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Abstract. Stress has been well‑documented to have a signifi‑
cant role in the etiopathogenesis of bruxism. Activation of the 
hypothalamic‑pituitary‑adrenal axis (HPA) and subsequent 
release of corticosteroids lead to increased muscle activity. 
Neurological studies have demonstrated that chronic stress 
exposure induces neurodegeneration of important neuronal 
structures and destabilization of the mesocortical dopami‑
nergic pathway. These disruptions impair the abilities to 
counteract the overactivity of the HPA axis and disinhibit 
involuntary muscle activity, while at the same time, there 
is activation of the amygdala. Recent evidence shows that 
overactivation of the amygdala under stressful stimuli causes 
rhythmic jaw muscle activity by over activating the mesence‑
phalic and motor trigeminal nuclei. The present review aimed 
to discuss the negative effects of certain vitamin and mineral 
deficiencies, such as vitamin D, magnesium, and omega‑3 fatty 
acids, on the central nervous system. It provides evidence on 
how such insufficiencies may increase stress sensitivity and 
neuromuscular excitability and thereby reduce the ability to 

effectively respond to the overactivation of the sympathetic 
nervous system, and also how stress can in turn lead to these 
insufficiencies. Finally, the positive effects of individualized 
supplementation are discussed in the context of diminishing 
anxiety and oxidative stress, neuroprotection and in the 
reversal of neurodegeneration, and also in alleviating/reducing 
neuromuscular symptoms.
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1. Introduction

Bruxism is a parafunctional condition affecting more than 
two‑thirds of the population at some point in their life; 
however, only 25% of affected individuals are aware of this 
condition and seek medical attention  (1). According to an 
international consensus, Bruxism is defined as repetitive jaw 
muscle activity characterized by clenching or grinding of the 
teeth and/or bracing or thrusting of the mandible; however, 
it is not regarded a movement disorder or a sleep disorder 
in otherwise healthy individuals (2). Bruxism can be distin‑
guished into awake and sleep bruxism based on the time of 
occurrence (circadian manifestation). In a systematic review 
by Manfredini et al (3), it was shown that the prevalence of 
awake bruxism ranges from 22 to 31%, whereas sleep bruxism 
has a prevalence of 12.8%. Finally, women are more prone to 
bruxism compared to men with a ratio of 5:1 (4).

Although numerous factors have been implied to 
contribute to the etiopathogenesis of bruxism, stress and 
emotional disturbances are the most commonly accepted (5,6). 
Emotional stress is associated with an increase in head and 
muscle tonicity, as well as an increase in non‑functional 
muscle activity (7,8). In addition, the activation of the sympa‑
thetic system in response to stressful stimuli leads to increased 
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muscle tone and reduced pain thresholds (8,9). In a systematic 
review and meta‑analysis published in 2021, Fritzen et al (10) 
verified increased levels of salivary cortisol in bruxists. These 
increased levels correlate with strong circadian rhythms 
with peak levels during the activation periods  (11). Under 
experimental stress, there is increased masseter activity, which 
returns to baseline levels upon relaxation  (12). In animal 
studies, stress‑induced muscle hyperactivity was associated 
with muscle dysfunction and pain  (13), whereas humans 
who experience panic attacks more frequently exhibit tooth 
clenching, bruxism and nail‑biting (14). Overactivation of the 
sympathetic system and hypothalamic‑pituitary‑adrenal axis 
(HPA) axis can make an individual more vulnerable to new 
stress, as evidenced by animal and human studies  (15,16). 
Patients with temporomandibular disorders (TMD) exhibit 
higher levels of anxiety (17), while TMD symptoms worsen 
whenever a person is under stress (18,19).

Based on findings in neurological diseases (20‑23) and 
pharmacological interactions  (24‑27), it appears that a 
malfunction of 5‑hydroxytryptamine (HT)2 receptors may 
have a major role in the pathogenesis of bruxism. The role of 
5‑HT2 receptors in the mediation of orofacial musculature is 
well documented (28,29). Stress can affect 5‑HT receptors, 
but this effect varies from area to area. For instance, it may 
induce a decrease in 5‑HT1 receptors in the hippocampus 
and an increase in cortical 5‑HT1 (30,31), while leaving the 
5‑HT2 receptors in the trigeminal nuclei unaffected (30,32). 
This is also supported by the work of Inan et al  (33), who 
concluded that bruxism occurs as a result of abnormally 
reduced inhibition of trigeminal motor neurons. In another 
study by Lauria et al  (34), it was shown that a neuropathy 
in the nigrostriatal system leads to loss of inhibition of the 
trigeminal nerve. The neuroanatomy of masticatory modula‑
tion is a 2‑neuron chain where serotonergic neurons from the 
Raphe nucleus synapse with dopaminergic neurons in the 
ventral tegmental area (VTA) (35).

