molecular descriptors, molecular fingerprints, or protein-ligand in-
teraction fingerprints) affects the predictive performance of the models. This work underlines the ways in which
the structure of the enzyme catalytic site influences machine learning predictions and the need for robust
frameworks toward better-informed predictions.
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Introduction

Xenobiotic metabolism is concerned with biotrans-
formation through which the structure of a chemical

substance is altered to facilitate excretion from the body.
There are multiple phases of biotransformation, which
occur either simultaneously or sequentially (Basak et al.,

2022), and involve enzymatic catalysis during phase I and
phase II drug metabolism. Cytochrome P450 (CYP450)
enzymes play a central role in phase I of xenobiotic me-
tabolism. CYP450 enzymes mostly catalyze oxidative re-
actions to biotransform lipophilic xenobiotics so as to
produce water-soluble molecules for efficient metabolism
(Testa et al., 2012).
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The CYP450 system in humans is a group of heme-
containing membrane-bound enzymes that are primarily
located in either the smooth endoplasmic reticulum or the
mitochondrial inner membrane of hepatocytes, while they are
also found in the brain, skin, lung, kidney, and gut mucosa
(Guengerich, 2020). The seven major human liver CYP450
isoforms are 1A2, 2A6, 2B6, 2C9, 2C19, 2D6, and 3A4,
which also bear genomic variants. The isoforms of CYP1,
CYP2, and CYP3 families account for 80% of interethnic and
interindividual variations upon xenobiotic administration
(Zanger and Schwab, 2013).

CYP450 isoforms consist of a 400 to 500 amino acid se-
quence and their active site comprises a heme cofactor. Due
to their three-dimensional structure, CYP450s can adapt to
heterogeneous substrates covering a diverse set of sizes and
shapes affecting their selectivity. Of note, their ability to
transform xenobiotics is mostly affected by their structural
differences in their binding site (Tyzack and Kirchmair,
2019). This is also their key characteristic when drug-drug
interactions and toxicity events are taken into account and
monitored by regulatory agencies (Sudsakorn et al., 2020).

In vitro and in vivo ADME-Tox profiling remain a critical
piece in drug discovery and development or drug repurposing.
At the same time, such assays are expensive and time-
consuming, require an expert user, cannot provide structure-
activity data, and can be only applied to already synthesized
chemical entities. Thus, several computational approaches
that aim to predict CYP450 inhibition and improve attrition
rates have been developed and applied, leaving room for
improvement due to immense data variability.

Early computational approaches relied on quantitative
structure-activity relationship (QSAR) models (Locuson and
Wahlstrom, 2005), which lacked accuracy and generalization
ability (Gleeson et al., 2007). The advent of machine learning
led to QSAR methods that were enhanced by sophisticated
classifiers producing robust results.

Wu et al. (2019) reported one of the most prevalent ap-
proaches that provide accurate predictions and insights for
CYP450 inhibitors. The authors employed an extreme gra-
dient boosting (XGBoost) model, among other machine and
deep learning classifiers, within a diverse set of molecular
descriptors and fingerprints. The ensemble model achieved
an average accuracy of 90.04% on the test set, outperforming
other approaches, indicating the prevalence of ensemble
learning over deep learning on CYP450 inhibition data.

A more recent and novel approach was the one implemented
by Qiu et al. (2022), who developed a Geometric Convolu-
tional Neural Network (GCNN) model that utilizes a graph
convolutional network with attention mechanism for feature
extraction coming from ligands, while 1-D convolution is also
applied for feature extraction coming from CYP450 isoforms.
The extracted features in question were then concatenated and
given to a fully connected layer for classification. This ap-
proach outperformed the iCYP-MFE framework (Nguyen-Vo
et al., 2022), which is a similar approach that applies multitask
learning. Despite such novelty in feature extraction, the
GCNN model did not outperform the XGBoost model.

