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Abstract

In the cellular context, proteins participate in communities to perform their function.

The detection and identification of these communities as well as in-community inter-

actions has long been the subject of investigation, mainly through proteomics analysis

with mass spectrometry. With the advent of cryogenic electron microscopy and the

“resolution revolution,” their visualization has recently been made possible, even in

complex, native samples. The advances in both fields have resulted in the genera-

tion of large amounts of data, whose analysis requires advanced computation, often

employingmachine learning approaches to reach the desired outcome. In thiswork,we

first performed a robust proteomics analysis of mass spectrometry (MS) data derived

from a yeast native cell extract and used this information to identify protein commu-

nities and inter-protein interactions. Cryo-EM analysis of the cell extract provided a

reconstruction of a biomolecule at medium resolution (∼8 Å (FSC = 0.143)). Utiliz-

ing MS-derived proteomics data and systematic fitting of AlphaFold-predicted atomic

models, this density was assigned to the 2.6 MDa complex of yeast fatty acid syn-

thase. Our proposedworkflow identifies protein complexes in native cell extracts from

Saccharomyces cerevisiae by combining proteomics, cryo-EM, and AI-guided protein

structure prediction.

Abbreviations: ACC1, acetyl-CoA-synthase; AI, artificial intelligence; API, application programming interface; CC, cross-correlation; CF-MS, co-fractionationmass spectrometry; CTF, contrast

transfer function; cryo-EM, cryogenic electronmicroscopy; cryo-ET, cryogenic electron tomography; EM, electronmicroscopy; FAS, fatty acid synthase; FSC, Fourier shell correlation; GPU,

graphics processing unit; KEGG, Kyoto encyclopedia of genes and genomes; LFQ, label-free quantification;MDa,Mega-Dalton;MS, mass spectrometry;MS/MS, tandemmass spectrometry; NCS,

non-crystallography symmetry; PFK, phosphofruktokinase; SEC, size exclusion chromatography; SPA, single-particle analysis; XL-MS, cross-linkingmass spectrometry.
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1 INTRODUCTION

The cell displays an astounding heterogeneity, harboring diverse

biomolecules at a wide range of concentrations. Proteins represent

the largest group of cellular components, at 20%–30% (w/v), or 200–

300 g/L [1]. Employing state-of-the art technology, protein structure

analysis from cells is only feasible at low resolution by cross-linking

mass-spectrometry (XL-MS) [2–4] or at higher resolution by in situ

cryo-electron tomography (cryo-ET) [5]. However, these methods

mainly analyze very abundant complexes such as ribosomes [6] or the

nuclear pore complex [7]. To reduce complexity while enriching for

less abundant biomolecules, the cell must be lysed and fractionated,

using, for example, centrifugation to separate membranes and aggre-

gates from soluble cell content. Such coarse fractionation may then be

followed by chromatography, for example, size exclusion chromatog-

raphy (SEC), to separate biomolecules by size while retaining their

native assemblies. Efficient structural determination of such retrieved

extracts has been demonstrated by the structural analysis of theMDa-

sized pyruvate dehydrogenase complex from the thermophilic fungus

Chaetomium thermophilum [8].

The coupling of SEC fractionation with mass spectrometry (MS),

termed co-fractionation mass spectrometry (CF/MS) [9], provides

detailed insights into higher-order protein complexes. This is because

co-elution profiles of proteins might contain information about stable

as well as transient interactions. Recently, CF/MS data analysis was

empowered by artificial intelligence (AI) [10] and can lead to the

identification of known and unknown protein complexes from red

blood cells [11]. These protein complexes often assemble in larger

functional units, termed protein communities [12, 13].

Functional units of metabolic complexes in particular, referred to as

metabolons [14], show interaction with various binders, including scaf-

fold proteins, membrane patches, nucleic acids, and others [15, 16].

Currently, only cryo-EMof fractionated cell extracts is able to visualize

such complexity at relatively high resolution [8, 15, 17]. Usually, classi-

cal cryo-EM single-particle analysis (SPA) is employed to the acquired

images from heterogeneous fractions; SPA is comprised of the fol-

lowing steps: (a) particle picking from acquired micrographs, (b) 2D

classification of extracted single-particles, and (c) 3D reconstruction

of a Coulomb potential map that can often reach atomic resolution in

the case of purified and stable specimen [18]. The majority of these

steps already employ AI to learn, identify and reconstruct these struc-

tures and are implemented in specialized user-friendly toolkits, that is,

RELION [19], Xmipp/Scipion [20], or cryoSPARC [21] which are either

freely available (RELION, Scipion) or accessible to academic users

(cryoSPARC).

SPA of complex native cell extracts harbors several technical limita-

tions compared to SPAof purified proteins. For near-atomic resolution,

a smaller pixel size (e.g., 1.6 Å/px for ∼3 Å at Nyquist frequency) is

required during data collection [17] but for cell extracts a larger pixel

size is preferable. This choice limits resolution but increases the num-

ber of total particles per micrograph, which is indeed favorable for

low-abundant macromolecular complexes. One, if not the major, pre-

requisite for the reconstruction of a high-resolutionmap fromcryo-EM

data is a sufficiently large number of single particles [22]. If the parti-

cle shape is recognizable, either directly in themicrograph to be picked

manually or during the 2D classification of, that is, blob-picked par-

ticles (unbiased circular picking based on contrast), the analysis can

be streamlined accordingly [23]. Statistical occurrence of a particle

might be correlated with the MS-derived protein abundance, guiding

the identification as well as the 3D reconstruction of the selected pro-

tein complex [15]. Additionally, technological advances in cryo-EM [18]

ensure that a low-abundant protein will be present in high enough

copy numbers to allow for atomic resolution reconstruction—if the tar-

get particle signature can be identified. However, megadalton cryo-EM

maps from flexible macromolecules derived from native cell extracts

are often of medium resolution, and therefore, hard to interpret in the

context of molecular models [24].