Two important neuronal areas are implicated in the 
genesis of bruxism and are highly affected by stress: The 
mesencephalic trigeminal nucleus (Me5) and the mesocortical 
dopaminergic pathway. Me5 controls the masseter inhibitory 
reflex, which, when activated, suppresses the trigeminal motor 
nucleus and inhibits masseter and temporalis contraction. The 
mesocortical dopaminergic tract connects the VTA with the 
nucleus accumbens (N.Acc) via either the ventral subiculum 
(vSub) or amygdala (36). N.Acc receives glutamatergic projec‑
tions from the hippocampus and basolateral amygdala (BLA) 
and sends projections to mesencephalic motor effector sites, 
and is therefore considered to be a motor‑limbic interface (37). 
The mesocortical tract is equally important because it inhibits 
undesired muscular movements (38). In acute mild stressors, 
the tract follows the vSub‑ventral pallidum (VP)‑N.Acc 
route (39,40). The hippocampus is essential in counteracting 
overactivation of the HPA axis  (41). However, in chronic 
stressors, the hippocampus presents with neurodegenerative 
alterations that attenuate this pathway, while at the same time, 
they activate the BLA‑VP‑N.Acc pathway (42). Studies in mice 
have revealed that a direct projection from CeA to trigeminal 
motor nucleus is highly activated during hunting of prey and 
that it promotes strong biting attacks (43). Of note, the same 
pathway has recently been identified in humans, and in higher 

distribution than BLA‑Mo5 (Trigeminal Motor Nucleus) (44), 
further highlighting that the same association may also apply 
to humans and warranting further research in this field. Fig. 1 
diagrammatically represents the effect of certain nutrients on 
the mesocortical dopaminergic pathway.

Chronic stress exposure and increased circulating levels 
of corticosterone impair progenitor cell proliferation, inhibit 
neuronal differentiation and suppress cell survival in the 
hippocampal dentate gyrus (45‑49), events that affect hippo‑
campal neurogenesis (50‑52). This is happening as a result of 
oxidative stress due to auto‑oxidation of catecholamines (53). 
Oxidative stress due to increased cellular activity induces 
nitrogen oxide (NO) production, which activates microglia. 
The latter further releases NO and reactive oxygen species 
(ROS) that induce neuroinflammation and neurodegenera‑
tion (54,55). This in turn negatively modulates the ability of 
the hippocampus to control hyperactivity of the HPA axis. 
Neurodegeneration of the hippocampus and attenuation of the 
vSub‑VP‑N.Acc pathway invoke alterations in the mesocor‑
tical dopaminergic neurons that are implicated in neuropathic 
and chronic pain (56‑58). The dysregulation of dopamine D2 
receptor expressing indirect pathway output neurons promotes 
hypersensitivity to pain and increased impulsivity due to 
reduced levels of dopamine in N.Acc (59,60). The attenua‑
tion of the vSub‑VP‑N.Acc pathway and the activation of the 
BLA‑VP‑N.Acc cause further reduction of dopamine neurons 
in the VTA (42). All these aforementioned events have a strong 
effect on Me5. Animal electrophysiological studies have 
shown that chronic restrained stress induces an increase in the 
excitability of Me5 and glutamatergic neurotransmission from 
Me5 to Mo5 (61). This was evidenced by increased levels of 
acetylcholinesterase (Ache) and creatine kinase (CK‑MM) in 
the masseter muscles (61). In another study by Ueno et al (62), 
it was demonstrated that activation of the ventral part of 
amygdala in guinea pigs may cause rhythmic jaw movement.

Recent evidence has revealed similar degenerative findings 
in bruxists. Keskinruzgar et al (63), by studying the retinas of 
bruxists, found that retinal nerve fiber layer (axon) thickness, 
inferior parietal lobe (dendrites) and granule cell layer (soma) 
volume are significantly reduced. The retina is considered to 
be a continuation of the brain; therefore, any neurodegenera‑
tive changes in the retina are representative of those induced 
in the mesocortical dopaminergic tract. In the same study, an 
increase in choroidal thickness was also demonstrated. The 
choroid is an important site of vascularization and is respon‑
sible for transport of nutrients and oxygen (63). This study, 
however, does not specify the cause of neurodegeneration 
or an association between bruxism and neurodegeneration. 
The fact that bruxism is a common comorbid condition 
or symptom in other neurodegenerative disorders such as 
Parkinson's disease or Parkisonism (64), as well as in rapid 
eye movement sleep behavior disorder (65), constitutes enough 
evidence so as to not exclude neurodegeneration from this 
equation. Ozcan‑Kucuk et al (66) concluded that there is a 
significant increase in oxidative stress and prolidase activity in 
bruxists. Increased levels of prolidase, an enzyme found in the 
plasma and several organs, including the brain, are associated 
with higher levels of proline, a brain neurotransmitter, which 
can induce oxidative stress and subsequently neurodegenera‑
tion (67). These effects have been examined in anxiety (68), 



EXPERIMENTAL AND THERAPEUTIC MEDICINE  26:  563,  2023 3

several musculoskeletal disorders (e.g. ankylosis, osteoar‑
thritis) (69,70) and neuropsychiatric diseases (Alzheimer's, 
bipolar disorder)  (67,71). Fig. 2 illustrates the sequence of 
events that connect stress with jaw muscle activity.