CYPlebrity (Plonka et al., 2021), which is provided as a
module of the web service platform NERDD (Stork et al.,
2020), aimed to predict CYP450 inhibitors, based on tradi-
tional machine learning algorithms for the identification of
CYP450 inhibitors. CYPlebrity models are developed upon

an extended applicability domain incorporating data from
PubChem (Kim et al., 2023), ChEMBL (Mendez et al.,
2019), and Fujitsu, ADME Database being the only web tool
for CYP450 inhibition trained with the most extended dataset
available today.

We report here the development of a majority-voting
machine learning framework to classify inhibitors and non-
inhibitors for seven major human liver CYP450 isoforms
(CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C19,
CYP2D6, and CYP3A4). Predictions were based on inter-
action fingerprints that are produced by the interaction of
CYP450 isoforms and their ligands. Molecular docking was
performed to simulate binding and extract all protein-ligand
interaction fingerprints. The latter were used to train our
machine learning models to classify CYP450 inhibitors and
noninhibitors. The proposed framework was enriched with
molecular fingerprints and molecular descriptors to provide a
comparative analysis among different feature types.

Materials and Methods

Curation and collection of datasets

Datasets for all seven major CYP450 isoforms were re-
trieved from PubChem. In brief, the in vitro data for
CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 re-
ported in PubChem AID: 1851 were used as a training set
(Veith et al., 2009) to evaluate further our framework (Sup-
plementary Table S1). Sitagliptin does not inhibit or induce
CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C19,
CYP2D6, and CYP3A4 human CYP450 isoenzymes and
hence, served as a paradigm. Next, to evaluate the robustness
of our models, an external test set for each one of those five
isoforms was produced based on data retrieved from assays
applying luciferase-based protocols: PubChem AID: 410
(CYP1A2); PubChem AID: 883 (CYP2C9); PubChem AID:
899 (CYP2C19); PubChem AID: 891 (CYP2D6); and Pub-
Chem AID: 884 (CYP3A4).

For all test compounds (ligands) in both training and test
data, key in vitro parameters were taken into account: po-
tency, activity score, fit Hill slope, curve class, and fitted R2

(along with panel name and ID) to label test compounds as
inhibitors or noninhibitors for each CYP450 isozyme in
question. A test compound was annotated as ‘‘inhibitor’’ if its
activity score was higher than 40, potency was lower or equal
to 10 lM, and the curve class was equal to -1.1, -1.2, or -2.1.
An annotation of ‘‘noninhibitor’’ was reported, if the activity
score was equal to zero, its potency was higher or equal to
57 lM, and the curve class was equal to 4. Inconclusive data
were removed.

For CYP2A6 and CYP2B6, there was no assay sharing a
sufficient number of test compounds when PubChem was
queried. Instead, CHEMBL5282 and CHEMBL4729 were
included, respectively (Supplementary Tables S2, S3), while
a test compound was annotated as ‘‘inhibitor’’ or ‘‘non-
inhibitor’’ based on the IC50 and Ki values provided. A test
compound was annotated as ‘‘inhibitor,’’ if IC50 and Ki
values were lower than 10 lM. For ‘‘noninhibitors,’’ IC50 and
Ki values exceeded 20 lM. A rather limited number of ex-
perimental data were retrieved for CYP2A6 and CYP2B6 and
thus, we randomly sampled 20% of the dataset in question to
serve as an external test set.
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Generation of molecular descriptors and molecular
fingerprints after test compound selection

Test compound (ligand) data were retrieved as SMILES
from PubChem or ChEMBL. Duplicates between train and
test data were eliminated. Test compounds within the range
200 to 600 Da were selected as this is the optimal range for
bioactive small molecules. Multicomponent structures, usu-
ally containing salts, were processed by removing all, but the
largest fragments. Next, duplicates were removed, 3D con-
formations were generated, and polar hydrogens were added
at pH 7.4, using OpenBabel (ver. 3.1.1) (O’Boyle et al.,
2011). Training and test data were handled separately and
labeling was not performed until data were given to the
classifiers.

