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Introduction: The identification of chemical compounds that interfere with SARS-
CoV-2 replication continues to be a priority in several academic and pharmaceutical
laboratories. Computational tools and approaches have the power to integrate,
process and analyze multiple data in a short time. However, these initiatives may
yield unrealistic results if the applied models are not inferred from reliable data and the
resulting predictions are not confirmed by experimental evidence.

Methods: We undertook a drug discovery campaign against the essential major
protease (MPro) from SARS-CoV-2, which relied on an in silico search strategy
–performed in a large and diverse chemolibrary– complemented by experimental
validation. The computational method comprises a recently reported ligand-based
approach developed upon refinement/learning cycles, and structure-based
approximations. Search models were applied to both retrospective (in silico) and
prospective (experimentally confirmed) screening.

Results: The first generation of ligand-based models were fed by data, which to a
great extent, had not been published in peer-reviewed articles. The first screening
campaign performed with 188 compounds (46 in silico hits and 100 analogues, and
40 unrelated compounds: flavonols and pyrazoles) yielded three hits against MPro
(IC50 ≤ 25 μM): two analogues of in silico hits (one glycoside and one benzo-thiazol)
and one flavonol. A second generation of ligand-based models was developed
based on this negative information and newly published peer-reviewed data for
MPro inhibitors. This led to 43 new hit candidates belonging to different chemical
families. From 45 compounds (28 in silico hits and 17 related analogues) tested in
the second screening campaign, eight inhibited MPro with IC50 = 0.12–20 μM and
five of them also impaired the proliferation of SARS-CoV-2 in Vero cells (EC50

7–45 μM).

Discussion: Our study provides an example of a virtuous loop between
computational and experimental approaches applied to target-focused drug
discovery against a major and global pathogen, reaffirming the well-known
“garbage in, garbage out” machine learning principle.

KEYWORDS

in silico screening, coronavirus, COVID-19, protease, target-based, drug discovery, rubbish
in rubbish out, artificial intelligence

1 Introduction

Since few years ago, medicinal chemistry has been revolutionized by
the application of artificial intelligence (AI) to research and development
activities in the field of drug discovery, from target identification to
rational drug design (Paul et al., 2021). Part of the power of AI and
machine learning techniques relies on their capacity to perform
multifactorial data processing and analyses that allow the
identification of patterns hidden in large volumes of data. Such
analyses can be applied to build predictive hypotheses that overcome
the -usually frustrating and time-consuming- trial-and-error approaches.
However, the success of intelligent algorithms in prediction-based

approaches depends, to a great extent, on experimental information
embracing the different hypothetical scenarios.

The scientific community reacted to the coronavirus disease 19
(COVID-19) pandemic by rapidly implementing different strategies to
cope with the corresponding therapeutic and prophylactic needs. In this
regard, AI methods have been applied for vaccine design and for the
structure- and ligand-based prediction and identification of molecules
(i.e., antibodies, peptides, small chemicals) targeting essential
components of the causative agent of COVID-19 (reviewed by Bali
and Bali, 2022; Floresta et al., 2022), the type 2 coronavirus that
produces a severe acute respiratory syndrome (SARS-CoV-2).
Several drugs with well-documented (e.g., Remdesivir) or so far
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unknown antiviral activity have been proposed by AI methods as
repurposing candidates against SARS-CoV-2 (Bali and Bali, 2022).

Doubtlessly, vaccination and anti-viral chemotherapy
contributed substantially to control virus dissemination and
disease progression in a relatively short time since pandemic
outbreak in late 2019 (Witek, 2021; Watson et al., 2022).
However, the remarkable virus mutability along with the
antibodies titer decay in the naturally or artificially immunized
population accounts for the impossibility of eradicating SARS-
CoV-2, which will persist as a global threat. Thus, drug discovery
research against this (and other emerging pathogens) still deems
important for feeding the pipeline of potential backup drug
candidates.

Among the proteins encoded by the SARS-CoV-2 genome, the
proteases (a chemotrypsin-like protease: 3CL-Pro or MPro, for
Major Protease, and a Papain-Like Protease: PLPro) have
attracted early attention as pharmacological targets because of
their essential role in converting the long viral polypeptide into
the single structural and non-structural proteins (Lv et al., 2022).
MPro and PLPro are cysteine-proteases that are structurally
unrelated and display sequence- and mechanistic-specificity for
the hydrolysis of the peptide substrate. MPro cleaves the viral
polypeptide at 11 sites. PLPro does it at three sites and also
cleaves ubiquitin and Interferon–stimulated gene 15 (ISG-15), the
latter playing an important modulatory role in host immune
response and viral replication (Perng and Lenschow, 2018).

The pivotal role of MPro for SARS-CoV-2 replication has been
confirmed by genetic and chemical approaches, and these
laboratory-based findings translated into the recent approval of
two clinical drugs targeting this protease: ensitrelvir (Mukae
et al., 2022) and nirmatrelvir (Lamb, 2022).

With the aim to perfect AI methods applied to the discovery of
small chemical compounds targeting MPro from SARS-CoV-2, here
we report the results of a drug discovery campaign that combined
ligand- and structure-based computer-aided strategies. The study
was complemented by the experimental determination of the anti-
MPro activity of the in silico candidates, and, for the confirmed hits,
the evaluation of their anti-SARS-CoV-2 activity and cytotoxicity.
The novelty of the findings is linked to the screening of an in-house
chemical library. The iterative cycle “computer-wet lab-computer”
proved key to perfecting the computational search methods and
disclosed novel chemical scaffolds targeting the type-2 coronavirus
major protease and replication.

2 Model development and validation

2.1 Dataset compilation and curation

2.1.1 First ligand-based modelling
A dataset of compounds with reported IC50 values against MPro

or reported residual enzyme activity at 10 or 20 µM was compiled
from different sources. These included five original articles found in
specialized literature (Jin et al., 2020; Ma et al., 2020; Su et al., 2020;
Wenhao et al., 2020; Zhang et al., 2020) and data extracted from the
publicly available COVID Moonshot database (Moonshot, 2021).
The literature search and data compilation from the COVID
Moonshot database was performed between July and October

2020. Compounds with IC50 < 10 µM were labelled as ACTIVE.
In contrast, compounds with Ki or IC50 > 20 μM, percentage of
inhibition <80% at 20 µM or percentage of enzyme inhibition <50%
at 10 µM were labelled as INACTIVE. These complex criteria were
used because at the time we initiated our study relatively few MPro
inhibitors had been reported by different academic groups and the
screening strategy used in each laboratory was quite variable: some
of them reported inhibitors based on single point assays (e.g., at
10 or 20 µM) and others reported inhibitors based on dose-response
studies. The dataset compounds, represented in SMILES format,
were standardized using Standardizer 17.3.27.0 of JChem software
(ChemAxon). Duplicate data and compounds with inconsistent
labels from different sources were excluded. Finally, because only
0D-2D molecular descriptors were used for modelling purposes,
when data associated with different optical isomers were reported
only one of them was retained whenever both isomers belonged to
the same activity class, and the compounds were disregarded if the
isomers belonged to different activity classes. A total of 76 active
compounds and 738 inactive compounds remained in the curated
dataset.