Based on these findings, particularly on the neurodegenera‑
tion of the hippocampus, the attenuation of the vSub‑VP‑N.Acc 
pathway and the fact that a malfunction may occur at any given 
point in the mesocortical dopaminergic tract, it is difficult to 
identify a therapeutic target. According to a systematic review 
from 2022 by Minakuchi et al (72), none of the already used 
treatment modalities is able to achieve universal positive results. 
As far as pharmacologic agents are concerned, the evidence 
of efficacy has low to moderate confidence, with numerous 
adverse effects; at the same time, the efficacy of cognitive 
behavioral therapy is still low and does not appear to improve 
the symptoms in <6 months  (72). Overwhelming evidence 
points towards insufficiencies and deficiencies of necessary 
elements for the homeostasis and normal function of the central 

nervous system (CNS), with vitamin D (vit.D), magnesium and 
omega‑3 fatty acids being the most studied ones.

2. Vit.D and the pathogenesis of bruxism

Effect on physiological function. Vit.D) is a very important 
nutrient, not only for maintaining a healthy musculoskeletal 
system but also for the positive effect on the nervous system. It 
has long been known that vit.D has a vital role in calcium and 
phosphorous metabolism, in three main ways: i) By enhancing 
intestinal absorption, ii)  by controlling the synthesis of 
parathyroid hormone and iii) by promoting the maturation 
of pre‑osteoclasts into osteoclasts (73‑75). However, current 
evidence suggests that vit.D also has a major role in neuroim‑
mune modulation, neuroplasticity and neurological oxidative 
stress reduction (76). This property is supported by the abun‑
dance of vit.D receptors throughout the CNS (77), as well as 
by its ability to cross the blood brain barrier (78). Vit.D is 

Figure 1. Effects of vitamin D, omega‑3 fatty acids and magnesium on the mesocortical dopaminergic pathway (grey arrows). Vitamin D acts on the meso‑
cortical dopaminergic pathway by protecting dopaminergic neurons (blue arrows). Omega‑3 fatty acids suppress overactivity of the HPA axis and increase 
neurogenesis and synaptic activity in the hippocampus and N.Acc (orange arrows). Magnesium suppresses HPA and SAM axis overactivation by acting on 
the hypothalamus and LC, respectively (red arrows). Amy, amygdala; HPA, hypothalamic‑pituitary‑adrenal; HP, hippocampus; Hyp, hypothalamus; LC, locus 
coereleus; Mg, magnesium; N.Acc, nucleus accubens; SAM, sympathetic adrenal medullary; Vit.D. vitamin D; VTA, ventral tegmental area.
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also known to control ~3% of the human genome via the vit.D 
receptor (VDR), which forms a heterodimer with the retinoid 
X receptor (79,80). This heterodimer complex binds to specific 
DNA sequences and alters the expression of genes that are 
involved in glutamatergic and GABAergic neurotransmission, 
calcium regulation and also the expression of neurotrophic 
factors and genes involved in neuroprotection (81,82).

The strong antioxidant capacity of vit.D helps to improve 
brain enzyme activity and to reduce lipid peroxidation. 
Oxidative stress has a major role in neurodegenerative diseases, 
mainly through auto‑oxidation of catecholamines  (53,54). 
Mitochondrial dysfunction leads to a rise in ROS and activated 
microglia, resulting in nitric oxide (NO) and ROS production 
during neuroinflammation (55). Vit.D also protects the brain 
by suppressing inflammatory cytokines such as IL‑6 (83). 
However, the most important function of vit.D is the protec‑
tion of dopaminergic neurons. Although the mechanism has 
remained to be fully elucidated, there is sufficient evidence 
to suggest that it can affect calcium metabolism, apoptosis, 
inflammation, immunomodulation, detoxification and neuro‑
trophin upregulation  (84‑86). Cholecalciferol (VD3) may 
directly modulate tyrosine hydroxylase, a rate‑limiting enzyme 
in dopamine synthesis, as evidenced by immunohistochemical 
staining. The glial cell‑derived neurotrophic factor (GDNF) 
protein also appears to be increased by these effects, thereby 
supporting the neuroprotective effects of VD3 on dopami‑
nergic neurons (87). Orme et al (87) demonstrated that adding 
VD3 to mesencephalic cultures of dopaminergic neurons 

increased their number and upregulated GDNF. Furthermore, 
VD3 has also been shown to regulate factors involved in dopa‑
minergic system ontogeny (88), as evidenced through studies 
in animals with altered dopaminergic metabolism due to VD3 
deficiency, where VD3 supplementation resulted in a reduction 
of the degree of dopaminergic denervation (87,89).

Association of vit.D deficiency with anxiety. Vit.D 
deficiency and insufficiency have been strongly implicated 
in anxiety and depression. Huang  et  al  (90) showed that 
a decrease of 1 ng/ml in 25(OH)D (Calcidiol, a hydroxyl‑
ated form of vit.D) was associated with greater anxiety and 
depression. Similar results were obtained by Altinbas (91) 
on intensive care unit personnel. In another study by 
Al‑Atram et al (92), vit.D deficiency was positively correlated 
with anxiety but not with depression. However, none of these 
studies clarified the insufficiency and deficiency cut‑off points, 
with the majority accepting <30 ng/ml as insufficiency and 
<20 ng/ml as deficiency (93). When compared to subjects with 
normal (adequate) vit.D levels, vit.D deficiency seemed to be 
associated with a reduction in brain volume, particularly in 
the hippocampus (94). According to certain researchers, vit.D 
deficiency has a direct effect on sleep because of the association 
between sleep‑wake regulation brain regions and vit.D target 
neurons in the diencephalon (95). The main causes of vit.D 
deficiency or insufficiency are inadequate UVB exposure or 
decreased bioavailability, as well as through certain types of 
medication, such as glucocorticoids (GR), antiretrovirals and 
anticonvulsants (96).