For calculating molecular descriptors, the rcdk library
(Guha, 2007) was employed, which is an interface for the
open source java CDK (Willighagen et al., 2017) providing
n = 320 different types of descriptors. Seven different types of
molecular fingerprints were also computed using the pre-
processed compounds through either the Rcpi or rcdk li-
braries in R: FP4 fingerprints; MACCS (Molecular ACCess
System) fingerprints; Electrotopological state (E-state) fin-
gerprints; PubChem fingerprints; Extended-Connectivity
Fingerprints (ECFPs); Standard fingerprints; and Graph
fingerprints.

Molecular docking analyses of CYP450s
and generation of interaction fingerprints

3D protein structures were retrieved from Protein Data
Bank (PDB) (Berman et al., 2000) along with the corre-
sponding PDB codes: 2HI4 (CYP1A2) (Sansen et al., 2007);
1Z10 (CYP2A6) (Yano et al., 2005); 4RQL (CYP2B6) (Shah
et al., 2015); 5W0C (CYP2C9) (Liu et al., 2017); 4GQS
(CYP2C19) (Reynald et al., 2012); 3TBG (CYP2D6) (Wang
et al., 2015); and 2J0D (CYP3A4) (Ekroos and Sjögren,
2006). The enzyme structures chosen were co-crystallized
with their ligand, had no mutations in their binding sites, and
had low X-ray resolution, where possible. The surface area of
the binding pocket of each isozyme was calculated by a two-
step process.

CavityPlus (Xu et al., 2018) was used for the detection of
cavities and then, the generated file was imported in PyMOL
(The PyMOL Molecular Graphics System, Version 2.0
Schrödinger, LLC) to compute a series of characteristics for
the surface area and cavity in question, among which the
solvent accessible surface area was the most prominent. To
explore further the intrinsic properties of the binding site for
each isoform, structure-based pharmacophore models were
designed using Pharmit (Sunseri and Koes, 2016).

For docking calculations, coordinate files were pre-
processed using Auto Dock Tools (Morris et al., 2009).
Water molecules were removed, same for co-crystallized li-
gands, excluding the heme molecule. For test compounds, 3D
conformations were prepared in pdbqt file format using
OpenBabel. All compounds were docked into the catalytic
site of each CYP450 isoform using AutoDock Vina (Trott
and Olson, 2010). Isozymes were held rigid during the
docking process, while the compounds were allowed to be
flexible. The grid box size was set at either 15 · 15 · 15 Å or
30 · 30 · 30 Å in the catalytic region of the heme moiety with

1.00 grid spacing, depending on the calculated cavity size for
each isoform.

To compute Protein-Ligand Extended Connectivity
(PLEC) fingerprints (Wójcikowski et al., 2019), the Open
Drug Discovery Toolkit (oddt) python library (Wójcikowski
et al., 2015) was employed. PLEC fingerprints encode
protein-ligand interactions and produce a bit vector of 16,384
bits. Default parameters were used, except for ‘‘sparse’’ and
‘‘count_bits,’’ which were set to ‘‘False.’’ PLEC fingerprints
provided a new approach for the prediction of CYP450 in-
hibition or no inhibition by chemical entities (test com-
pounds). Interaction fingerprints and docking scores were
used as descriptors downstream machine learning model
development.

Creation of a machine learning framework

The computed fingerprints and descriptors were processed
before being fed to machine learning models. During the first
phase of such processing, features with low variance and high
correlation (>75%) were removed. The remaining features
were subjected to feature selection by Recursive Feature
Elimination (RFE) (Guyon et al., 2002). The above process
was applied only in the training data, separately in each fea-
ture type and isoforms, and the resulting features were then
selected from the test data to avoid data leakage. RFE-selected
features were taken into account for interaction fingerprints,
molecular descriptors, and molecular fingerprints.