In this work, we present an automated workflow that incorporates

MS-based protein identification and database knowledge integration

via computational analysis to visualize protein communities. These

proteomics data enable structural identification and model building of

a cryo-EM map derived from native cell extracts utilizing AlphaFold2-

predicted monomeric protein structures. The derived low-resolution

structure of the yeast fatty-acid-synthase (FAS) is correctly identified,

and the derived model is in agreement with previously published data

(Figure 1A).

2 MATERIALS AND METHODS

2.1 Re-analyzed data

All MS and cryo-EM data have been previously reported in Schmidt

et al.[25] MS data have been deposited in the PRIDE repository

under the accession PXD034431. Cryo-EMdata are available from the

EMPIAR database under the accession EMPIAR-11069. The atomic

models were downloaded from the AlphaFold2 database [26] under

the accession UP000002311_559292_ YEAST_v3.

2.2 Network analysis

The proteinGroups.txt file was obtained from the MS data and con-

tains all proteins identified together with the respective label-free
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quantification (LFQ). Only proteins identified in at least 50% out of

12 experiments were considered, and their mean LFQ values were

calculated. For every protein identified, the STRING-identifier [27] and

the respective protein interaction network, containing both physical

and functional interactions, were fetched using the API interface.

Only binary interactions with stoichiometries less than 1:10, based

on LFQ intensities, were considered. This is because LFQ intensities

infer relative abundance of the protein species, and this is translated

in the relative abundance in the cryo-EM micrographs. Complexes

that have members with such difference in relative abundance are

challenging to capture within micrographs from native cell extracts,

for example, the E3 of the PDHc [8]. The protein interaction network

plot was generated using the python module NetworkX [28]. Edges

were colored from green to red according to their “exp. score” value, a

parameter indicating the confidence of a physical interaction between

two nodes, as described in Szklarczyk et al.[27]

2.3 Image processing

The cryo-EM micrographs were analyzed using cryoSPARC 3.3.2 [21].

Raw movies were motion corrected (using “patch motion correction

(multi)”) and CTF-estimated (using “Patch CTF estimation (multi)”).

Particles were picked using the “blob picker” module with a mini-

mum particle diameter of 150 Å, and a maximum particle diameter

of 300 Å. Single-particle images were extracted with a box size of

180 px. Retrieved single-particles were iteratively 2D classified, each

with 400 classes during 2D classification. Asymmetric (C1) ab initio

reconstructions were done for clear 2D classes, and classes contain-

ing “junk” single-particles (e.g., ice contaminants or broken/damaged

single-particles) were discarded after each iteration of 2D classifi-

cation. For the dome-shaped map, later identified as the fatty acid

synthase complex (FAS), D3 symmetry was applied during homoge-

nous refinement after prediction of symmetry utilizing ChimeraX

[29]. From the initial symmetrized reconstruction, 20 2D projections

(using the “Create Template” module of cryoSPARC) were generated.

Template-based particle picking then followed, with a particle diam-

eter of 300 Å, a low-pass filter of templates and micrographs set to

25 Å, and aminimumparticle separation set to a distance of 1.25 diam-

eters. Picked particles were extracted with a box size of 210 px. After

2D classification and selection of clear classes, an asymmetric (C1) ab

initio reconstruction was calculated, followed by a symmetrized (D3)

homogenous refinement.

2.4 Unambiguous fitting of AlphaFold2 models

The proteins identified by MS were sorted by their LFQ intensi-

ties, and the most abundant 150 proteins were selected. Proteins

were annotated according to the UniProt database [30], and protein

names containing the keyword “ribosome” were removed. Fitting of

the AlphaFold2 models in the density was performed with a modified

local installation of ChimeraX (version 1.4.dev202202240543; Table

Statement Significance

Progress in the analysis of heterogeneous biochemical sam-

ples, specifically in cryo-EM of native cell extracts, allows the

identification and characterization of protein interactions at

the structural level. Here, we propose a robustworkflow that

incorporates information from proteomics experiments to

guide the identification of protein complexes and leverages

AlphaFold to predict their structures. Our workflow forgoes

the protein backbone tracing step and is able to characterize

large protein complexes at medium resolution.

S1A).[29] Each model was globally fitted 10,000 times with ChimeraX

by random placement within the map density and local placement

optimization (Table S1B). Not each random placement results in an

accepted solution. All fits were saved and ranked by atom engulfment,

which is defined as the fraction of protein atoms overlapping with the

electron density at a certain contour level. Taking into account the best

fitting solution, an atomengulfment threshold of 0.8was applied. Addi-

tionally, a coarse analysis was carried out to identify steric clashes,

using a threshold of Cα-clashing>25%of the total number of Cα atoms

in themonomer.

2.5 Resolving of Cα-clashing and real-space
refinement

For calculating Cα-clashes between two given protein structures (in

PDB format), the (x,y,z) coordinates of the Cα-atoms were isolated in

a NumPy array [31], the distance between each atom was calculated

with SciPy [32], and a clash was identified when atoms resided at a cal-

culated distance of less than 3.65 Å to the nearest atom (Table S1C).

Acceptance threshold for homomultimers was set to a mean Cα-clash
value of≤10.

For real-space refinement, PHENIX (version 1.20.1-4487) [33] was

used with activated NCS constraints (asymmetric unit: FAS α β het-

erodimer), a map resolution of 6.5 Å, and a single macro cycle.

2.6 Local resolution estimation

Local resolution maps for the FAS final reconstruction were generated

with the “Local Resolution Estimation” module in cryoSPARC v3.1.1

[21] and visualized with ChimeraX v1.4 [29].