Figure 2. Schematic representation of events that lead from stress to jaw muscle activity. BLA, basolateral amygdala; CeA, central amygdala; GR, glucocor‑
ticoids; HP, hippocampus; Me5, mesencephalic trigeminal nucleus; MR, mineralocorticoid; N.Acc, nucleus accubens; NO, nitric oxide; VP, ventral pallidum; 
VTA, ventral tegmental area.
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Association of vit.D with bruxism. Recent evidence 
has unveiled a strong association between bruxism, 
particularly sleep bruxism (central), and vit.D deficiency. 
Alkhatatbeh  et  al  (97) showed that there is a significant 
link between vit.D deficiency and sleep bruxism, with 60% 
of bruxism patients exhibiting low levels of vit.D compared 
to 34% of the controls. In the same study, the authors also 
assessed the daily dietary intake of calcium and reported 
that only 26% of bruxists had a daily dietary calcium intake 
of >600 mg/day, compared to 42% of the controls (97). This 
association can be explained by the neuroprotective role of 
vit.D. Low vit.D levels may disrupt calcium homeostasis, 
affecting neuron excitability (98). Furthermore, because vit.D 
is responsible for calcium homeostasis, low vit.D levels will 
result in low serum calcium levels, i.e. hypocalcemia, which 
has an immediate effect on neuromuscular function, and the 
potential to cause muscle spasms and cramps (95). In another 
study by Allaf and Abdul‑Hak (99), insufficiency or deficiency 
of vit.D were shown to increase with the severity of bruxism, 
while in non‑bruxists, insufficiency and deficiency was present 
in 41 and 16% of individuals, respectively. In subjects with 
mild bruxism, these numbers appeared to rise to 50 and 30%, 
respectively, and in moderate and severe bruxism to 58%, 
whereas in extremely severe bruxism, insufficiency and defi‑
ciency can reach 72% in total.

Association of vit.D with TMD. An association has 
been highlighted between low levels of vit.D and TMD. In 
individuals suffering from osteoarthritis, vit.D is linked to 
cartilage regeneration (100): vit.D deficiency is observed in 
individuals suffering from headaches attributed to TMD, as 
well as from tension‑type headaches (101,102), while low 
levels of vit.D in combination with the Bsml variant of the 
VDR gene are highly associated with the etiology and patho‑
genesis of disc displacement with reduction (103). Similarly, 
Wu et al (104) found an association between low serum levels 
of vit.D and arthritis, muscle pain and chronic widespread 
pain. Finally, Demir and Ersoz  (105) concluded that the 
levels of parathyroid hormone in response to vit.D deficiency 
were significantly higher in TMD subjects as compared to 
controls. On the other hand, the observation that supple‑
mentation of vit.D reduces or alleviates neurological and 
muscular pain (106‑109), is rather encouraging. This effect 
is thought to occur due to a reduction in oxidative protein 
damage and in the neuronal levels of Ca.

Vit.D insufficiency and stress. Another well‑documented 
observation during exposure to stress are the low levels of 
1,25(OH)2D, the active form of vit.D. This can be the result 
of increased acute hemodilution and interstitial extravasation, 
or due to a decrease in the synthesis of binding proteins that 
augment renal wasting of 25(OH)D (110), or a result of hypo‑
calcemia, a common finding during stress. Specifically, under 
high stress, particularly conditions that present hyperventila‑
tion, the body may respond with respiratory alkalosis, which 
can lead to hypocalcemia. This may, in turn, cause a compen‑
satory increase in parathyroid hormone (PTH), which could 
further increase the conversion of 25(OH)D to 1,25(OH)2D 
in order to maintain calcium homeostasis. In the presence 
of secondary hyperparathyroidism, 25(OH)D consumption 
would exacerbate vit.D deficiency (111). Therefore, in acute 
stress situations, vit.D deficiency may represent a discrepancy 

between tissue requirement and substrate supply, where the 
local tissue is unable to generate adequate 1,25(OH)2D, despite 
maximal stimulation of 1‑a‑hydroxylase by PTH (112). PTH 
resistance, which occurs in hypomagnesaemia, renal failure 
and hypoparathyroidism, can further impair the formation of 
1,25(OH)2D (112).

3. Magnesium

Role of magnesium in physiological function. Magnesium 
(Mg) is the body's fourth most abundant cation and the 
second most abundant intracellularly; aerobic and anaerobic 
metabolism, bioenergetic reactions, metabolic pathway 
regulation, signal transduction, ion channel activity, cell 
proliferation, differentiation, apoptosis, angiogenesis and 
membrane stabilization are all biological processes that 
involve magnesium (113‑115). More than 325 enzymes, many 
of which are specific to the nervous system, are Mg‑dependent, 
highlighting the importance of this particular mineral in CNS 
physiological function (116).