2.1.2 Second ligand-based modelling
A dataset of compounds with reported IC50 values against MPro

or reported residual enzyme activity at 10, 20 or 50 µMwas compiled
from different sources. These included 18 original articles found in
specialized literature (Akshita et al., 2020; Franco et al., 2020; Jin
et al., 2020; Ma et al., 2020; Sacco et al., 2020; Zhang et al., 2021;
Shitrit et al., 2020; Su et al., 2020; Vuong et al., 2020; Wenhao et al.,
2020; Zhang et al., 2020; Bai et al., 2021; Hattori et al., 2021; Isgrò
et al., 2021; Liu C. et al., 2021; Mody et al., 2021; Rothan and Teoh,
2021; Liu H. et al., 2021), and in-house acquired data from our group
(including experimental results for the in silico hits selected from our
first virtual screening campaign). The literature search and data
compilation from the COVID Moonshot database were performed
in February 2021. Compounds with IC50 < 10 µM or with a
percentage of enzyme inhibition >50% at 10 µM were labelled as
ACTIVE. In contrast, compounds with IC50 > 20 μM, percentage
inhibition <80% at 20 µM or 50 μM, or percentage enzyme
inhibition <50% at 10 µM were labelled as INACTIVE. The
dataset compounds, represented in SMILES format, were
standardized through an in-house script using the MolVS
package. This in-house script is available upon request to the
corresponding authors. Duplicate data and compounds with
inconsistent labels from different sources were excluded. Finally,
since only 0D-2D molecular descriptors were used for modelling
purposes when data associated with different optical isomers were
reported, only one of them was retained whenever both isomers
belonged to the same activity class, and the compounds were
disregarded if the isomers belonged to different activity classes.
In total, 134 active and 281 inactive compounds remained in the
curated dataset. Note that all compounds used as training examples
in this second virtual screening (VS) campaign were either extracted
from peer-reviewed sources (287 compounds) or from internal
screening under standardized conditions (128 compounds). This
has possibly resulted in more reliable and less noisy data, as
discussed later. The heatmap included in Supplementary Material
(Supplementary Figure S1) shows the molecular diversity of the
dataset. The dataset, along with activity class for each compound, is
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provided as Supplementary Material, in. csv format (Data Sheet
1.csv).

2.2 Dataset splitting into training, test and
validation sets

2.2.1 First ligand-based modelling
The dataset was representatively divided into three different sets:

a training set, used to train QSAR classifiers; a validation set, used for
the validation of the individual QSAR models and to select which
models (and how) would be combined into a model ensemble; and a
test set, used to assess the performance of the model ensembles. The
validation and test sets were complemented by decoys to provide
retrospective screening sets 1 and 2, as described in Section 2.4.1.
The representative partitioning of the dataset was generated using a
serial combination of clustering procedures. First, we used the
hierarchical clustering method included in LibraryMCS software
(version 17.2.13.0–ChemAxon), which relies on the Maximum
Common Substructure (MCS). From the resulting clusters, a
compound from each cluster was randomly chosen and used as a
seed to perform non-hierarchical clustering using the k-means
algorithm, as implemented in the Statistica 10 Cluster Analysis
module. Such procedure was performed in an independent
manner for the ACTIVE and INACTIVE categories.

2.2.2 Second ligand-based modelling
The dataset was representatively divided into three different

sets: a training set, used to train QSAR classifiers; a validation set,
used for the validation of the individual QSAR models and to
select which models (and how) would be combined into a model
ensemble; and a test set, used to assess the performance of model
ensembles. The validation and test sets were complemented by
decoys to provide retrospective screening sets 1 and 2,
respectively, as described in Section 2.4.2. To sample the
dataset representatively, we used the iterative Random
subspace Principal Component Analysis (iRaPCA) clustering
(Prada Gori et al., 2022a), an iterative in-house clustering
algorithm based on feature bagging, dimensionality reduction
and the k-means algorithm, which provides almost optimal
performance in benchmark exercises (Prada Gori et al., 2022a;
2022b). Compounds from the ACTIVE and INACTIVE
categories were clustered separately.

2.3 Molecular descriptor calculation,
modelling procedure and model validation

2.3.1 First ligand-based modelling
A total of 3668 conformation-independent descriptors were

computed using Dragon 6.0. Using the random subspace
approach (Yu et al., 2012; El Habib Daho and Chikh, 2015)
1,000 subsets of 200 descriptors each were obtained. A dummy
dependent variable was then introduced, which took a value of
1 for compounds within the ACTIVE class and a value of 0 for
compounds belonging to the INACTIVE class. 1,000 linear
classifiers, one per subset, were obtained using a Forward
Stepwise procedure. A maximum of eight descriptors per

model were allowed to avoid overfitting. In addition, a
maximum Variance Inflation Factor (VIF) of 2 was tolerated.
No descriptor with a regression coefficient with a p-value above
0.05 was allowed into the model. The R environment was used
for all data analyses. The R package data table (https://cran.r-
project.org/package=data.table) was used to process the
datasets.

2.3.2 Second ligand-based modelling
A total of 1613 conformation-independent descriptors were

computed using the Mordred package (Moriwaki et al., 2018).
Descriptors with a variance below 0.05 across the training set
were excluded from the descriptor pool. The random subspace
approach (Yu et al., 2012; El Habib Daho and Chikh, 2015) was
applied to the remaining descriptors to obtain 1,000 subsets of
200 descriptors each. Highly correlated descriptors (Pearson’s
correlation >0.85) were not allowed within a given subset. A
dummy dependent variable was then introduced, which took a
value of 1 for compounds within the ACTIVE class and 0 for
compounds belonging to the INACTIVE class. 1,000 linear
classifiers, one per subset, were obtained using a Forward
Stepwise procedure. A maximum of 16 descriptors per model
were allowed to avoid overfitting.

The probability of spurious correlations and the robustness of
the models were assessed using Fisher’s randomization and Leave-
Group-Out (LGO) cross-validation, respectively. In each LGO
round, randomly stratified subsets of 10% of the total training set
samples were removed from the training set. A total of
500 randomizations and 500 LGO folds were considered. The
results for both internal validation tests were reported as the
average accuracy across 500 rounds and compared with the
accuracy of the model inferred from the original training set, as
well as the No-Model error rate (NOMER) (Gramatica, 2013). The
predictive ability of each model was further assessed using external
validation.

2.4 Retrospective screening experiments

2.4.1 First ligand-based modelling
To estimate the enrichment performance of the models from the

first screening campaign in a realistic setting, two retrospective VS
experiments were conducted. The first retrospective screening was
performed by seeding the active compounds of the validation and
the test sets among a high number of decoys generated through the
Directory of Useful Decoys enhanced (DUD-e, Mysinger et al.,
2012). Different enrichment metrics have been calculated to
assess the enrichment behavior of the models: the Area Under
the Receiver Operating Characteristic curve (AUC ROC), the
Boltzmann-Enhanced Discrimination of ROC (BEDROC), the
Area Under the Precision Recall curve (AUPR), and the
Enrichment Factor in the top-ranked 1% (EF0.01) (Truchon and
Bayly, 2007; Saito and Rehmsmeier, 2015). The best-performing
individual models in this first screening were combined as described
in the following subsection, and the performance of the resulting
ensembles was assessed through a second retrospective screen,
where the active compounds of retrospective screening set 1 were
seeded among a high number of decoys, also obtained via DUD-e.
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2.4.2 Second ligand-based modelling
To estimate the enrichment performance of the models from the

second screening campaign, two retrospective VS experiments were
also conducted. The first retrospective screening was performed by
seeding the validation set among a high number of decoys generated
through the LIDEB’s Useful Decoys (LUDe) tool (Fallico et al.,
2022). LUDe is an in-house method conceptually similar to DUD-e,
but additional filters have been implemented to ensure the
topological dissimilarity between the decoys and the active
compounds that are used as queries, usually resulting in enhanced
degree of embedding between the decoys and the queries, as well in
reduction of the doppelganger score (Prada Gori et al., 2022b). Different
enrichment metrics have been calculated to assess the enrichment
behavior of the models: the Area Under the Receiver Operating
Characteristic curve (AUC ROC), the Boltzmann-Enhanced
Discrimination of ROC (BEDROC), the Area Under the Precision
Recall curve (AUPR), and the Enrichment Factor in the top-ranked 1%
(EF0.01) (Truchon and Bayly, 2007; Saito and Rehmsmeier, 2015). The
best-performing individual models in this first screening were
combined, as described in the following subsection, and the
performance of the resulting ensembles was assessed through a
second retrospective screen, where the test set was seeded among a
large number of decoys, also obtained via LUDe. Since normality and/or
equal variances assumptions were not met by the enrichment metrics
used, the performances of the individual models and the best model
ensemble were statistically compared using the Yuen-Welch test
(Wilcox, 2012).