2.7 Code availability

The software employed in this study was written in python and is

available upon request.
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F IGURE 1 Modeling pipeline and network analysis of yeast native cell extract. (A)Modeling workflow—A native cell extract is fractionated by
size exclusion chromatography (SEC) and highmolecular weight (MW) fractions are analyzed by cryo-EM andmass spectrometry (MS/MS). The
mass spectrometry results are processed using a pipeline that includes protein identification usingMaxQuant, interaction analysis using the
STRING database (StringDB), along with network annotation using STRING and KEGG information (Network). These results are combinedwith
those from single particle analysis (SPA) of native cell extracts to produce a plausible atomic model within amedium resolution density map. (B)
Network analysis—The network interactions are based on annotated interactions in STRING. Nodes are colored by KEGG pathways and edges are
colored based on their direct interaction confidence derived from STRING (exp. score). Isolated groups are highlighted and named. (C)Metabolism
group—The nodes are colored based on their metabolic pathway: glycolysis (red), citrate cycle (light green), fermentation (dark green), malate
shuttling (blue), and other (purple). Edges are colored based on the direct interaction confidence (refer to B). All proteins identified in the sample
are plotted as a boxplot in terms of relative abundance asmeasured by the label-free quantification (LFQ) score [35]. Members of theMetabolism
group are highlighted as dots. (D) Fatty acid synthesis group—The nodes are colored based on their reactions: fatty acid synthase (red), acetyl-CoA
synthesis (light green), long-fatty-acid ligases (dark green), and enoyl-ACP-reductase (blue). Edges are colored based on the exp. score (refer to B).
The relative abundance, based on label-free quantification (LFQ) values reported byMaxQuant, of all proteins identified in the sample are plotted
as a boxplot andmembers of the FAS group are highlighted as dots. The boxplot minima represent the 25th percentile, themaxima represent the
75th percentile, the notch indicates the data’s median, and the whiskers extend to theminimum andmaximum value within a 1.5 interquartile
range.

3 RESULTS

3.1 High molecular weight protein complexes
from native cell extracts—Identifying protein
communities by combining MS and database
knowledge

Two high-molecular weight fractions of yeast native cell extracts were

previously analyzed by Schmidt et al. [25] to retrieve the endoge-

nous L-A helper virus and various states of translating ribosomes [25].

Here, we re-analyzed the reported MS results as well as 12,795 cryo-

EM micrographs that were acquired at a pixel size of 3.177 Å/pix to

capture the cell extract content beyond these abundant biomolecules

(Figure S1A).

A total of 585 unique proteins were identified by MS after combin-

ing the data derived from the two high-molecular weight fractions. For

an unbiased identification of likely protein communities, the STRING

database [27] was used. The STRING database integrates results for

protein interactions and includes not only stable but also transient

interactors, for example, allosteric regulators like kinases. STRING

analysis resulted in 3304 binary interactions where only 59 out of 585

identified proteins were found to be singletons (meaning no interactor

identified).

To further classify identified proteins, KEGG pathway analysis was

performed [34]. In total, eight principal classes were recognized: (1)

ribosomes, (2) proteasome, (3) carbon metabolism (including glycoly-

sis, ethanol fermentation, and Krebs cycle among others), (4) fatty acid

biosynthesis, (5) RNA polymerases, (6) RNA degradation, (7) phago-

 16159861, 2023, 17, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/pm

ic.202200096 by N
atl H

ellenic R
es Fndtn (N

H
R

F), W
iley O

nline L
ibrary on [09/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



5 of 10

some, and (8) mRNA surveillance (Table S2). These classes cover 40%

of all identified proteins highlighting the high complexity of the sample.

The protein–protein interaction analysis, utilizing the standard

STRING aggregated score, revealed a densely packed network with

highly interconnected proteins. Nevertheless, an apparent grouping

of proteins is visible (Figure 1B). A large and heterogenous group,

referred to as Metabolism, includes proteins involved in cytosolic gly-

colysis, the malate shuttling mechanism, the mitochondrial pyruvate

dehydrogenase complex, and the Krebs cycle (Figure 1C). Relative

abundance values were estimated using the LFQ intensity score [35]

(see Section 2), also previously used for deriving stoichiometric data

for human protein–protein interactions (PPIs) [36]. Diverse abundance

values (LFQ score) and low interaction values (exp. score [27]) indicate

that the entire group probably does not form a stable metabolon but

is composed of different subcomplexes. This is comparable with previ-

ously identified structures of co-eluting pyruvate and α-ketoglutarate
dehydrogenase complexes [37, 38]. Judged by the exp. score, protein–

protein interactions are visible formitochondrial proteins but cytosolic

proteins have lower exp. score, that is, a reduced probability of inter-

action. A notable exception is phosphofructokinase (PFK): Both its

subunits (α, β) are present with very high abundance and direct

interaction scores (Figure 1C).

Another interesting group includes proteins related to fatty acid

synthase (FAS; Figure 1D). Notably, apart from the canonical α and β
subunits of the FAS (FAS1, FAS2), the acetyl-CoA carboxylase (ACC1)

is also identified, which is involved in the production of malonyl-CoA, a

substrate for FAS, along with two ligases and one reductase. Correlat-

ingwith theMS-derived protein abundances, the α (FAS2) and β (FAS1)
subunits of FAS have the same copy number, indicating a 1:1 stoichiom-

etry in the complex, perfectly corresponding to the known structure

of fungal FAS [39], where they form an A6B6 complex. The carboxy-

lase is present at a similar abundance but due to its megadalton size

[40] might co-elute, while the ligases and reductase are of much lower

abundance, indicating a transient interaction. This is also underpinned

bypre-existing experimental evidence, that is, that only theα and β sub-
units of FAS form a stable complex, while the interaction of ACC1 and

other carboxylases is of a transient nature [12, 41].