Stress is known to promote oxidative stress through 
catecholamine auto‑oxidation: it aggravates lipid peroxida‑
tion, increases DNA oxidative damage marker production 
and decreases plasma anti‑oxidative activity  (117,118). 
During a stressful event, there is activation of the HPA axis 
and release of corticotropin‑releasing factor (CRF) from 
parvocellular neurons. Mg antagonizes the glutamate‑stim‑
ulated CRF release, stabilizes CRF receptor binding and 
stimulates the Na/K ATPase, which decreases CRF‑receptor 
activity  (119‑121). Mg also reduces adrenocorticotropic 
hormone release by suppressing HPA‑axis activity via 
angiotensin II antagonism (122).

Mg has been shown to have a direct suppressive effect 
on locus coeruleus (LC) activity and low Mg levels seem to 
increase sensitivity to stress (123). The release of substance 
P, a neuropeptide that preferentially activates tachykinin NK1 
receptors, can explain many of the effects of Mg deficiency 
in stress situations: Low Mg concentrations reduce Mg‑gated 
blockade of N‑methyl‑D‑aspartate (NMDA) receptor chan‑
nels, resulting in the release of substance P and calcitonin 
gene‑related peptide (CGRP) from sensory C fibers, i.e. 
neuropeptides that are involved in the production of reactive 
oxygen and nitrogen species and in the induction of neuro‑
genic inflammation that is characterized by an increase in 
inflammatory cells and cytokines (124,125).

Magnesium is also essential for the synthesis of kynureni‑
nase. Therefore, in cases of hypomagnesemia, increased levels 
of kynurenines are observed in the circulation, which in turn 
promotes anxiety, an increase in the release of noradrenaline, 
reduced levels of serotonin, GABA receptor blockade and 
locomotor hyperactivity (126). The increased neural excit‑
ability observed in hypomagnesemia is believed to occur 
from the increased activity of NMDA receptors, which in turn 
induces anxiety, increased dopamine release and modulation 
of serotonin receptors (127).

Magnesium deficiency reduces the activity of B6 by 
inhibiting alkaline phosphatase, an enzyme necessary 
for the transformation of the active form of B6, pyridoxal 
phosphate. This causes increased levels of kynurenines, 
increased sympathetic activation and increased sensitivity to 
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glucorticoids (128). As B6 is known to participate in decar‑
boxylation of glutamic acid to GABA, of DOPA to dopamine 
and of 5‑hydroxytryptophan to serotonin, it is regarded as a 
neuroprotective and antitoxic agent (129).

Implication of magnesium in bruxism. The possible 
involvement of magnesium in the pathogenesis of bruxism 
can be further supported by the fact that hypomagnesemia 
is observed in burning mouth syndrome (BMS), particularly 
in cases where the tongue is involved (130). BMS is caused 
by hyperactivity of somatosensory fibers of the trigeminal 
nerve and loss of central inhibition. This hyperactivity may be 
caused by parafunctional habits. Another important function 
of Mg is that it exhibits a direct enhancing effect on 5‑HT1A 
serotonin receptor transmission by acting as a cofactor of 
tryptophan hydroxylase, which has a major role in the dopa‑
minergic system (131). Mg levels are inversely correlated with 
estrogen levels, showing a sex‑related difference (132).

Mg deficiency symptoms include neuromuscular 
irritability and weakness, headaches, hyperemotionality, 
generalized anxiety, insomnia, and asthenia (116,133,134). 
In Mg‑deficient animals, there are increased plasma 
corticosterone levels, increased irritability and aggressive 
behavior (123,135). Experimentally‑induced Mg deficiency 
in animal studies has been associated with disrupted sleep 
patterns, while an increase in the amplitude of daily varia‑
tion of sleep and slow‑wave sleep delta power has also been 
observed (135). Chronic sleep deprivation in humans is asso‑
ciated with progressively decreasing intracellular Mg levels, 
reduced duration of cardiopulmonary exercise and increased 
hypersensitivity to sympathetic nervous stimulation (136). 
In a study by Sarchielli et al  (137), patients who suffered 
from migraine and tension‑type headaches, very common 
symptoms in patients with bruxism and TMD, presented 
with significantly lower levels of serum and salivary Mg. 
This is because hypomagnesaemia makes cerebral arteries 
more sensitive to CO2, which promotes cerebral vasospasm 
and headache (138,139). Hypomagnesaemia is also linked to 
exacerbated neural excitability, migraine, orofacial tardive 
dyskinesia and increased anxiety, symptoms that may be 
improved by combined supplementation of Mg and B6 (140).

Potential implication of magnesium deficiency in stress. 
Cernak et al (141) showed that stress, chronic and subchronic, 
causes significant reductions in magnesium concentrations in 
two ways: First, by stimulating neuroendocrine factors that 
increase urinary magnesium and second, by inducing complex 
hormonal alterations that subsequently impair magnesium 
homeostasis. At the same time, a 9‑ to 11‑fold increase in 
plasma superoxide anion generation was observed, as well as a 
reduction in antioxidant enzyme concentrations, such as those 
of superoxide dismutase (141).

Overall, Mg has a strong neuroprotective role. As 
mentioned earlier, stress has a deleterious effect on neurons 
because of the increased levels of IL‑6 that initiate microg‑
lial activation. Increased inducible NO synthase levels that 
are expressed during stressful periods impair hippocampal 
neurogenesis  (142,143). Mg deficiency increases neuronal 
calcium influx and, as a result, NO production, which has been 
linked to cytotoxic effects (116). Mg counteracts the effects of 
calcium and reduces ROS production via the phospholipase 
lipoxygenase and cyclooxygenase pathways (144).