2.5 Ensemble learning

The combination of individual classifiers into meta-classifiers
frequently provides better generalization and predictivity (Min,
2016; Hyun et al., 2020); we have thus selectively combined the
best individual classifiers, based on their performance in the first
retrospective screening. Four different combination schemes were
tested: the average (AVE) and the minimum (MIN) score, the
average ranking (RANK) provided by the model ensembles, and
the average voting (VOT) as computed by Zhang and Muegge
(Zhang and Muegge, 2006).

2.6 Molecular docking

As part of a previous investigation, we benchmarked three docking
protocols for the SARS-CoV-2MPro system: QuickVina2, AutoDock4-
GPU, and AutoDock4 hydrated. Using the original dataset of
816 molecules compiled for the first VS campaign and a set of
52 SARS-CoV-2 MPro monomeric structures released before
October 2020 retrieved from https://covid-19.bioreproducibility.org
(a database of carefully curated and validated COVID-19 protein
structures), we assessed the pose prediction and the VS accuracy of
these protocols. Regarding the pose prediction, evaluated by means of
re-docking and cross-docking experiments, all docking protocols were
able to reproduce the experimental binding mode with only modest
errors in terms of root-mean-square-deviation (RMSD).However, none
of themwas able to retrieve active compounds at the top positions of the
ranking, as reflected by the poor enrichment metrics obtained.

The best-performing docking protocol in terms of pose
prediction accuracy was AutoDock4-GPU, which yielded a mean
RMSD of 0.955 ± 0.658 Å for re-docking and cross-docking
simulations across the entire set of structures and ligands.
Among them, the neutron diffraction crystal structure (PDB-ID:
7JUN) achieved one of the smallest RMSD values (0.914 ± 0.699 Å),
calculated as the median of all ligands (Supplementary Figure S2).
Based on these results, the 7JUN structure was selected to reevaluate
the VS accuracy of the protocol using the refined dataset compiled
for QSAR modelling (415) in this investigation. Some molecules in
this refined dataset failed to pass our ligand preparation pipeline;
therefore, they were excluded. Thus, the final validation set (408)
was comprised of 134 active and 274 inactive compounds. All
docking conditions were the same as those previously described.
Briefly, a grid box of 20 × 20 × 20 Å enclosing all crystallized
ligands was defined with the default spacing of 0.375 Å. The grid
maps were calculated using Autogrid, the number of energy evaluations
and the local-search algorithmwere set on-the-fly for each ligand based
on a built-in heuristic, and the automatic stop criterion based on energy
convergencewas turned on. A total of 200 docking runswere performed
for each ligand. All other parameters were set to default values.

Because of the good results obtained for pose prediction
accuracy, the same docking protocol was used to predict and
analyze the binding mode of representative structures selected
during the second VS campaign with the ligand-based model and
experimentally tested.

2.7 Prospective virtual screening

The model ensemble that showed the best performance in the
second retrospective screen of each campaign was used in the VS of
an in-house library of 6,266 chemical compounds (note: 2,895 of
them available in solid state or in solution). The molecular
representations of the compounds in each database were
standardized as previously described for the datasets. The
optimal cutoff value for the ensemble score was chosen through
the analysis of Positive Predictive Value (PPV) surfaces (Bélgamo
et al., 2020). As a final selection criterion, we assessed whether the in
silico hits belonged to the applicability domain of the model, using
the leverage approach (Yasri and Hartsough, 2001), where 3d/n is
defined as the critical value, d is the number of descriptors included
in each model and n is the number of training set compounds.

2.8 Chemical compounds

The compounds were provided by a large consortium of
chemistry groups that co-authored this study. For the majority of
the compounds, details about their synthesis and characterization
can be found in the following references (Hayashi et al., 1980; Mallet
et al., 1993; Zagotto et al., 1993; Agnihotri et al., 2005; Agnihotri and
Misra, 2005; Crich and Vinod, 2005; Bohn et al., 2006; Bohn et al.,
2007; Porcal et al., 2007; Chilin et al., 2008; Ducray et al., 2008;
Castro et al., 2009; Mong et al., 2009; Zhang et al., 2009; Sato et al.,
2010; Spampinato et al., 2010; Basu et al., 2011; Colombo et al., 2011;
Tatina et al., 2012; Benítez et al., 2016; Ribaudo et al., 2016; Jäger
et al., 2019; Posada and Serra, 2019; Posada et al., 2020; Zhu and Xie,
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2020; Irabuena et al., 2022; Istifli et al., 2022; Posada et al., 2022;
Colobbio et al., 2023) or will be published elsewhere.

2.9 Expression and purification of
SARS-CoV-2 MPro

The recombinant form of SARS-CoV-2MPro was expressed and
purified as essentially described in Zhang et al., 2020, except that the
fractions eluted from the Mono Q column containing recombinant
protein with high purity were pooled and subjected to buffer
exchange (20 mM Tris, 150 mM NaCl, 1 mM EDTA, 1 mM DTT,
pH 7.8) using a PD 10 desalting column.

2.10 MPro activity assay

MPro activity was determined by de-quenching of Edans
fluorescence (5-((2-Aminoethyl)amino)naphthalene-1-sulfonic
acid) upon proteolytic cleavage of a synthetic peptide (Dabcyl-
KTSAVLQ↓SGFRKM-E (Edans)-NH2; United Biosystems-USA).
The assay was performed in a 96-well black microplate (total
assay volume 200 μL) and read using a Varioskan Lux microplate
reader (Ex/Em = 340 nm/490 nm). Different parameters were
routinely controlled for validating the assay (signal to
background ratio >7, Z′ factor >0.75, and relative fluorescence
units >10). All samples were analyzed at least in duplicate.

For the screening of the chemolibrary, the compounds (assay
concentration: 10 or 25 μM, freshly prepared from solid or from
stock solutions in 100% v/v DMSO stored at −20°C) were incubated
with MPro (90 nM) in reaction buffer (Tris 20 mM, pH 7.8, 150 mM
NaCl, 1 mM EDTA, 5% v/v DMSO) for 60 min at 25°C. The peptidic
substrate (5 μM) was then added and fluorescence monitored for at
least 30 min. Blank (reaction buffer + substrate), full-activity (MPro
+ substrate) and inhibition (MPro treated with 25 μM ebselen or
iodoacetamide + substrate) controls were run in parallel. Drugs that
inhibited MPro activity ≥50% under such conditions were
considered hits and their IC50 values determined by measuring
enzyme activity at different compound concentrations (7–8 points
concentrations prepared in serial dilutions) and under the
conditions described above. The data were fitted to the best
linear or nonlinear equations using GraphPad Prism Software
(version 6.0) to obtain the IC50.

2.11 Cytotoxicity assays in human-derived
cell lines

Cytotoxicity against the human lung cell line A549 (ATCC
CCL-185™) was determined for the most potent MPro inhibitors
using the WST-1 Cell Proliferation Reagent (Roche). A549 cells
were grown in DMEM (Gibco) supplemented with 10% v/v fetal
bovine serum (FBS; GIBCO) at 37°C in an atmosphere of 5% CO2.
Cells with no more than 12 passages were used in the cytotoxicity
assays. To assess cell viability, 100 µL of a cell suspension (2 × 104

cells/well) were seeded in a 96-well cell culture plate and incubated
overnight at 37°C and a 5% CO2 atmosphere. Next, the compounds
dissolved in culture medium with 0.5% v/v DMSO were added at

different concentrations to the wells (100 µL/well) with three
replicates each and incubation extended for additional 24 h.
Control wells included untreated cells (cytotoxicity negative
control), cells treated with 0.1% Triton X-100 (cytotoxicity
positive control) and cells treated with 0.5% DMSO (vehicle
control). After incubation, WST-1 (Roche) diluted 1:10 in
culture medium was added (100 µL/well) and the culture plate
was incubated for 1 h at 37°C. Absorbance was measured at 450 nm
in a microplate reader. The cytotoxicity of each compound was
expressed as percentage of cell viability normalized to controls.