3.2 Template-free cryo-EM reconstruction

For an unbiased picking of particles for cryo-EM, a blob picker mod-

ule with a target particle size of 150–300 Å (Figure 2A,B) was used,

corresponding to the approximate size of FAS and ribosomes, which

represent the most abundant protein complexes in the sample. The

picked particles were extracted with a box of 180 px (∼570 Å), to cap-

ture not only the core proteins, but also potential additional binding

partners. A total of 27,727,854 particles were picked and extracted

(Figure 2B). Following particle extraction, the resulting large number

of single-particle images have to be 2D classified and refined, but

the number of 2D classes assigned during classification presents a

significant limitation. Usually, a number of 50–200 2D classes is rec-

ommended by cryoSPARC, but based on available computing power,

up to 400 classes are possible on modern workstations. Iterative 2D

classifications were required to effectively identify clear signatures

(Figure 2C). Very clear 2Dclasses appeared aftermultiple rounds of 2D

classification (Figure 2D) but the total number of particles contained in

each final class was low. To increase final particle numbers, ab initio 3D

reconstructions utilizing the particles contained in these classes were

generated and, based on these, 2D templates for template-based pick-

ing were created.With this approach, particle picks were considerably

increased (Figure2E).After the template-basedpicking, 6,923,214par-

ticles couldbe identified, ofwhich7895wereeventually selected, again

through iterative 2D classifications. A final reconstruction (D3 sym-

metry) resulted in a cryo-EM map of 8.0 Å resolution (FSC = 0.143)

(Figures 2F and S1B). The cryo-EM density map shows an overall uni-

form resolution despite themissing views (Figure S1C), with additional

localized lower resolution features (Figure S1D). An additional chal-

lenge posed by the current reconstruction is the limited coverage of

particle views in the 2D class averages (Figure S1A). This effect of

FAS particles has been previously observed [15] but due to the par-

ticles’ shape and symmetry this does not pose a limitation to achieve

sufficient resolution for further map analysis.

3.3 AI-guided protein structure modeling –
Identification and refinement of FAS

The dome-shaped reconstruction that was retrieved (Figure 2F) could

not be built with current refinement tools; due to the resolution of

∼8 Å, AI tools like FindMySequence [42], DeepTracer [43], or Mode-

lAngelo [44] are not applicable. To address this issue, the 150 most

abundant proteins were selected, ribosomal proteins were excluded,

and modeling was focused on less abundant protein signatures. Ribo-

somesdisplay distinct structural signatures in the rawmicrographdata,

2D classes, and 3D reconstruction and can be easily distinguished

from other, less abundant, protein signatures in native cell extract

[25, 37]. The remaining 61 proteins were systematically fitted in the

derived reconstruction (Figure 2F). To this end, all 61 protein struc-

tures were retrieved from the AlphaFold2 database and fitted 10,000

times each in the density to capture a variety of solutions (Figure 3A).

The best-fitting solutions were isolated and grouped into predicted

homomers. To assess the quality of these homomeric complexes, the

number of Cα-clashes between subunits was calculated and ranked

according to both average and total clash number. A high clash num-

ber indicates an ambiguous placement of a protein (Figure 3B). Only

18 homomers fulfill the criteria. To further statistically analyze these

assemblies, the map coverage at various contour levels was calculated

(Figure 3C). The majority of homomers explained only a minor part

of the map (<10% map coverage at a contour level of 2.0), but two

proteins stood out: FAS1 and FAS2, each explaining nearly half of the

map.

Even though these two could be the correct hits, all heteromeric

assemblies were generated and analyzed analogously to the predicted

homomers: Only seven heteromeric assemblies fulfilled the low clash

values criteria (maximum 2.5 % of Cα clashing; data not shown), and

their map coverage was calculated (Figure 3D). Interestingly, the fitted

heteromeric complex consisting of FAS1 and FAS2 was one of those
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F IGURE 2 Template-free single-particle-analysis workflow. Subpanels (A–F) show the steps of the workflow that include: (A)Motion
Correction and CTF Estimation—The 12,795 acquiredmicrographs underwent motion correction, and their CTF value was estimated. (B)
Template-Free Particle Picking—A blob picker with aminimum diameter of 150 Å and amaximum diameter of 300 Åwas applied to the
micrographs, resulting in 27,727,854 picked and extracted particles. (C) 2DClassification and Class Average Selection—The picked particles
underwent iterative rounds of 2D classification and class average selection (Select 2D) to generate high signal-to-noise-ratio 2D classes. (D) Ab
InitioMap Reconstruction—Ab initio maps were reconstructed from noise-free 2D classes. 2D projections were generated and served as input for
template picking (E). (E) Particle picking using 2D Projections—The 2D projections (templates) were used to pick particles with a similar
appearance, resulting in 6,923,214 picked particles and 8 noise-free 2D classes containing a total of 7895 particles. (F) Cryo-EMMap
Reconstruction—A cryo-EMmap of 8.0 Å resolution (gold-standard FSC= 0.143, dashed line) was reconstructed after applying D3 symmetry.

hits. The complex was fully covered by the density at high contour

levels unlike the other predicted heteromeric complexes (Figure 3D).

The unambiguously fitted and AI-generated monomeric protein

structures resulted in a dodecameric assembly of FAS1 and FAS2

(each in six copies) (Figure 3). This was further cross-validated by

the initial network analysis, where a direct interaction between these

two proteins was visible (Figure 1D). To reduce clashes or close con-

tacts between the fitted monomers, a simple real-space-refinement

with default values was performed (Figure 3E) as it also optimizes

clashes within the interfaces. Without any manual interference during

model identification and model building, the protein-protein interac-

tions in the FAS complex were effectively recapitulated. The central

homo-hexameric α-helical interaction of FAS1 and the dimeric inter-

action of FAS1 and FAS2 are clearly visible and captured in both the

reconstructedmap and the atomic model.