4. Iron

Iron, although not having been linked to bruxism, has recently 
been associated with restless leg syndrome (RLS), a common 
neurologic disorder characterized by involuntary muscle move‑
ment, which is associated with malfunction of the mesocortical 
dopaminergic pathway  (145). This pathway, as discussed 
earlier, may be implicated in the pathogenesis of sleep (central) 
bruxism. Some consider bruxism as a manifestation of RLS, 
based on the fact that ~40% of patients with RLS report a 
history of bruxism (146), while others assume that bruxism and 
RLS are comorbid conditions (147). Both entities share some 
common features as they are both observed in non‑REM sleep 
and are linked to basal ganglia dysfunction (148).

Brain iron deficiency has a critical role in the pathogenesis 
of RLS. Anemia and pregnancy are two conditions character‑
ized by systemic iron deficiency, which are highly associated 
with RLS symptoms (149‑151). Similar to bruxists, females are 
more susceptible to RLS. In a study by Umbreit (152), it was 
found that RLS without anemia exhibits a sex‑dependent pref‑
erence. Patients with RLS with and without anemia present 
with more profound tiredness, poorer sleep quality and less 
energy during the day (151). Depleted iron stores are associated 
with decreased activity of iron‑dependent enzymes, reduced 
cellular oxidative capacity, as well as decreased energy effi‑
ciency (153,154). Previous clinical studies have shown that 
peripheral iron deficiency increases the risk of RLS preva‑
lence (151). Reduced serum iron concentrations reduce brain 
iron levels, and iron therapy benefits patients with RLS with 
low peripheral iron levels (155). In a systematic review and 
meta‑analysis, it was shown that iron therapy, in a way similar 
to that of a dopamine agonist, reduces restlessness and RLS 
severity (156).

Both human and animal studies have demonstrated that 
stress exposure causes a reduction in serum iron ranging from 
27 to 44%, a reduction in ferritin by 24% and and a reduction 
in hemoglobin by 12.5% (157,158).

5. Omega‑3 fatty acids

Omega‑3 fatty acids‑physiological function. Although 
omega‑3 fatty acids have not been directly linked with 
bruxism, they have been highly implicated in anxiety and 
emotional mood disorders (159), as well as in neuroinflamma‑
tion and neurodegeneration (159‑162). They are esterified into 
phospholipids in the sn‑2 position of the cell membrane (160), 
playing a key role in the structure and function of the brain cell 
membrane. Overwhelming evidence signifies their involve‑
ment in hippocampal development and synaptic function (162).

Omega‑3 fatty acids may be found in numerous brain 
regions, but more abundantly in the prefrontal cortex, hippo‑
campus and hypothalamus (163). They have been classified 
into n‑6 polyunsaturated fatty acids (PUFA) and n‑3 PUFA, 
with their main metabolites being arachidonic acid and 
docosahexaenoic acid (DHA), respectively. The free forms 
of PUFA are transformed into specific derivatives, such as 
eicosanoids, specialized proresolving mediators (SPM) and 
endocannabinoids (eCBs), which strongly regulate inflamma‑
tion (160). The eCBs are lipids produced by the membrane's 
fatty acids after neuronal stimulation and bind to cytochrome 
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P450 carbonyl reductase 1 (164). Activation of this receptor 
causes an inhibition in glutamate and GABA release from 
presynaptic neurons (165). Regulation of eCBs in the brain by 
PUFA has a strong impact on hippocampal synaptic plasticity 
and in eCB‑dependent plasticity (166), while CB1‑associated 
signaling pathways in the prefrontal cortex (PFC) and N.Acc 
are also affected. Another signaling pathway, GPR120, which 
functions as an omega‑3 fatty acid receptor, signals DHA 
activity that is highly prominent in the hypothalamus and 
N.Acc (167), areas that are closely linked to the pathogenesis 
of anxiety and bruxism, as discussed earlier.

Consequences of omega‑3 fatty acid insufficiency. As 
these substances cannot be synthesized, they can only be 
obtained through diet (168). However, in Western civilizations, 
there is a shift in the consumption of fatty acids towards n‑6 
and less towards n‑3 (169), resulting in an imbalance between 
the two types that is associated with serious consequences, as 
described below. A decrease in plasma DHA for 49 consecu‑
tive days has been shown to cause a 5% DHA reduction in 
the brain, with the prefrontal cortex and hippocampus being 
more sensitive  (160). DHA, in particular, has been shown 
to influence neurite growth, synaptogenesis, synapsin and 
glutamate receptor subunit levels, as well as synaptic activity 
in hippocampal neurons. This has been supported by in vitro 
studies demonstrating impaired long‑term potentiation, shorter 
neurites, fewer branches, and fewer synapsin‑positive puncta in 
DHA‑deficient cultures, while DHA supplementation appears 
to restore neurite growth and synaptogenesis (162).