For model training, dataset values were normalized to the
range between 0 and 1. Normalization was performed on the
training data per dataset and normalization parameters were
then applied to transform the test data in question. The se-
lected machine learning algorithms were based on ensemble
learning, which empowers optimal discrimination between
inhibitors and noninhibitors (Wu et al., 2019). Ensemble
learning is the process during which a set of base learners is
trained on a dataset and results from each learner are inte-
grated through a combinatory module to provide the final
prediction (Rokach, 2010). In classification problems, this
combinatory module is a voting scheme.

There are two main types of ensemble learning, bagging
(Breiman, 1996) and boosting (Freund and Schapire, 1997).
In our framework, we employed five models (bagging, n = 3
and boosting, n = 2): the Bagged Trees method (Dietterich,
2000) and the Random Forest classifier (Liaw and Wiener,
2002) were implemented as bagging models, while the Sto-
chastic Gradient Boosting (Friedman, 2002) model and
XGBoost (Chen and Guestrin, 2016) were selected as
boosting algorithms. The XGBoost classifier was used with
two different types of boosters, one linear and a tree-based
one. The machine learning scheme has been developed using
the Caret library in R.

Our voting framework consisted of ensemble learning
classifiers as base learners and used their predictions to
generate a final prediction through majority voting. The
voting scheme was based on majority, which means that at
least three of the base learners had to agree if the test com-
pound in question was an inhibitor or a noninhibitor. The
probability of the voting scheme was computed by taking the
mean value of the five probability values produced by each
learner for the majority class.
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Model evaluation and data interpretation

Model hyperparameters were tuned during training and
models were evaluated by k-fold cross-validation. Tuning
was performed by the default option provided by the Caret R
package, according to which, if z is the number of tuning
parameters, a grid with size 3z is automatically created. For
each data type, five models were produced (each resulting in
predictions for the external test data). Those predictions were
used as an input for the majority voting scheme. To assess the
generalization ability of all data types, the majority voting
framework was also considered.

A confusion matrix was produced based on predicted and
actual classes and metrics were defined by the following
equations:

Accuracy¼ TPþTN

TPþTNþ FPþ FN

Sensitivity¼ TP

TPþ FN

Specificity¼ TN

TNþ FP

Matthews correlation coefficient

¼ TP · TN� FP · FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð Þ TNþFPð Þ TNþ FNð Þ

p

where TP and TN refer to inhibitors and noninhibitors that are
correctly identified and classified, whereas FN corresponds to
inhibitors that are wrongly predicted as noninhibitors and FP
denotes noninhibitors that are classified as inhibitors. We also
computed the area under curve (AUC) from the receiver
operating characteristic (ROC) curves produced by model
predictions.

For data interpretation, the function varImp of the Caret R
package was applied (models, n = 5 and datasets per CYP450,
n = 23). For the Random Forest and the Stochastic Gradient
Boosting algorithms, a model-dependent calculation was
executed (Friedman, 2001). For the other three classifiers, a
statistical approach was applied by performing an ROC curve
analysis on each predictor, where a series of thresholds was
applied to each variable, followed by sensitivity and speci-
ficity calculations. The AUC served as the measure of vari-
able importance.

Results

The catalytic pockets of CYP1A2, CYP2A6,
and CYP2B6 are smaller than those of CYP2C9,
CYP2C19, CYP2D6, and CYP3A4 isoforms

Before docking calculations, cavity analysis was per-
formed, revealing that the surface area of CYP1A2, CYP2A6,
and CYP2B6 had a size lower than the half surface area of
CYP2C9, CYP2C19, CYP2D6, and CYP3A4 (Fig. 1). Fur-
thermore, a structure-based pharmacophore modeling anal-
ysis was performed on the co-crystallized ligands for each of
the isoforms to explore further their catalytic cavity (Sup-
plementary Fig. S1 and Supplementary Table S4).