4 DISCUSSION

Modern approaches in structural biology are able to identify and struc-

turally characterize protein communities in a near-native state [15, 24].

Due to the nature of the native environment, the samples are highly

heterogenous, andmultiple disciplinesmust be combined to eventually

decipher the structural information. These include, among various oth-

ers, different EM techniques, including tomography [45, 46], SPA [8, 17,

37, 47], single cell lysis during sample preparation for cryo-EM [48], and

MS [49].

WhileMS is precise and can identify proteins even at very low abun-

dances, these data must be set in the context of protein communities.

Here,wedemonstrate hownetwork visualization and grouping—based

on relative protein abundances, KEGG and STRING information—can

identify these communities in a single chromatographic fraction, even

without the inclusion of elution profile information. In the future,

our protocol will be able to incorporate more data, for example, MS

results from multiple consecutive fractions. Such data could act as

input to identify more protein communities and differentiate these

from random co-elution using advanced techniques like deep learning

algorithms for more precise data interpretation [11, 50]. Using cryo-

EM to analyze these highly heterogenous samples adds another layer

of knowledge, but also increases complexity. To tackle this, we usedMS

data, AlphaFold2-predicted protein structures, and were successfully

able to unambiguously recapitulate the FAS complex. This demon-

strates that, even without reaching near-atomic resolution (<3.8 Å)

during map reconstruction, it is feasible to retrieve models of protein

complexes in a robust manner. This result complements our recent

work [37] where we showed unambiguous identification of a protein

complex at∼4.5 Å resolution.

In terms of model quality, AlphaFold2-generated structures are

most often of high quality in their ordered regions (provided a high-

quality multiple sequence alignment is available)—and usually these

are well-resolved areas even in medium resolution cryo-EM density

maps retrieved from cell extracts. With systematic fitting of the AI-

predicted models, all possible accurate fits can be identified while

false-positives can be removed through classification, scoring, and val-

idation. Based solely onMS data we successfully identified the correct

dodecameric complex consisting of FAS1 and FAS2. The network plot

itself is a powerful tool to cross-validate the derived result. Using this

information too early in our proposed workflow might lead to mis-

guided preconceptions if, for example, a completely novel interaction

is actually present in the cryo-EM map. Eliminating the pre-filtering

of possible interactions is a clearly favorable approach to reduce an

eventual bias to aminimum. Further optimization can be performed by

improving interface energetics, for example, computedusing tools such

as HADDOCK [51].

The proposedworkflow is generally applicable to any given cryo-EM

map if a set of potential target proteins is available, as medium resolu-

tion (∼8 Å) maps hold enough information to accurately fit AlphaFold

models. Other approaches require the knowledge of the proteins that

form the target assembly, for example, HADDOCK [52, 53], EMBuild

[54], or CoEVxIMP [55, 56], or higher resolution in the final cryo-EM
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F IGURE 3 Model building based on AI-generated structures. (A)Monomeric model fitting—The figure shows an example of the fitting process
for both FAS subunits. A selection of the 150most abundant proteins frommass spectrometry results wasmade, excluding ribosomal proteins.
From the remaining 61 proteins, the AI-predicted structure was retrieved from the AlphaFold database and fitted 10,000 times in the unidentified
cryo-EMmap shown in Figure 2. Only fits with highmodel-map correlation scores were retained, and the high-rankedmonomeric fits were
combined into amultimeric assembly. (B) Cα clash calculation—For eachmultimeric assembly, the clashes between each subunit’s Cαwere
calculated. Themean values are shown as bar plots with error bars representing the standard deviation. (C)Map coverage—The coverage of the
map by the low-clashing solutions (average clash<25) was calculated at various contour levels. FAS1 and FAS2 each cover approximately 50% of
themap at a contour level of 2.0. (D) Complexmap coverage—The coverage of the complexmapwas calculated for all non-Cα-clashing solutions
after combining all 18 selected proteins. Only the combination of FAS1 and FAS2 forms a non-clashing solution, resulting in 100% coverage at a
contour level of 2.5. (E) Final complex structure—The final complex structure was refined in the previously unidentifiedmap. The dodecamer,
comprised of six copies of FAS1 and FAS2, explains the unknownmap visually and statistically. Despite the low resolution, the central
hexamerization wheel of FAS2 and the binary interaction between both subunits are captured and covered by the atomic model. Bothmodels
exhibit a highmap-to-model cross-correlation (CC). However, the N-terminal acyl carrier domain and the C-terminal transferase domain are not
covered by themap density due to their known high flexibility and low local resolution of the cryo-EMmap.

maps (<6 Å) with clear secondary structure separation, for example,

Pathwalker/ROSETTA [57, 58]. Additionally, they require informa-

tion about the sequence and structure. Additionally, such algorithms

require flexible refinement procedures—therefore, docking hundreds

of proteins and their pairs within the map is computationally challeng-

ing. Our workflow does not have these limitations, as the sequence

information is directly derived from experimental MS data and the

rigid fitting is computationally less demanding. A lower limit in protein

size should be set, as for example, a 25 kDa protein can most likely

be fitted in various rotations in a given low-resolution map. Addition-

ally, an overall domain shape must be recognizable, setting an upper

resolution limit to approximately 15 Å; however, these estimates can

be quantitatively approached in the future by further benchmarking

the proposed workflow. Moreover, a derived, highly heterogeneous,

macromolecular assembly, which would include not just protein den-

sity (for example, ribosomes which consist of rRNA for a major part),

might also negatively influence fitting results. Identifying and mod-

eling of ribonucleoproteins in cryo-EM maps is nevertheless possible

with other tools, such as DRRAFTER [59]. It should be noted that FAS,

even though in the MDa molecular weight range, is highly symmetric

allowing an identification based on only two polypeptide chains. More

complex cryo-EMdensitymapsmight require adaptations in the fitting

and scoring procedures.