Implication of omega‑3 fatty acid deficiency in stress. 
Animal studies have also shown that n‑3 PUFA deficiencies 
induce emotional and neuronal disturbances through adrenal 
activation that resemble those observed after social defeat 
stress (161,170,171). Similar to chronic stress, HPA hyperac‑
tivity, due to a reduction in CB1 receptor function, invokes 
a marked increase in corticosterone levels. This action, in 
combination with a disturbance in the GR‑mediated signaling 
pathway, leads to neuronal atrophy of the PFC by means of 
pyramidal neuron arborization atrophy. The GR signaling 
pathway and its downstream target bone‑derived neurotrophic 
factor have a crucial role in neuroplasticity  (161,172). As 
discussed earlier, chronic stress exposure, as well as stress 
induced by DHA deficiency, eventually cause hippocampal 
degeneration and attenuation of the mesocortical dopami‑
nergic tract (namely the vSub‑VP‑N.Acc pathway), whilst at 
the same time activating the BLA‑VP‑N.Acc pathway that 
induces rhythmic jaw activity and possibly bruxism.

Oxidative stress causes NO production, which activates 
microglia. The latter are glial cells of myeloid origin, impor‑
tant in maintaining brain homeostasis and in protecting nerve 
cells (173). Activation of microglia causes further production 
of NO and ROS, leading to neuroinflammation (174). DHA 
deficiency induces abnormal microglial activation through 
changes in their membrane fluidity and the modulation of 
several proinflammatory transcription factors  (175). These 
changes are gender‑ and area‑dependent. Adult females have 
more microglia than males in the paraventricular nucleus of 
the hypothalamus, amygdala and hippocampus, particularly in 
the dentate gyrus (175), which has a crucial role in controlling 
the HPA axis. This is probably the reason why females appear 
to be more vulnerable to stress and more prone to bruxism.

Effects of omega‑3 supplementation. In vitro evidence has 
highlighted that application of eicosapentaenoic acid (EPA) on 
microglial cultures inhibits the production and expression of 
inflammatory enzymes, such as NO synthase and COX‑2, as 
well as the production of proinflammatory cytokines (IL‑1β, 
IL‑6 and TNF‑α) (174). Levine et al (176) demonstrated that 
application of EPA plus DHA increases microglial autophagy, 
an important process for the homeostasis of immune cells that 
are able to diminish inflammatory processes. Another SPM 
form of DHA, Neuroprotectin D1, seems to protect the brain 
from leukocyte infiltration, reducing cyclooxygenase‑2 expres‑
sion, cytokine production and microglia activation (177). An 
in vivo study by Lynch et al (178) reported that omega‑3 supple‑
mentation, and particularly EPA, significantly reduced marker 
expression of microglial activation and production of IL‑1β by 
microglia, while at the same time, there was an increase in 
anti‑inflammatory IL‑4 expression. In neuropathic pain and 
retina degeneration models, N‑3 PUFA supplementation was 
shown to cause a reduction in microglial density/activation, 
which can be linked to reduced neuroinflammation (179,180).

In a study by Ferraz et al  (159), it was concluded that 
supplementation of PUFAs to animals under restrained stress 
was able to counteract the anxiolytic effects by suppressing the 
HPA axis and reducing the plasma corticosterone levels. It was 
also shown that there is an increase in serotonin and dopamine 
levels particularly in the hippocampus, both of which constitute 
actions that further promote an increase in the brain‑derived 
neurotrophic factor and synaptophysin expression, as well as 
hippocampal neurogenesis. Similar results were obtained in 
humans, as shown by Kiecolt‑Glaser et al (181), where supple‑
mentation of EPA and DHA in medical students for 12 weeks 
appeared to successfully reduce the release of IL‑6 and anxiety 
symptoms compared to controls.

Finally, noteworthy findings have also been obtained in 
individuals with morning headaches, a common symptom in 
bruxists. Morning headaches usually exhibit the characteris‑
tics of migraine (182). Numerous hypotheses have been made 
regarding the mechanism of their genesis, with oxidative stress 
and activation of the trigeminovascular pathway being the two 
most prevalent (183). In this context, the role of CGRP has 
been highlighted both as a mediator and a potential therapeutic 
target (184). First of all, the release of CGRP has also been 
shown to be regulated by oxylipin receptors in the trigeminal 
nerve endings and central pain processing pathways (185,186). 
Furthermore, a recent study by Marchetti et al (184) showed 
that supplementation of PUFAs at a ratio of 1.5 omega‑6/1 
omega‑3 induced a marked reduction in migraine symptoms, 
frequency and pain intensity; the explanation given by the 
authors was that EPA, DHA and their SPM activate innate and 
adaptive immune systems, remove ROS, and inhibit COX‑2 
and NF‑κB intracellular signaling pathways. Table I summa‑
rizes the main characteristics of the nutrients discussed in this 
section and evidence that highlights their potential implication 
in the etiopathogenesis of bruxism.

6. Concluding remarks

This review has discussed the effects of chronic stress 
exposure in the pathogenesis of bruxism. In particular, oxida‑
tive stress, through the release of NO and the activation of 
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microglia, has been shown to lead to neurodegeneration of the 
hippocampus and destabilization of the mesocortical dopami‑
nergic pathway. It has also been highlighted that the former 
impairs the ability to counteract HPA axis overactivity, while 
the latter results in loss of inhibition of unwanted (involuntary) 
muscle movements. Based on recent evidence, it appears that 
attenuation of the vSub‑VP‑N.Acc route leads to activation of 
the BLA‑VP‑N.Acc pathway. The prevailing route has a strong 
yet opposing effect on the Me5, a nucleus that inhibits the 
involuntary contraction of masseter muscles by controlling the 
masseter inhibitory reflex. Indeed, activation of the amygdala 
appears to induce rhythmic jaw activity, while overactivation 
of Me5 under chronic stress exposure causes overactivation of 
Mo5, as evidenced by increased levels of CK‑MM and pain in 
masseter muscles (61).