Compound similarity varies and depends on the type
of description

To evaluate how the calculated molecular and/or interaction
fingerprints can be used best for the prediction of CYP450
inhibition, similarity analysis was performed in the training and
test data of each isoforms, employing different feature types
(Supplementary Fig. S2). Findings demonstrate that compound
similarity varies and depends on the type of description.

Different types of compound representations provide dif-
ferent similarity levels for the same compounds. Molecular
fingerprints provide information on the chemical nature of
each test compound, while interaction fingerprints inform

FIG. 1. Surface areas per CYP450 isoform with a representative number of docked molecules in their binding sites.
(A) CYP1A2, (B) CYP2A6, (C) CYP2B6, (D) CYP2C9, (E) CYP2C19, (F) CYP2D6, and (G) CYP3A4.
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about protein-ligand (test compound) interactions. In the
training set, interaction fingerprints for inhibitors have a
higher number of compound pairs with Tanimoto similarity
within the range 0.2 to 0.5, implying interactions are highly
heterogeneous. For noninhibitors, similarity values range
from 0.1 to 0.7 with a mean value close to 0.4. A similar trend
is observed in the test set (Supplementary Fig. S3).

Tanimoto similarity analysis of molecular fingerprints for
inhibitors showed that there is a wide chemical diversity on
the test dataset for each CYP450 isoform. When non-
inhibitors of the test dataset are considered, Tanimoto coef-
ficient values range from 0.1 to 0.8 (with a mean value close
to 0.4), pointing out that, although the chemical diversity of
the test compounds is still high, there are some groups of
noninhibitors that belong in the same chemical space.

RFE dictates which descriptors offer best CYP450
inhibitor/noninhibitor classification per CYP450 isoform

To define which feature type provides the best discrimi-
nation ability, algorithms were trained with each feature type

alone. The series of machine learning models developed for the
binary classification of test compounds to inhibitors and non-
inhibitors exploited features of the generated interaction fin-
gerprints and molecular descriptors, as well as different types of
molecular fingerprints. After initial processing, removal of low
variance and high correlation features, training sets were sub-
jected to RFE per CYP450 isoform. RFE led to which bits
(or descriptors) perform best per CYP450 isoform (Fig. 2).

CYP2A6 data enabled the highest discrimination ability in
almost all feature types with different number of bits or de-
scriptors per case. Yet, in the case of E-state fingerprints, no
search was done as all the bits were filtered out for this feature
type; the same for CYP2B6 and CYP3A4. Increasing the
number of bits or descriptors did not result in better discrim-
ination in most feature types and for all CYP450s. On the
contrary, increasing feature dimensionality yielded lower ac-
curacy. We suggest that feature selection is a vital step in a
pipeline that aims to achieve high discrimination among in-
hibitors and noninhibitors. A total of n = 23 datasets per
CYP450 isoform were produced, as summarized in Supple-
mentary Table S5.

FIG. 2. Search space of RFE selection process per feature type. Interaction Fingerprints. ECFP Fingerprints, Extended-
Connectivity Fingerprints; E-state Fingerprints, Electrotopological state Fingerprints; MACCS Fingerprints, Molecular
ACCess System Fingerprints; PLEC, (Protein-Ligand Extended Connectivity) Fingerprints.
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A robust machine learning framework is introduced

An overview of the workflow developed and described
herein is illustrated in Figure 3. The 10-fold cross-validation
accuracy yielded by majority voting for each CYP450 iso-
form per feature type is depicted in Supplementary Figure S4.
It is evident that when molecular descriptors were combined
with molecular fingerprints, higher accuracy was achieved.
Of note, the addition of interaction fingerprints on top of
molecular descriptors and molecular fingerprints increased
accuracy further (1–3% depending on the CYP450 isoform or
2–7%, when compared to molecular fingerprints alone).
PLEC fingerprints exhibited an equal or even greater effect
on prediction accuracy. Molecular descriptors performed
equally or better than PLEC fingerprints upon 10-fold cross-
validation.