2.12 SARS-CoV-2 cell infection assay

The antiviral activity of the MPro hits was determined using a
384-wells microplate fluorescent-based cell infection assay for
SARS-CoV-2 (Jeon et al., 2020). The experiments were
performed in compliance with the guidelines of the Korean
National Institutes of Health, using enhanced Biosafety Level 3
(BSL-3) containment procedures in laboratories approved for use by
the Korea Disease Control and Prevention Agency (KDCA). Briefly,
Vero cells were sourced fromATCC (CCL-81) and grown in DMEM
(Welgene) supplemented with 10% v/v FBS and 1X Antibiotic-
Antimycotic solution (Gibco) at 37°C and a 5% CO2 atmosphere.
Vero cells were seeded at 1.2 × 104 cells/well in DMEM,
supplemented with 2% v/v FBS and 1X Antibiotic-Antimycotic
solution in black 384-well, μClear plates (Greiner Bio-One), 24 h
prior to the experiment. Then, the compounds or reference drugs
(ten-point concentrations) and SARS-CoV-2 (βCoV/KOR/
KCDC03/2020; MOI = 0.0125) were added to the wells and
incubation extended for additional 24 h. Chloroquine
diphosphate (Sigma), Remdesivir (MedChemExpress) and
Lopinavir (Selleckchem) were used as the reference drugs. After
24 h of incubation, the cells were fixed and analyzed by
immunofluorescence using an anti-SARS-CoV-2 nucleocapsid
(N) protein antibody (Sino Biological Inc.) and an Alexa Fluor
488 goat anti-rabbit IgG (H + L) secondary antibody. The cell nuclei
were stained with Hoechst 33,342 (Molecular Probes). Fluorescence
microscopy images were taken with an Operetta CLS (PerkinElmer)
and analyzed using Columbus™ (PerkinElmer) to quantify cell
numbers and infection ratios. Antiviral activity was normalized
to positive (mock no virus with 0.5% v/v DMSO) and negative
(virus with 0.5% v/v DMSO) controls in each assay plate. IC50 values
were calculated from data fit to sigmoidal equations using XLfit
(Version 5.5) or GraphPad Prism Software (version 8). The quality
of each assay was controlled by the Z′-factor and the coefficient of
variation in percent (%CV).

3 Results

3.1 Ligand-based modelling

3.1.1 First ligand-based modelling campaign
Table 1 shows the composition (in terms of active and

inactive compounds) of the training, validation and test sets
and how the validation and test sets were enriched with
putative inactive compounds to provide, respectively, the
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chemical libraries used in retrospective screen 1 (to validate
the enrichment performance of individual models and train
the model ensembles) and retrospective screening 2 (to
validate the enrichment performance of the model ensembles).

1,000 individual linear models (i.e., 1,000 individual classifiers)
were generated from the training set by applying a combination of
feature bagging and Forward Stepwise on a pool of 3,668 Dragon
molecular descriptors. The individual classifiers were validated
both internally and externally, initially employing a score cutoff
value of 0.5 to discriminate between active and inactive
compounds. The accuracy (Acc) over the training set and the
internal validation results for the five best individual classifiers are
summarized in Table 2. The five best individual models and the
meaning of their molecular descriptors have been included as
Supplementary Material. It is obvious that the models are not
particularly robust, and on that basis, we decided to proceed to
selective ensemble learning.

The systematic combination of the 2 to 100 individual models
that showed the best performance in the first retrospective

screening was performed using four different operators to
combine the scores of the individual models comprising the
ensemble. The model ensemble obtained by combining
50 models via the MIN operator (MIN-50) provided the best
results across different metrics, greatly improving early and
overall enrichment. The results in both retrospective screening
experiments are shown in Table 3; for comparative purposes, the
results of the best individual model (MODEL 324) are also
included. A PPV surface for the first retrospective screening
using MIN-50 was generated to select an optimal cutoff for
the prospective VS (Figure 1).

3.1.2 Second ligand-based modelling campaign
Table 4 shows the composition of the training, test, and

validation sets used in the second modelling and VS campaign
(including the composition of each in terms of active and inactive
compounds), and how the test and validation sets were enriched
with putative inactive compounds from LUDe to provide the
chemical libraries used for retrospective screening 1 and
retrospective screening 2.

Again, 1,000 individual linear models were generated from the
corresponding training set by applying a combination of feature
bagging and Forward Stepwise on a pool of 1,613 Mordred
molecular descriptors. The individual classifiers were validated
both internally and externally, initially using a score cutoff value
of 0.5 to discriminate between active and inactive compounds. The
internal validation results for the five best individual classifiers,
according to their AUC ROC in the first retrospective screening, are
summarized in Table 5. The five best individual models and their
molecular descriptors have been included in the Supplementary
Material. It can be observed from the results of the randomization
test that the chance of spurious correlations between the dependent
and independent variables is rather low, and the accuracy of the
randomized models is invariably similar to 0.5, as expected. In
contrast, the results of the cross-validation experiments indicate

TABLE 1 Active and inactive compound composition of the training, validation, and test sets and both retrospective screening sets in the first VS campaign. The
validation and test sets were expanded with decoys from DUD-e to obtain the retrospective screening sets 1 and 2; the final ratio of active compounds in each
retrospective screening sets (Ya) is also provided in the table.

Dataset Active True inactive Putative inactive or decoys Ya

Training 42 42 - 0.5

Validation 17 348 850 0.0142

Test 17 348 850 0.0142

TABLE 2 Accuracy over the training set and cross-validation of the top five
individual models in the first retrospective screening. In the case of the cross-
validation and randomization tests, the mean accuracy across 500 rounds is
provided; the standard deviation of the mean is presented in parentheses. The
models were ordered according to their performance in the first retrospective
screening.

Model Acc (training set) Mean Acc (cross-validation)

MODEL 324 0.845 0.650 (0.153)

MODEL 644 0.798 0.581 (0.163)

MODEL 739 0.774 0.655 (0.159)

MODEL 510 0.845 0.682 (0.148)

MODEL 390 0.857 0.678 (0.148)

TABLE 3 Performance of the best individual model and the best model ensemble in retrospective screening experiments. Standard deviations of the enrichment
metrics (obtained using bootstrapping) are presented within parentheses.

Model Retrospective screen AUCROC BEDROC (α = 100) AUPR EF0.01

MODEL 324 1 0.883 (0.013) 0.017 (0.007) 0.068 (0.007) 0

2 0.878 (0.017) 0.061 (0.018) 0.092 (0.013) 0

MIN-50 1 0.930a (0.029) 0.533a (0.063) 0.406a (0.067) 33.98a (6.29)

2 0.905a (0.019) 0.438a (0.073) 0.277a (0.066) 32.47a (6.60)

aStatistically different from the best individual model on the same chemical library, p < 0.05.
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some degree of overfitting (systematically, the mean accuracy across
the cross-validation folds is below the accuracy in the training set,
for the five models).

Owing to the suboptimal results of the individual classifiers in
the cross-validation, we used ensemble learning to improve
robustness. The performance of the individual models and the
model ensembles was comparatively assessed in two retrospective
screening campaigns, where known MPro inhibitors were seeded
among (known and putative) non-inhibitors. The best individual
model displayed an AUC ROC of 0.934 ± 0.007, a BEDROC of

0.274 ± 0.057, an AUPR of 0.221 ± 0.038 and an EF0.01 of 0.29 ±
0.07 in the first retrospective screen, indicating that there was plenty
room for improvement (note that, despite the good AUC ROC, the
early enrichment metrics clearly exhibit suboptimal values).

The systematic combination of the 2 to 100 individual models
that showed the best performance in the first retrospective screening
was performed, using four different operators to combine the
individual models’ scores (Figure 2A). The model ensemble
obtained by combining 22 models via the MIN operator (MIN-
22) provided the best results across different metrics, greatly

FIGURE 1
PPV surface from the first retrospective in silico screening against MPro (First ligand-based modelling campaign).