This report, instead of focusing on pharmacological agents, 
has shifted the attention towards homeostatic disturbances and 

deficiencies in important elements, such as vit.D, magnesium, 
omega‑3 fatty acids, and, to a lesser degree, iron. Their neuro‑
protective properties, their capacity to reduce oxidative stress 
to suppress the HPA and LC axes, and their positive action on 
the neuroplasticity and neuronal growth of the hippocampus, 
particularly in the case of omega‑3, further support this notion. 
Conversely, a decrease in the levels of these elements in the 
brain is associated with neurodegeneration, increased anxiety, 
increased neuromuscular excitability, bruxism, muscle spasms 
and pain. Of note, appropriate and individualized supplemen‑
tation of these nutrients appears to reduce or alleviate the 
neurological and musculoskeletal symptoms (108,109). Future 
studies should focus on whether these concentration alterations 
have a causal effect or whether they constitute the aftermath of 
chronic stress exposure, and if re‑establishment of the nutrient 
balance has a significant impact on the pathogenesis and chro‑
nicity of bruxism.

Table I. Normal functions of vitamin D, magnesium, iron and omega‑3 fatty acids and their implications in the pathogenesis 
bruxism.

Nutrient	 Normal function	 Implication in the pathogenesis of bruxism

Vitamin D	 Neuroimmune modulation, neuroplasticity (76)	 Deficiency: Increases anxiety and neuromuscular
	 Oxidative stress reduction (76)	 excitability (90,98), worsens with the severity of
	 IL‑6 suppression (83)	 bruxism (99); associated with osteoarthritis and
	 Regulation of dopamine synthesis and	 headaches (100‑102,104)
	 dopaminergic system ontogeny (88,89)	 Supplementation: Reduces or alleviates neurological and
	 Protection of dopaminergic neurons (87)	 muscular pain symptoms (106‑109)
Magnesium	 Suppresses HPA axis and reduces ACTH	 Deficiency: Neuromuscular irritability, headaches,
	 release (119‑122)	 hyperemotionality, general anxiety, hypersensitivity to
	 Suppresses LC activity (123)	 sympathetic stimulation, disrupted sleep
	 Controls the release of Substance P and CGRP	 patterns (116,133‑135)
	 (124,125)	 Supplementation: Counteracts the effect of neuronal
	 Essential for the synthesis of kynureninase and	 calcium influx and reduces ROS production (144)
	 B6 (126)	
	 Enhances 5‑HT1A activity (131)	
Iron	 Increases cellular oxidative capacity through	 Deficiency: Tiredness, poor sleep quality, headaches (151),
	 iron‑dependent enzymes (153,154)	 involuntary muscular movements (restless leg syndrome) (145).
		  Linked to stress exposure and basal ganglia
		  dysfunction (148)
		  Supplementation: Acts similarly to dopamine agonist,
		  reduces restlessness (156)
Omega‑3 	 Improvement of neurite growth, synaptogenesis	 Deficiency: Induces stress and increased corticosterone
fatty acids	 and synaptic activity in hippocampal	 levels. Causes morphological and functional disturbances
	 neurons (162,166)	 in PFC and hippocampus (161,170,171)
	 Suppression of HPA axis (159)	 Supplementation: Reduces anxiety and corticosterone
	 Increase of serotonin and dopamine levels in the	 levels (159,181). Reduces neuropathic pain (179). Reduces
	 hippocampus (159)	 morning headaches frequency and pain severity (184)
	 Inhibition of NO, COX‑2, IL‑6, IL‑1b, TNF‑a	
	 production by activated microglia (176,178)	
	 Neuroprotectin D1 protects brain from
	 neurogenic inflammation (177)	

ACTH, adrenocorticotropic hormone; CGRP, calcitonin gene‑related peptide; COX‑2, cyclooxygenase‑2; HPA, hypothalamic‑pituitary‑adrenal; 
LC, locus coeruleus; NO, nitric oxide; PFC, prefrontal cortex; ROS, reactive oxygen species.
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The present review has certain limitations. Regarding the 
pathogenesis of bruxism, the articles included constitute a small 
number of cases, with self‑reporting subjective symptoms, 
which makes it difficult to provide a definite diagnosis. On the 
other hand, the actual levels of Mg and omega‑3 fatty acids in 
the patients' circulation (plasma) and brain may not be easily 
assessed. In addition, patient variability is probably the reason 
behind the inconsistency in achieving the desired outcome in 
affected individuals, while there is also a lack of data regarding 
the optimum duration of nutrient supplementation to achieve 
the desired outcome. However, despite the small number of 
studies addressing these issues and their associated limitations, 
the existing evidence supports the rationale that subsequent 
research should be conducted in this field, with the aim to further 
enhance the current understanding of this complex, multifacto‑
rial condition and hopefully to provide the affected individuals 
with alternative and more effective therapeutic modalities.
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