Another major limitation of our workflow is how the parameters

are set during particle picking. Blob-picked particles must fulfill a cer-

tain diameter threshold to be actually selected. Variability in diameter,

which is actually feasible to performduring particle picking, can greatly

influence chemical and structural heterogeneity of retrieved particles.
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Also, a largemajority of pickedparticles can either benoise or damaged

[60], and must be separated in lengthy, manually curated 2D classifica-

tions. Some 2D class averages might never be retrieved due to particle

heterogeneity: phosphofructokinase was never observed in the data

but the molecule should have been seen as its diameter is in the range

of blob sizes set during picking.

Future developments in cryo-EM should include “on-the-fly” anal-

ysis combined with advanced AI-assisted algorithms that cover all

steps in a cryo-EM pipeline (from image analysis to model building).

Single solutions for individual steps exist (i.e., DeepCryoPicker [61],

DeepPicker [62], phenix autobuild [63], or others [64, 65]) but all these

require specialized knowledge which limits usability for the majority

of scientists. Future developments should aim atmaking these systems

available and easy-to-use (simple point-and-click). These systems can

include generalizable neural networks that eventually discriminate

noise, contamination and signal, and ultimately provide an output of a

molecular structure.

AUTHOR CONTRIBUTIONS

Christian Tüting designed themodel and the computational framework

and analyzed all the data. Christian Tüting, Lisa Schmidt, and Ioannis

Skalidis wrote the submitted manuscript with the input of all authors.

Christian Tüting and Panagiotis L. Kastritis conceived the original idea.

Panagiotis L. Kastritis and Andrea Sinz revised the manuscript and

Panagiotis L. Kastritissecured funding.

ACKNOWLEDGMENTS

The authors thank the members of the Kastritis laboratory, espe-

cially Fotis Kyrilis and Farzad Hamdi for cryo-EM sample preparation

and data collection, and Kevin “Safe‑Space” Janson for valuable input.

They also thank Christian Ihling for providing access to the Cen-

ter of Structural Mass Spectrometry. This work was supported by

the European Union through funding of the Horizon Europe ERA

Chair “hot4cryo” project number 101086665 (to P.L.K.), the Federal

Ministry for Education and Research (BMBF, ZIK program) (Grant

nos. 03Z22HN23, 03Z22HI2 and 03COV04 to P.L.K.), the European

Regional Development Funds for Saxony-Anhalt (grant number EFRE:

ZS/2016/04/78115 to P.L.K.), funding by Deutsche Forschungsge-

meinschaft (DFG) (RTG2467, project number 391498659), and the

Martin-Luther University of Halle-Wittenberg.

Open access funding enabled and organized by Projekt DEAL.

CONFLICT OF INTEREST STATEMENT

The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT

All raw data, used for image preparation, is attached (Supplementary

File 1).

ORCID

ChristianTüting https://orcid.org/0000-0001-6209-4012

Lisa Schmidt https://orcid.org/0000-0002-1445-8149

Ioannis Skalidis https://orcid.org/0000-0002-3077-9014

Andrea Sinz https://orcid.org/0000-0003-1521-4899

Panagiotis L. Kastritis https://orcid.org/0000-0002-1463-8422

REFERENCES

1. Brown, G. C. (1991). Total cell protein concentration as an evolution-

ary constraint on the metabolic control distribution in cells. Journal of
Theoretical Biology, 153(2), 195–203. https://doi.org/10.1016/s0022-
5193(05)80422-9

2. Götze, M., Iacobucci, C., Ihling, C. H., & Sinz, A. (2019). A simple cross-

linking/mass spectrometry workflow for studying system-wide pro-

tein interactions. Analytical Chemistry, 91(15), 10236–10244. https://
doi.org/10.1021/acs.analchem.9b02372

3. O’reilly, F. J., & Rappsilber, J. (2018). Cross-linkingmass spectrometry:

methods and applications in structural,molecular and systemsbiology.

Nature Structural & Molecular Biology, 25(11), 1000–1008. https://doi.
org/10.1038/s41594-018-0147-0

4. Piersimoni, L., Kastritis, P. L., Arlt, C., & Sinz, A. (2022). Cross-

linking mass spectrometry for investigating protein conformations

and protein–protein interactions─A method for all seasons. Chem.
Rev., 122(8), 7500–7531. https://doi.org/10.1021/acs.chemrev.

1c00786

5. Turk, M., & Baumeister, W. (2020). The promise and the challenges of

cryo-electron tomography. Febs Letters, 594(20), 3243–3261. https://
doi.org/10.1002/1873-3468.13948

6. O’reilly, F. J., Xue, L., Graziadei, A., Sinn, L., Lenz, S., Tegunov, D., Blötz,

C., Singh, N., Hagen, W. J. H., Cramer, P., Stülke, J., Mahamid, J., &

Rappsilber, J. (2020). In-cell architecture of an actively transcribing-

translating expressome. Science, 369(6503), 554–557. https://doi.org/
10.1126/science.abb3758

7. Mosalaganti, S., Obarska-Kosinska, A., Siggel, M., Taniguchi, R.,

Turonová, B., Zimmerli, C E., Buczak, K., Schmidt, F. H., Margiotta, E.,

Mackmull, M.-T., Hagen, W. J. H., Hummer, G., Kosinski, J., & Beck,

M. (2022). AI-based structure prediction empowers integrative struc-

tural analysis of human nuclear pores. Science, 376(6598), eabm9506.

https://doi.org/10.1126/science.abm9506

8. Kyrilis, F. L., Semchonok, D. A., Skalidis, I., Tüting, C., Hamdi, F., O’reilly,

F. J., Rappsilber, J., &Kastritis, P. L. (2021). Integrative structureof a10-

megadalton eukaryotic pyruvate dehydrogenase complex from native

cell extracts. Cell Reports, 34(6), 108727. https://doi.org/10.1016/j.
celrep.2021.108727