TABLE 4 Composition of active and inactive compounds in the training, validation and test sets used for model training and retrospective screening in the second
VS campaign. The validation and test sets were expanded with LUDe decoys to provide chemical libraries to be used in retrospective screenings 1 and 2,
respectively. The final ratio of active compounds in each retrospective screening sets (Ya) is also provided in the table.

Dataset Active True inactive Putative inactive or decoys Ya

Training 80 80 - 0.5

Validation 27 101 1446 0.0174

Test 27 100 1430 0.0176

TABLE 5 Internal validation of the top five individual models in the first retrospective screening. In the case of the cross-validation and randomization tests, the
mean accuracy across 500 rounds is provided, and the standard deviation of the mean is presented in parentheses. The models were ordered according to their
performance in the first retrospective screen.

Model Acc (training set) Mean Acc (cross-validation) Mean Acc (randomization)

MODEL 25 0.825 0.714 (0.102) 0.501 (0.106)

MODEL 361 0.813 0.701 (0.109) 0.496 (0.095)

MODEL 77 0.819 0.705 (0.115) 0.498 (0.099)

MODEL 273 0.831 0.730 (0.104) 0.500 (0.094)

MODEL 442 0.894 0.673 (0.115) 0.500 (0.085)
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improving early and overall enrichment. The results in the two
retrospective screenings are shown in Table 6; for comparative
purposes, the results of the best individual model (MODEL 25)
have also been included.

3.2 Prospective virtual screening campaigns
and experimental validation

3.2.1 First screening campaign
By analyzing the PPV surfaces (Figure 1) built upon the first

retrospective screen, an optimized score cutoff value of 0.242 was
chosen for the MIN-50 ensemble to identify in silico hits,
corresponding to an estimated specificity of 0.981 and a
minimum PPV value of 0.253 for a hypothetical yield of active
compounds (Ya) of 1%. This suggests that, if there is one active
compound per 100 compounds in the screened chemical library, one
every four in silico hits is theoretically expected to confirm the
prediction when submitted to experimental confirmation. If a Ya of
0.1% was assumed, the same score cutoff value would determine a
minimum PPV of 0.04, meaning that more than least 1 in 25 in silico
hits would theoretically confirm the predicted activity.

The MIN-50 was applied in the VS of our in-house library
comprising 6,266 compounds. The ligand-based model ensemble
identified 83 in silico hits from the in-house database, 18 of which
were also chosen by structure-based screening. The identities of

these in silico hits are shown in Supplementary Material in. csv
format (Data sheet 2.csv). Based on compound availability, 46 of
these hits, belonging to 11 different families, and 100 closely
related derivatives were subjected to experimental screening (see
Supplementary Table S1).

The screening assay was adapted to favour the detection of weak
competitive or slow-binding inhibitors by pre-incubating the
compound (10 μM) with MPro (90 nM) for 60 min prior to the
addition of the fluorogenic substrate at a sub-KM concentration
(5 μM). None of the tested molecules fulfilled the hit criteria: MPro
activity ≤50% at 10 μM.

Next, several virtual hits (34) were further tested at a 2.5-fold
higher concentration (25 μM; see Supplementary Table S1). As
shown in Table 7 and Supplementary Table S1, none of the in
silico hit candidates was able to significantly inhibit MPro activity,
which ruled out that the initial and more demanding hit criterion
was responsible for the negative outcomes.

The screening was further extended to 44 analogues of the
previously tested compounds. Among them, only one benzoyl-
thiazol derivative (1a) and one glycoside molecule (a pyranose
substituted with three benzyl and one phenylsulfinyl moiety,
compound 7a) resulted active against MPro (IC50 < 25 μM;
Table 7; Figure 3C).

Regarding the 40 compounds unrelated to the VS hits, two set of
molecules were tested: flavonoids (pure samples or partially purified
extracts) and a family of synthetic pyrazoles. The former were

FIGURE 2
Data plots from retrospective and prospective in silico screening against MPro. (A) AUC ROCobtained in the retrospective screening as a function of
the number of combined models for each operator. (B) Two different views of the PPV surface of the MIN-22 ensemble.

TABLE 6 Performance of the best individual model and the best model ensemble in retrospective screening experiments. Standard deviations of the enrichment
metrics (obtained through bootstrapping) are presented in parentheses.

Model Retrospective screen AUCROC BEDROC (α = 100) AUPR EF0.01

MODEL 25 1 0.934 (0.007) 0.274 (0.057) 0.221 (0.038) 0.29 (0.07)

2 0.837 (0.025) 0.115 (0.027) 0.101 (0.017) 0.04 (0.04)

MIN-22 1 0.982a (0.04) 0.739a (0.039) 0.663a (0.044) 42.45a (4.38)

2 0.900a (0.025) 0.614a (0.051) 0.489a (0.052) 38.42a (4.32)

aStatistically different from the best individual model on the same chemical library, p < 0.001.
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TABLE 7 Most active compounds targeting MPro identified during the 1st round of screening.

Category Compound
code

Structure MPro activity (%) at 25 μM or
IC50 (μM)

VSa

hit

BBHPPb 1a 34.8 ± 3.4 No

PMc

2a 32.1 ± 1.4d Yes

3a 64.9 ± 11.6 Yes

QZe 4a 59.4 ± 3.6 No

SFHf 5a 65.6 ± 10.9 Yes

Gg

6a 60.9 ± 1.5 No

7ah 20.2 ± 1.9d No

(Continued on following page)
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chosen based on recent reports describing their anti-MPro (Jang
et al., 2020) or anti-SARS-CoV-2 activity by blocking viral entry into
host cells (Henss et al., 2021). The latter were selected considering
the presence of this scaffold in several compounds with activity
against different viruses and molecular targets thereof (reviewed in
Khan et al., 2016). Interestingly, epicatechin gallate (5b) exerted full
inhibition of MPro at 25 μM (Table 7), whereas the non-galloylated
epicatechin and partially-purified flavonoid-enriched fractions from
grapes showed a negligible activity against the viral protease
(Supplementary Table S2). Of the 35 pyrazoles assayed, seven
showed MPro inhibition in the range of 15%–30% at 10 or
25 μM, six appeared to stimulate MPro activity by more than
15% and the remaining ones proved inactive or interfered with
the assay (Supplementary Table S2). In conclusion, none of the
tested pyrazoles qualified as MPro hit.

The antiviral activity of epicatechin gallate (5b) was not
investigated here but a recent study showed that the related
analogue epigallocatechin gallate inhibited SARS-CoV-
2 replication (IC50 = 1.73 μg/mL or 3.9 μM in a 72 h assay)
(Henss et al., 2021). The bioactivity of the second MPro hit
identified during the 1st screening campaign, glycoside 7a, was
evaluated and proved to be weakly active against SARS-CoV-2
(15%–21% inhibition of viral replication at 25 μM and 50 μM,
respectively; Figure 3F) and not cytotoxic to Vero cells (CC50 >
50 μM; Figure 3I).

Considering these results together, the hit ratio for the VS
screening candidates from a large diversity of chemical families
was null and increased to 1.4% when the experimental screening was

extended to related molecules (two hits: 1a and 7a). In contrast, non-
VS-guided experimental screening performed on 40 molecules
belonging to two unrelated chemical families (i.e., flavonoids and
pyrazoles) led to the detection of one hit (hit ratio: 2.5%), which was
closely related to a molecule previously identified as MPro inhibitor
(Jang et al., 2020). This finding supported the idea that the MPro
ligand-based search algorithm developed had major predictive
deficiencies.

Based on these disappointing results, the search algorithms were
subjected to revision, fed with the new experimental information
and with validated data obtained for empiric candidates (results to
be published elsewhere), and the ensemble models and cut-off scores
were optimized as in the first VS campaign.

3.2.2 Second screening campaign
In this case, by analyzing PPV surfaces (Figure 2B) built upon

the second retrospective screening experiment, an optimized score
cutoff value of 0.546 was chosen for theMIN-22 ensemble to identify
in silico hits, corresponding to an estimated specificity of 0.998, a
minimum PPV value of 0.634 for a hypothetic Ya of 1% and of
0.147 for Ya = 0.1%. From these theoretical estimations, it can be
observed that the ensemble of ligand-basedmodels in this second VS
campaign seems to significantly outperform the one used in the first
campaign.