As expected, the prediction accuracy of majority voting
per feature type for each CYP450 isoform, when the external
test set was considered, was lower due to data heterogeneity
observed between training and external test sets (Supple-
mentary Fig. S5). The increase in model accuracy that was
obtained in the training data after the synergy of molecular
fingerprints with molecular descriptors and interaction fin-
gerprints still holds true only for CYP2B6 and CYP2C19. In
the case of CYP1A2, the best performance is achieved by
interaction fingerprints alone. For CYP3A4, model accuracy
is higher when molecular descriptors are combined with
molecular fingerprints alone. Finally, the models for
CYP2A6 and CYP2D6 show the highest predictive accuracy
based on molecular fingerprints alone. We suggest that such
findings are crucial and shall be taken into account along with
10-fold cross-validation outcomes for the identification of the
best performing feature types.

Comparing the performance per CYP450 isoform between
the training and external test sets, optimal models can be
derived. We define as optimal performance the case in which
accuracy in both training and external test sets is high, yet
devoid of a large difference (>20% may be a sign of over-

fitting). Similarly, feature types that yielded a better perfor-
mance in the external test set than in the training set were also
considered nonoptimal as they may be indicative of model
underfitting. Overall, the optimal feature types per CYP450
isoform-related model are provided in Table 1.

The performance of each feature type per CYP450 and
evaluation metrics are depicted in the Supplementary
Figures S6–S13 (for 10-fold cross-validation and external
test sets). For each CYP450 isoform, the feature type, which
achieved optimal performance, was determined based on
accuracy, sensitivity, specificity, Matthews correlation co-
efficient, and AUC for both training and external test data,
highlighting the generalization ability in each case.

For CYP1A2, the overall performance of interaction fin-
gerprints alone indicated the robustness of the predictions and
the generalization ability that this feature type provided for
this isoform. Similar performances were obtained for
CYP2A6 and CYP2B6 models. For CYP2A6, such perfor-
mance was achieved with ECFP fingerprints alone. The
CYP2B6 models were the net result of interaction finger-
prints, molecular descriptors, and Graph fingerprints to
achieve optimal performance and sufficient generalization.
The CYP2C19 models had optimum performance employing
only molecular descriptors and Graph fingerprints. An
equivalent performance was observed for CYP2C9,
CYP2D6, and CYP3A4 models. Models with best perfor-
mance for CYP2C9 and CYP2D6 used interaction finger-
prints combined with molecular descriptors and ECFP or
MACCS fingerprints, while for CYP3A4, molecular de-
scriptors and PubChem fingerprints were enough.

CYP450 models share distinct significant variables
from all feature types

The interpretation of each machine learning model is an
important step, as it explains the effect of the variables in the
performance of the model and provides insights into the
factors that are predicted to affect the inhibition of each

FIG. 3. Workflow overview of the proposed framework.
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CYP450 isoform. For each CYP450 isoform, the set of var-
iables that was found to be optimal for the discrimination of
the two classes is shown in Figure 4, where the top 20 most
important variables are depicted.

For CYP1A2, besides the different bits, which were found
to be significant, the most significant variable was the
docking score with a contribution on the predictions equal to
80%. In the case of CYP2A6, we determined which bits from
the ECFPs mostly affected model prediction. The models for
CYP2B6 utilized interaction fingerprints, molecular de-
scriptors, and graph fingerprints to produce optimal predic-
tions, notwithstanding, most of the top 20 important features
were molecular descriptors, with the docking score being the
second most important variable. Interaction fingerprint bits
were considered to be less important as they were ranked last.

For CYP2C19, optimal predictions were obtained when
using molecular descriptors and graph fingerprints, but not
interaction fingerprints. The models were affected by the
ALogp parameter by almost 100%, which is justified by the
fact that CYP2C19 inhibitors share structural features that
include aromatic moieties, heterocycles, carbonyl groups,
and aromatic nitrogen atoms (Beck et al., 2021). For CYP2C9
models, in which interaction fingerprints, molecular de-
scriptors, and ECFPs were combined, we noticed that the
descriptors ALogP and topoShape.1 were the two most im-
portant variables. Yet, the docking score was ranked fifth.