9. Havugimana, P. C., Goel, R. K., Phanse, S., Youssef, A., Padhorny, D.,

Kotelnikov, S., Kozakov, D., & Emili, A. (2022). Scalable multiplex

co-fractionation/mass spectrometry platform for accelerated protein

interactome discovery. Nature Communications, 13(1), 4043. https://
doi.org/10.1038/s41467-022-31809-z

10. Fossati, A., Li, C., Uliana, F.,Wendt, F., Frommelt, F., Sykacek, P., Heusel,

M., Hallal, M., Bludau, I., Capraz, T., Xue, P., Song, J., Wollscheid, B.,

Purcell, A. W., Gstaiger, M., & Aebersold, R. (2021). PCprophet: A

framework for protein complex prediction and differential analysis

using proteomic data.NatureMethods,18(5), 520–527. https://doi.org/
10.1038/s41592-021-01107-5

11. Sae-Lee, W., Mccafferty, C. L., Verbeke, E. J., Havugimana, P. C.,

Papoulas, O., Mcwhite, C. D., Houser, J. R., Vanuytsel, K., Murphy, G.

J., Drew, K., Emili, A., Taylor, D. W., & Marcotte, E. M. (2022). The

protein organization of a red blood cell. Cell Reports, 40(3), 111103.
https://doi.org/10.1016/j.celrep.2022.111103

12. Gavin, A.-C., Aloy, P., Grandi, P., Krause, R., Boesche, M., Marzioch,

M., Rau, C., Jensen, L. J., Bastuck, S., Dümpelfeld, B., Edelmann, A.,

Heurtier, M.-A., Hoffman, V., Hoefert, C., Klein, K., Hudak, M., Michon,

A.-M., Schelder, M., Schirle, M., . . . Superti-Furga, G. (2006). Pro-

teome survey reveals modularity of the yeast cell machinery. Nature,
440(7084), 631–636. https://doi.org/10.1038/nature04532

13. Gavin, A.-C., Bösche, M., Krause, R., Grandi, P., Marzioch, M., Bauer,

A., Schultz, J., Rick, J. M., Michon, A.-M., Cruciat, C.-M., Remor, M.,

Höfert, C., Schelder, M., Brajenovic, M., Ruffner, H., Merino, A., Klein,

K., Hudak, M., Dickson, D., . . . Superti-Furga, G. (2002). Functional

 16159861, 2023, 17, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/pm

ic.202200096 by N
atl H

ellenic R
es Fndtn (N

H
R

F), W
iley O

nline L
ibrary on [09/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0001-6209-4012
https://orcid.org/0000-0001-6209-4012
https://orcid.org/0000-0002-1445-8149
https://orcid.org/0000-0002-1445-8149
https://orcid.org/0000-0002-3077-9014
https://orcid.org/0000-0002-3077-9014
https://orcid.org/0000-0003-1521-4899
https://orcid.org/0000-0003-1521-4899
https://orcid.org/0000-0002-1463-8422
https://orcid.org/0000-0002-1463-8422
https://doi.org/10.1016/s0022-5193(05)80422-9
https://doi.org/10.1016/s0022-5193(05)80422-9
https://doi.org/10.1021/acs.analchem.9b02372
https://doi.org/10.1021/acs.analchem.9b02372
https://doi.org/10.1038/s41594-018-0147-0
https://doi.org/10.1038/s41594-018-0147-0
https://doi.org/10.1021/acs.chemrev.1c00786
https://doi.org/10.1021/acs.chemrev.1c00786
https://doi.org/10.1002/1873-3468.13948
https://doi.org/10.1002/1873-3468.13948
https://doi.org/10.1126/science.abb3758
https://doi.org/10.1126/science.abb3758
https://doi.org/10.1126/science.abm9506
https://doi.org/10.1016/j.celrep.2021.108727
https://doi.org/10.1016/j.celrep.2021.108727
https://doi.org/10.1038/s41467-022-31809-z
https://doi.org/10.1038/s41467-022-31809-z
https://doi.org/10.1038/s41592-021-01107-5
https://doi.org/10.1038/s41592-021-01107-5
https://doi.org/10.1016/j.celrep.2022.111103
https://doi.org/10.1038/nature04532


9 of 10

organization of the yeast proteome by systematic analysis of pro-

tein complexes.Nature,415(6868), 141–147. https://doi.org/10.1038/
415141a

14. Srere, P. A. (1985). TheMetabolon.Trends in Biochemical Sciences,10(3),
109–110. https://doi.org/10.1016/0968-0004(85)90266-X

15. Kastritis, P. L., O’reilly, F. J., Bock, T., Li, Y., Rogon, M. Z., Buczak, K.,

Romanov, N., Betts, M. J., Bui, K. H., Hagen, W. J., Hennrich, M. L.,

Mackmull, M.-T., Rappsilber, J., Russell, R. B., Bork, P., Beck, M., &

Gavin, A.-C. (2017). Capturing protein communities by structural pro-

teomics in a thermophilic eukaryote.Molecular Systems Biology, 13(7),
936. https://doi.org/10.15252/msb.20167412

16. Kastritis, P. L., & Gavin, A.-C. (2018). Enzymatic complexes across

scales.Essays inBiochemistry,62(4), 501–514. https://doi.org/10.1042/
EBC20180008

17. Tüting, C., Kyrilis, F. L., Müller, J., Sorokina, M., Skalidis, I., Hamdi, F.,

Sadian, Y., &Kastritis, P. L. (2021).Cryo-EMsnapshots of anative lysate

provide structural insights into a metabolon-embedded transacety-

lase reaction. Nature Communications, 12(1), 6933. https://doi.org/10.
1038/s41467-021-27287-4