The MIN-22 was applied in the prospective VS of the in-house
library, which yielded 43 MPro hit candidate molecules. The
identities of these in silico hits are shown in Supplementary
Material in. csv format (Data sheet 3.csv).

TABLE 7 (Continued) Most active compounds targeting MPro identified during the 1st round of screening.

Category Compound
code

Structure MPro activity (%) at 25 μM or
IC50 (μM)

VSa

hit

Gg 8a 67.0 ± 2.5 No

Fi 5b 0.0 ± 0.3 No

aVS: virtual screening.
bBBHPP: 1-(benzo[d]thiazol-2-yl)-4-benzoyl-3-hydroxy-5-phenyl-1H-pyrrol-2(5H)-one.
cPM: petidemimetic.
dIC50 (μM).
eQZ: quinazoline.
fSFH: sulfonatofuran hydrazine bithiazole.
gG: glycosides.
hIC50 SARS-CoV-2 > 50 μM, CC50 Vero cells >50 μM.
iF: flavonol.
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As expected from the strategy applied to optimize the searchmodel,
none of the new hit candidates resembled those from the 1st VS
(Table 7; Supplementary Table S1). The new in silico hits can be
grouped into four major families: benzofuroxans, chalcones,
benzimidazol-2-yl-benzensulfonamides and furan-hydrazono-
dihydrothiazoles (Tables 8–10) in addition to several singletons
(Table 11). Constrained by compound availability, a total of 28 of
the 43 predicted hits were assayed againstMPro at a fixed concentration
of 25 μM. The experimentally confirmed hit ratio for each compound
family was of 60% for benzofuroxans, 50% for chalcones, 25% for
benzimidazol-2-yl-benzensulfonamides, 0% for furan-hydrazono-
dihydrothiazoles, and 12% for the singletons. Thus, on average, the
confirmed hit ratio of the second VS campaign was of 29%, a value that
largely surpasses the ratio obtained in the 1st screening (1.4%–2.5% for
VS-related or -unrelated candidates).

Most hits in the benzofuroxan series are monosubstituted
with an alkyl moiety linked to different aryl or heterocyclic rings.
The chemical nature of these groups appears to be determinant of

the inhibitory potency towards the viral protease and the virus
(Figures 3A, D). For instance, compounds 2d-5d harbor a
chlorobenzene group attached to the benzofuroxan moiety by
different alkyl linkers with those having thiophenol α,β-
unsaturated (3d), sulfoxide α,β-unsaturated (4d) and keto α,β-
unsaturated (5d) groups being the most potent (three-digit nM
IC50). A halogenated and nitrated benzofuroxan substituted with
a sulfonyldianiline moiety (22d) showed a similar inhibitory
activity against MPro. The thiophenol (3d) and sulfoxide (4d)
analogues (IC50 vs. virus ~8 μM) proved more active than 5d and
22d (IC50 vs. virus ~44 μM) in inhibiting the proliferation of
SARS-CoV-2. The antiviral potency of 3d and 4d was similar or
2-folds higher than that attained by the control drugs ebselen
(IC50 vs. virus 10 μM) and Remdesivir (IC50 vs. virus 8 μM), or
Chloroquine (IC50 vs. virus 18 μM) and Lopinavir (IC50 vs. virus
22 μM), respectively. However, compared to these drugs (SI
from >2.3 to >8.4), the selectivity index of the benzofuroxans
is marginal (SI > 1.1-2) when Vero cells are taken as host cell

FIGURE 3
Concentration-dependent activity of the identified hits. The inhibitory activity of the selected compounds is shown for (A–C) MPro, (D–F) SARS-
CoV-2 infected Vero cells, and (G–I) viability of Vero cells. In orange, the data for the benzofuroxan derivatives [plots (A, D, G)]; in violet, those
corresponding to chalcones [plots (B, E, H)]; in green, a glycoside hit; in magenta, a sulphonamide hit; in light blue, different singletons [plots (C, F, I)]. All
compounds were tested at ≥7 different concentrations (serial 1/3 or 1/2 dilutions for MPro assays or biological assays, respectively), at least in
duplicate. Ebselen (EbSe) was included in all assays as positive control.
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TABLE 8 Benzofuroxan hits identified by the 2nd screening campaign. Compounds labelled or not with an asterisk correspond to in silico hits and structurally-
related ones, respectively.

Compound code Structure MPro activity (%) or
IC50 (μM)

IC50 SARS-CoV-
2 (μM)

CC50 (μM) and SIa

Vero
cells

A549 cells

1d* 89.3 ± 1.9 NDb ND ND

2d* 53.2 ± 0.2 ND ND ND

3d* 0.73 ± 0.16c 8.3 15.2 (1.8)a <50

4d* 0.121 ± 0.002c 7.3 15.2 (2.1)a 50-100

5d* 0.64 ± 0.02c 43.2 >50 (>1.2)a >50

6d 85.8 ± 3.5 ND ND ND

7d 66.0 ± 4.0 ND ND ND

8d 91.6 ± 0.1 ND ND ND

9d 81.4 ± 21.5 ND ND ND

10d 55.6 ± 3.4 ND ND ND

11d 70.6 ± 0.8 ND ND ND

(Continued on following page)
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TABLE 8 (Continued) Benzofuroxan hits identified by the 2nd screening campaign. Compounds labelled or not with an asterisk correspond to in silico hits and
structurally-related ones, respectively.

Compound code Structure MPro activity (%) or
IC50 (μM)

IC50 SARS-CoV-
2 (μM)

CC50 (μM) and SIa

Vero
cells

A549 cells

12d 56.2 ± 0.5 ND ND ND

13d 58.0 ± 0.3 ND ND ND

14d 73.8 ± 4.4 ND ND ND

15d 67.4 ± 1.8 ND ND ND

16d 71.9 ± 11.0 ND ND ND

17d 116.1 ± 15.0 ND ND ND

18d 71.2 ± 0.9 ND ND ND

19d 98.6 ± 2.4 ND ND ND

20d 62.6 ± 4.9 ND ND ND

(Continued on following page)
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model (Figure 3G). Furthermore, 3d and 4d (CC50 ≤ 50 μM), but
not 2d and 22d (CC50 > 50 and 100 >μM, respectively), displayed
cytotoxicity against a human lung cell line (A549).

Among the chalcone series, those containing naphthalene
groups (25d, 27d and 28d) were capable of inhibiting MPro with
low to sub-μM IC50 values (0.5, 5.8 and 1.4 μM, respectively;
Figure 3B). For these hits, the mono-naphthalene derivative
(25d) was 3- to 12-folds more potent than those bi-substituted
with a naphthalene or a naphthalenol moiety (27d and 28d).
Interestingly, the isomerism of the naphthalenol ring showed to
be relevant for the anti-protease activity, since the isomer 27d was 4-
folds more active than 26d (45% MPro inhibition at 25 μM).
Furthermore, if the naphthyl group is connected to the rest of
the molecule by an alpha-carbon atom (28d), instead of a beta
carbon (27d or 26d), the anti-MPro activity increases by 4- or 19-
folds, respectively. With respect to the anti-SARS-CoV-
2 activity, the most potent chalcone against MPro (25d) also
proved to be the most active against the virus (IC50 vs virus
39 μM), though more than 2-folds less active than the control
drugs (Table 8). In contrast, 27d lacked antiviral activity
whereas the analogue 28d displayed activity against SARS-
CoV-2 (18%–50% inhibition) at concentrations above 12.5 μM
that also impaired cell viability by ~25% (Figures 3E, H).

None of the benzimidazol-2-yl-benzensulfonamides (29d-32d)
and furan-hydrazono-dihydrothiazoles (33d-36d) rated as in silico
MPro hits met this expectation at the experimental level (Table 10)
but exhibited moderate (25% and 42% inhibition for 32d and 30d,

respectively; Figure 3C) or low (12%–20% for the remaining
molecules) inhibitory activity against the protease when tested at
25 μM.