Similarly, CYP2D6 optimal models employed interaction
fingerprints, molecular descriptors, and MACCS fingerprints.
Physicochemical descriptors were among the most important
features. The docking score was not an important feature for

Table 1. Optimal Performance Per Isoform for the Training and Test Sets

CYP450
isoform Feature type

10-fold cross-validation External test set

ACC (%) SE (%) SP (%) MCC AUC ACC (%) SE (%) SP (%) MCC AUC

CYP1A2 PLEC 95.8 98.4 91.5 0.9 0.9 92.1 91.6 83.3 0.8 0.9
CYP2A6 ECFP 99.0 100 90.5 0.9 1 97.4 100 71.4 0.8 0.9
CYP2B6 PLEC+Desc.+Graph 90.2 100 66 0.8 0.99 88.1 87.5 63.6 0.7 0.9
CYP2C19 Desc.+Graph 93.9 94.3 91.9 0.9 0.99 76.7 57.1 60.9 0.4 0.8
CYP2C9 PLEC+Desc.+ECFP 96.4 99.9 87.9 0.9 0.9 81.3 38.4 33.7 0.25 0.73
CYP2D6 PLEC+Desc.+MACCS 92.2 100 45.5 0.7 0.9 89.2 64.5 43.5 0.47 0.88
CYP3A4 Desc.+PubChem 88.3 97.2 59.5 0.7 0.9 79.0 83.5 34.8 0.5 0.9

ACC, accuracy; SE, sensitivity; SP, specificity; MCC, Matthews correlation coefficient; AUC, area under curve; ECFP, Extended-
Connectivity Fingerprints; PLEC, Protein-Ligand Extended Connectivity Fingerprints; Desc., descriptors; MACCS, Molecular ACCess
System Fingerprints; FP4, FP4 Fingerprints; E-state, Electrotopological state Fingerprints; Desc., molecular descriptors; PubChem,
PubChem fingerprints; Standard, Standard fingerprints; Graph, Graph fingerprints.

FIG. 4. Top 20 features after ranking by their mean importance (majority voting scheme) per CYP450 isoform. Set of
variables, ranked by importance for the discrimination of inhibitors versus noninhibitors for each CYP450 isoform. The
twenty most important variables are depicted in each case. Interaction Fingerprints, Desc., Descriptors; PLEC fingerprints,
(Protein-Ligand Extended Connectivity) Fingerprints; ECFP Fingerprints, Extended-Connectivity Fingerprints.
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the CYP2D6 models and interaction bits had lower impor-
tance for this isoform. For CYP3A4, models employed a
combination of molecular descriptors and PubChem finger-
prints to achieve optimal performance. Once again, molec-
ular descriptors had higher importance scores than the
fingerprint bits. We point out that CYP450 models share
distinct significant variables from all feature types.

Discussion

There is a need to improve predictive models on CYP450
inhibition, which would bode well particularly for rational
drug discovery and development, not to mention precision in
drug repurposing.

Molecular fingerprints are widely used in the QSAR
models as they consist of the descriptors of a molecule en-
coding its structural elements into a binary bit vector. They
enable the understanding and prediction of the important
chemical groups that may be responsible for inhibition or
noninhibition. Molecular descriptors are numerical repre-
sentations of the physicochemical properties of a molecule,
used to characterize and compare its structure and behavior.

Interaction fingerprints, instead of describing the structure
of a molecule, refer to the interactions between a molecule
and a target protein. This type of representation focuses on
the protein-ligand interactions at a molecular level, thus
providing an insight on the structural features that are im-
portant for a molecule to have a biological effect on a specific
target (Wójcikowski et al., 2019). By implementing such
information from interaction fingerprints, we have explored
the possibility of gaining better predictions for CYP450 in-
hibitors or noninhibitors (test compounds/ligands), applying
enzyme structural information.