With respect to the singletons (Table 11; Figure 3C), only one
compound (39d) was experimentally confirmed as MPro hit with an
IC50 of 2 μM. Five of the singletons (37d, 38d, 40d-42d) showed a
moderate inhibitory activity of MPro (protease inhibition between
20% and 40%) whereas three lacked activity against the protease
(43d-45d). The antiviral activity was evaluated for two singletons,
namely, 39d and 37d, and proved to be null (Figure 3F). In the case of
39d, the apparent inhibition of SARS-CoV-2 replication observed at
50 μM(18% inhibition; Figure 3F) can be ascribed to the cytotoxic effect
the compound exerted on the host cell (13% impairment of cell viability;
Figure 3I).

3.3 Molecular docking

During target-based VS, a database of compounds is docked into
the 3D structure/s of the target, and sorted according to their predicted
binding energy. The algorithms available for pose generation and the
scoring functions are predefined in each docking software, so the
success of a target-based VS in terms of pose and score prediction
highly depends on the software/algorithms selected and the system
under study.

In the case of SARS-CoV-2 MPro, the VS accuracy of the
docking-based model did not improve compared to our previous

TABLE 8 (Continued) Benzofuroxan hits identified by the 2nd screening campaign. Compounds labelled or not with an asterisk correspond to in silico hits and
structurally-related ones, respectively.

Compound code Structure MPro activity (%) or
IC50 (μM)

IC50 SARS-CoV-
2 (μM)

CC50 (μM) and SIa

Vero
cells

A549 cells

21d 78.7 ± 3.2 ND ND ND

22d 0.37 ± 0.085c 44.80 >50 (>1.1)a >100

Control (Ebselen) 0.049 ± 0.007c 9.7 >50 (>5.2)a >100

Remdesivir ND 7.8 >50 (>6.4)a ND

Chloroquine ND 17.8 >150 (>8.4)a ND

Lopinavir ND 21.5 >150 (>2.3)a ND

aSI: selectivity index = CC50 mammalian cell/IC50 SARS-CoV-2.
bND: not determined.
cIC50 (μM).
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validation (AUCROC: 0.484 ± 0.029). This is in line with similar
findings emerging from other investigations, where most docking
protocols failed to correctly discriminate between experimentally
confirmed active and inactive compounds, suggesting an intrinsic
limitation of the methodology for this particular system, rather than
a data quality issue (Alves et al., 2021; Llanos et al., 2021; Zev et al.,
2021; Macip et al., 2022).

Conversely, as previously mentioned, the software has the
ability to accurately reproduce the experimental conformation of
the ligands in the MPro binding site (pose prediction accuracy);
therefore, the interactions between the target and representative
active and inactive compounds reported in this investigation
were simulated.

Figure 4A shows the binding poses predicted for the most active
compounds of the benzofuroxan family. Compounds 3d, 4d, and 5d
exhibited the same orientation in the active site, promoting polar and
hydrogen-bonding interactions between the heteroatoms of the
oxadiazole-1-oxide ring and residues located in the loop of the
S3 region (THR190 and GLN192), whereas the chlorophenyl
substituents were located into the S1 region. Interestingly,
predictions for less active compounds such as 1d, 2d, and 19d
(Figure 4B) orientated the structures upside down, with the
oxadiazole-1-oxide in the S1′ region for compounds 1d and 19d,

and the chlorophenyl substituent in the S3 region for compounds
2d and 19d. It is worth mentioning that the active compound 22d,
which is more “elongated” (aminophenyl-sulfonyl-aniline moiety
bound to benzofuroxan) than the other analogues of the family,
maintained the same hydrogen bonding interactions with the
S3 region but through its amino group, while the oxadiazole-1-oxide
occupies a new region near the active site, allowing a hydrogen bond
interaction with THR25. Regarding the chalcone-related structures, the
predicted bindingmode for the active compounds in the series (25d and
27d, Figure 4C) exhibited a similar orientation within the S3 region
(forming hydrogen bonds with THR190), and the same non-polar
interactions that were found for the active benzofuroxan derivatives.
However, in this case, the hydroxyl and the naphthyl substituents are
responsible for the interaction with the S3 and S1 regions, respectively.
The less active compound 26d, an isomer of 27d, has a relative position
of the carbonyl and hydroxyl groups that did not allow the same
hydrogen bond interactions found for active structures and, as observed
for inactive compounds of the benzofuroxan family, they inverted the
orientation of themolecule into the active site (Figure 4D). The docking
predictions for the active structure 28d showed a different binding pose,
perhaps due to its more compact shape (not shown). This isomer has
the naphthyl group connected to the rest of the molecule by an alpha-
carbon atom, as opposed to other active structures having a beta

TABLE 9 Chalcone hits identified by the second screening campaign. All compounds shown in this table correspond to in silico hits.

Compound code (d) Structure MPro activity (%) or IC50 (μM) IC50 SARS-CoV-
2 (μM)

CC50 (μM) and SIa

Vero cells A549 cells

23 77.9 ± 5.6 NDb ND ND

24 61.1 ± 4.4 ND ND ND

25 0.46 ± 0.21c 17.5 38.8 (>2.2)a >50

26 55.3 ± 1.4 ND ND ND

27 5.76 ± 2.36c >50 >50 (~1)a >100

28 1.35 ± 0.04c 48.9 >50 (>1)a >100

aSI: selectivity index = CC50 mammalian cell/IC50 SARS-CoV-2.
bND: not determined.
cIC50 (μM).
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substitution. The compound was oriented near the catalytic dyad,
forming hydrogen bonding interactions with CYS145 and other
residues within the S1’ region. Finally, the binding pose suggested
for the most active structure of the singletons set (39d, Table 11;
Supplementary Figure S3) shared the position of the carbonyl group
into the active site with the active compounds 25d and 27d but

incorporated new lipophilic interactions with GLN189 and
PRO168 residues through the chlorine substituents. Similarly, the
phenanthridine group is located in the same region of the naphthyl
moiety of compounds 25d and 27d, but in a different orientation,
perhaps due to its larger size and ability to form a hydrogen bond
interaction with GLU166, and a T-shaped π-stacking with HIS163.

TABLE 10 Benzimidazol-2-yl-benzensulfonamides and furan-hydrazono-dihydrothiazole compounds. All compounds shown in this table correspond to in silico
hits.

Category Compound code (d) Structure MPro activity (%) or IC50 (μM)

Benzimidazol-2-yl-benzensulfonamides

29 85.2 ± 4.1

30 57.6 ± 4.7

31 > 25a

32 75.4 ± 6.5

Furan-hydrazono-dihydrothiazole

33 79.7 ± 4.6

34 78.9 ± 3.4

35 83.8 ± 3.4

36 88.3 ± 4.5

aIC50 (μM).
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4 Discussion

As in many other fields of science, artificial intelligence has
contributed to speed-up and cheapening research and

development processes in drug discovery. The access to large
amounts of high-quality data for model training is, however, a
persistent bottleneck in artificial intelligence-dependent
approaches (Bittner and Farajnia, 2022). Bearing this in mind,

TABLE 11 Singleton compounds. All compounds shown in this table correspond to in silico hits.

Compound
code (d)

Structure MPro activity (%) or
IC50 (μM)

IC50 SARS-CoV-
2 (μM)

CC50 (μM) and SIa

Vero
cells

A549 cells

37 65.9 ± 5.0 >50 >50 (~1)a >100

38 59.5 ± 0.9 NDb ND ND

39 1.97 ± 0.50c >50 >50 (~1)a 50-100

40 79.2 ± 4.3 ND ND ND

41 64.9 ± 4.3 ND ND ND

42 73.9 ± 0.0 ND ND ND

43 128.1 ± 0.8 ND ND ND

44 95.2 ± 0.4 ND ND ND

45 100.0 ± 2.2 ND ND ND

aSI: selectivity index = CC50 mammalian cell/IC50 SARS-CoV-2.
bND: not determined.
cIC50 (μM).
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and with the aim to contribute to the identification of small
chemical compounds targeting the MPro from SARS-CoV-2, we
embarked on a drug discovery campaign featuring strong
computer and wet lab iteration.

Both our in silico and experimental validation results clearly show
that the model ensemble used in the second prospective screening
campaign possesses a much higher predictive value than the model
ensemble applied in the first prospective screening. As the docking
protocol did not vary between campaigns, the key to the different
success rate in each in silico screening should be searched in the ligand-
based models. There were five essential differences between the ligand-
based models in the first and second campaigns, which are.

A) Increase in training set size, from 84 total compounds in the case
of the first campaign to 160 compounds in the case of the second
campaign, owing to the availability of data on new inhibitors at
the time the second dataset was compiled.

B) Replacement of Dragon descriptors (first campaign) with
Mordred descriptors (second campaign).

C) Use of more reliable data in the second campaign than in the first.
D) Use of iRaPCA to cluster and divide the dataset in the second

campaign (instead of LibraryMCS plus k-means, which was used
in the first campaign).

E) Use of LUDe to generate decoys (second campaign), instead of
DUD-e (first campaign).

The use of Mordred descriptors instead of Dragon descriptors is
unlikely to explain the different results across campaigns, because

the pool of Dragon descriptors is larger and more diverse than those
in Mordred. Similarly, while LUDe seems to generally perform
slightly better than DUD-e in terms of the degree of embedding
between the decoys and the queries, and also in terms of the
doppelganger score, these differences are very small and unlikely
to explain any substantial difference. iRaPCA provides excellent
performance in the clustering of small molecules and may have
provided a better representative sampling of the training data; this
may be one of the reasons for the success of the second campaign.
However, from our perspective, bearing in mind the well-known
“garbage in, garbage out” principle (which, in essence, states that
flawed, nonsense and/or mislabeled input data produce nonsense
output), the most likely explanation of the good results in the second
campaign (and the negative results in the first campaign) is the
difference in the quality of the data used in one and the other. The
second campaign was based entirely on data extracted from peer-
reviewed articles or obtained in-house under highly standardized
conditions. In contrast, little of the data used in the first screen
(which was performed between July and October 2020, soon after
the pandemic started) were extracted from published peer-reviewed
articles. Note that an impressive volume of COVID-19-related
literature was published in early 2020, encompassing a diversity
of fields, frommolecular biology to economics, from immunology to
drug discovery. Possibly owing to the short timeframe, even
published peer-reviewed papers contained substantial flaws or
reached overly optimistic conclusions. A quick search in the
Retraction Watch Database (http://retractiondatabase.org/) with a
focus on retracted articles with the term ‘COVID-19″ in the title

FIGURE 4
Binding poses predicted by docking for some representative active and inactive compounds reported herein. (A) Most active compounds of the
benzofuroxan family: 3d (sky blue), 19d (plum), and 5d (light green) (B) Less active compounds of the benzofuroxan family: 1d (purple), 2d (tan), and 19d
(light sea green). (C) Active compounds of the chalcone-related structures: 25d (salmon) and 27d (cornflower blue). (D) Less active compound of the
chalcone-related structures: 26d (lime green), an isomer of 27d.
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reveals that, so far, more than 50 items have been retracted. The reasons
are diverse, but among the most frequent causes of retraction appear
concerns about data, results, and methodological issues. Accordingly,
we believe that the use of more reliable, less noisy data has resulted in
models with (much) increased predictive power.

An additional and relevant outcome of our study was the
identification of eleven compounds, many of them novel, with
remarkable inhibitory activity against MPro. The hits displayed a
broad chemical diversity that embraced a family of benzofuroxans
(four hits), chalcones (three hits), benzoyl-thiazol (one hit),
glycosides (one hit), flavonols (one hit) and one singleton, a
(phenanthridinyl-methyl)-pyridazinone. Five out of the six MPro
hits belonging to the first two families were also capable to impair
SARS-CoV-2 replication in vitro at one or two digits μM
concentrations.

Despite their broad biological activities and
pharmacological interest (Chugunova and Burilov, 2017), so
far there are no studies reporting the activity of benzofuroxans
against SARS-CoV-2 and/or molecular targets thereof. Our
study identified within this family four MPro inhibitors with
nM IC50, two of them displaying low μM activity against SARS-
CoV-2. Future research will address structural modifications at
the heterocyclic ring with the aim of retaining or increasing
anti-MPro/SARS-CoV-2 activity while improving the
borderline selectivity and cancel out any potential
genotoxicity associated with the benzofuroxan moiety
(Cabrera et al., 2009).

The chalcone scaffold, present in several natural
compounds, is characterized by having a highly reactive bond
(i.e., α, ß-unsaturated ketone group) prone to undergo Michael’s
addition, for instance, with nucleophylic cysteine residues. This
scaffold attracted an early interest as source of potential
inhibitors of SARS-CoV-2 proteases due to its well-known
promiscuity to inhibit cysteine proteases and/or to block the
replication of related coronaviruses (Raghav and Kaur, 2015;
Park et al., 2016; Mathpal et al., 2022; Valipour, 2022). In fact,
recent studies reported anti-MPro (Guterres Fernandes et al.,
2023) and anti-SARS-CoV-2 activity (Duran et al., 2021) for
different substituted chalcones containing homo- or hetero-
nuclear aromatic rings. Except for the common chalcone
scaffold, none of these molecules (mostly halogenated and/or
furan-substituted) resembled the structure of the three potent
hits (naphthalene-substituted) identified in our study. This
suggests that the MPro active site can accommodate bulky
groups attached to the chalcone structure, as further
supported by our docking predictions. Though these results
add value to the bio-potential of this scaffold, the marginal
selectivity of our molecules is yet an issue to be addressed.

In plants, chalcones serve as primary substrates for the
biosynthesis of flavonoids, which are polyphenolic compounds
displaying a large diversity of biological functions and
pharmacological activities (Wen et al., 2021). Several secondary
metabolites or synthetic versions of these pythochemicals have been
investigated for their anti-viral activity (for a thorough review see
Badshah et al., 2021). A couple of these studies identified

epigallocatechin gallate as inhibitor of MPro (Jang et al., 2020)
and SARS-CoV-2 (Henss et al., 2021). Although not proposed as
MPro hit by our in silico approach, screening of a small subset of
flavonols extracted from grapes showed full inhibition of MPro
activity by 25 μM epicatechin gallate (5b). The high similarity
between epicatechin gallate and epigallocatechin gallate suggests
that the first should be as active as the latter against SARS-CoV-2
(Henss et al., 2021). The quantitative contribution of MPro
inhibition to the anti-SARS-CoV-2 activity of this type of
flavonoids has not yet been studied and attaining target-
selectivity may prove challenging for compounds with a
remarkable polypharmacological reputability.

With respect to the glycosides family analysed, our data suggest
that the conjugation of all OH groups from the sugar moiety with
benzoyl, phenyl and/or acetyl groups is important for conferring
inhibitory activity against MPro. Despite its low anti-MPro activity
(IC50 20 μM), the hit from this family (7a) displayed a minor
antiviral activity and lacked cytotoxicity at the highest
concentration tested (50 μM). For this compounds class, the
optimization of MPro inhibition should be a priority that, if
successful, may yield analogues with increased potency towards
SARS-CoV-2.

On the other hand, the low IC50 against MPro of the
(phenanthridinyl-methyl)-pyridazinone singleton (39d) is a
good starting point for exploring new chemical spaces and
functional groups that would enable a structure-activity
relationship analysis.

Finally, is worth to mention that our study also revealed many
compounds -from different chemical families- with anti-MPro
activity borderline to the quantitative definition of hit. As in a
fragment-based approach, this information may be useful to tests
compounds’ combinations, and eventually, propose the synthesis of
novel hybrid molecules with improved affinity for the molecular
target.
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