Herein, we took into account interaction fingerprints pro-
duced by docking calculations (training and external test sets)
with the aim to add an extra level of information in machine
learning models, including the morphology of CYP450’s
cavity as well as the predicted interactions between the test
compounds (ligands) and the corresponding amino acid res-
idues at the molecular level. Our final predictions are based
on the morphological differences of each CYP450 cavity,
together with the structural and physicochemical differences
of the test compounds (ligands) (Bender et al., 2021). In
machine learning, the addition of extra information does
matter only when this information is useful. Intuitively, one
would expect that adding the interaction information would
achieve better performance for the models in question. Ac-
cording to our findings, this is not always the case.

Several computational approaches have been reported,
where different methods have been implemented. To name,
but a few as follows: the autoencoder neural network de-
veloped by Li et al. (2018); an XGBoost model, among
various machine and deep learning classifiers by Wu et al.
(2019); a GCNN model, which utilizes graph convolutional
network with attention mechanism for feature extraction by
Qiu et al. (2022); and a multitask learning approach by the
iCYP-MFE framework (Nguyen-Vo et al., 2022).

Despite the overall benefits that multitask approaches
provide, their main limitation is that a single input with a
fixed type of features will not achieve optimal performance as
our comparative analysis suggests. This is because each
CYP450 isoform requires a different type of representation to

achieve favorable discrimination, which is taken into account
in our framework. Furthermore, deep learning approaches
fail to give an insight into the important features employed
for classification, even though they perform slightly better
than machine learning models. Thus, our approach offers
explainable models, although it may not provide optimum
predictions. Our framework also incorporates a feature se-
lection step, which removes data noise, reduces the number
of features, and allows for model training time, while an extra
safety layer is introduced to avoid overfitting. This step is
missing from some of the aforementioned pipelines.

Our analysis, after taking into account the structural in-
formation of molecules (test compounds/ligands) and
CYP450 isoforms, suggests that modeling smaller catalytic
sites provides a better generalization ability of the corre-
sponding models. This is evident in the models for CYP1A2,
CYP2A6, and CYP2B6. These isoforms share small and
narrow cavities, in which molecules are docked in specific
orientations, and hence, the overall interactions of the test
compounds (ligands) with the amino acid residues of the
corresponding cavity are limited, leading to distinct patterns
that are easy to be learned by the models during the training
and cross-validation phase, achieving high accuracy results.
CYP2C9, CYP2C19, CYP2D6, and CYP3A4 share larger
cavity surface areas, allowing for more diverse interactions to
occur. Thus, more complex patterns of interactions arise,
challenging model generation and performance. Indeed,
models had lower performance in the external test set for
these isoforms.

There is no specific feature type that could generalize in all
CYP450s due to their evolutionary structural variability.
Such structural variability is reflected herein, not only when
catalytic cavities are explored but also when CYP450 models
share distinct significant variables from all feature types. We
suggest that a robust framework should take into account
different feature types per CYP450 isoform to achieve the
best possible discrimination when inhibition is considered.
Herein, robustness is achieved and may be also extended to
efficacy predictions in drug repurposing schemes. Sitagliptin
served as a paradigm. All features and functionalities have
been included in our nonstop shop next-generation drug re-
purposing platform CloudScreen�.

Conclusions

To our knowledge, the inhibitory/noninhibitory effects of
molecules (test compounds/ligands) on CYP2A6 and
CYP2B6 have not been extensively modeled. Herein, inter-
action fingerprints are taken into account to predict CYP450
inhibitors and noninhibitors for all seven major CYP450
isoforms. Our robust framework offers insights into how
computational methods could better predict CYP450 inhibi-
tors and how different types of molecular representation
(molecular descriptors, molecular fingerprints, or protein-
ligand interaction fingerprints) of test compounds can be fine-
tuned to yield better results with higher accuracy.
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