18. Chua, E. Y. D., Mendez, J. H., Rapp, M., Ilca, S. L., Tan, Y. Z., Maruthi,

K., Kuang, H., Zimanyi, C. M., Cheng, A., Eng, E. T., Noble, A. J., Potter,

C. S., & Carragher, B. (2022). Better, faster, cheaper: Recent advances

in cryo–electron microscopy. Annual Review of Biochemistry, 91, 1–32.
https://doi.org/10.1146/annurev-biochem-032620-110705

19. Kimanius, D., Dong, L., Sharov, G., Nakane, T., & Scheres, S. H. W.

(2021). New tools for automated cryo-EM single-particle analysis

in RELION-4.0. Biochemical Journal, 478(24), 4169–4185. https://doi.
org/10.1042/BCJ20210708

20. Strelak, D., Jiménez-Moreno, A., Vilas, J. L., Ramírez-Aportela, E.,

Sánchez-García, R., Maluenda, D., Vargas, J., Herreros, D., Fernández-

Giménez, E., De Isidro-Gómez, F. P., Horacek, J.,Myska,D., Horacek,M.,

Conesa, P., Fonseca-Reyna, Y. C., Jiménez, J., Martínez, M., Harastani,

M., Jonic, S., . . . Sorzano, C. O. S. (2021). Advances in Xmipp for

cryo–electron microscopy: From Xmipp to Scipion. Molecules
(Basel, Switzerland), 26(20), 6224. https://doi.org/10.3390/

molecules26206224

21. Punjani, A., Rubinstein, J. L., Fleet, D. J., & Brubaker, M. A. (2017).

cryoSPARC: Algorithms for rapid unsupervised cryo-EM structure

determination. Nature Methods, 14(3), 290–296. https://doi.org/10.
1038/nmeth.4169

22. Henderson, R. (2004). Realizing the potential of electron cryo-

microscopy. Quarterly Reviews of Biophysics, 37(1), 3–13. https://doi.
org/10.1017/s0033583504003920

23. Sigworth, F. J. (2016). Principles of cryo-EM single-particle image pro-

cessing. Microscopy (Oxford), 65(1), 57–67. https://doi.org/10.1093/
jmicro/dfv370

24. Kyrilis, F. L., Belapure, J., & Kastritis, P. L. (2021). Detecting protein

communities in native cell extracts by machine learning: A structural

biologist’s perspective. Front. Mol. Biosci., 8, 660542. https://doi.org/
10.3389/fmolb.2021.660542

25. Schmidt, L., Tüting, C., Kyrilis, F. L., Hamdi, F., Semchonok, D. A., Hause,

G., Meister, A., Ihling, C., Shah, P. N.M., Stubbs, M. T., Sinz, A., Stuart, D.

I., & Kastritis, P. L. (2022). Delineating organizational principles of the

endogenous L-Avirus by cryo-EMandcomputational analysis of native

cell extracts. BioRxiv, https://doi.org/10.1101/2022.07.15.498668
26. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger,

O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland,

A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes,

B., Nikolov, S., Jain, R., Adler, J., . . . Hassabis, D. (2021). Highly accurate

protein structure prediction with AlphaFold. Nature, 596(7873), 583–
589. https://doi.org/10.1038/s41586-021-03819-2

27. Szklarczyk, D., Gable, A. L., Nastou, K. C., Lyon, D., Kirsch, R., Pyysalo,

S., Doncheva, N. T., Legeay, M., Fang, T., Bork, P., Jensen, L. J., &

Von Mering, C. (2021). The STRING database in 2021: Customiz-

able protein–protein networks, and functional characterization of

user-uploaded gene/measurement sets. Nucleic acids research, 49(D1),
D605–D612. https://doi.org/10.1093/nar/gkaa1074

28. Hagberg, A. A., Schult, D. A., & Swart, P. J. (2008). Exploring network
structure, dynamics, and function usingNetworkX. Paper presented at the
Proceedings of the 7th Python in Science Conference, Pasadena, CA

USA. http://conference.scipy.org/proceedings/SciPy2008/paper_2/

29. Pettersen, E. F., Goddard, T. D., Huang, C. C., Meng, E. C., Couch, G. S.,

Croll, T. I., Morris, J. H., & Ferrin, T. E. (2021). UCSF ChimeraX: Struc-

ture visualization for researchers, educators, and developers. Protein
Science, 30(1), 70–82. https://doi.org/10.1002/pro.3943

30. Bateman, A., Martin, M.-J., Orchard, S., Magrane, M., Agivetova, R.,

Ahmad, S., Alpi, E., Bowler-Barnett, E. H., Britto, R., Bursteinas, B.,

Bye-A-Jee, H., Coetzee, R., Cukura, A., Da Silva, A., Denny, P., Dogan,

T., Ebenezer, T., Fan, J., Castro, L. G., . . . Teodoro, D. (2021). UniProt:

The universal protein knowledgebase in 2021. Nucleic Acids Research,
49(D1), D480–D489. https://doi.org/10.1093/nar/gkaa1100

31. Harris, C. R., Millman, K. J, Van Der Walt, S. J., Gommers, R., Virtanen,

P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R.,

Picus, M., Hoyer, S., Van Kerkwijk, M. H., Brett, M., Haldane, A., Del

Río, J. F., Wiebe, M., Peterson, P., . . . Oliphant, T. E. (2020). Array pro-

gramming with NumPy. Nature, 585(7825), 357–362. https://doi.org/
10.1038/s41586-020-2649-2

32. Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,

Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J.,

Van Der Walt, S. J., Brett, M., Wilson, J., Millman, K. J, Mayorov, N.,

Nelson, A. R. J., Jones, E., Kern, R., Larson, E., . . . Vázquez-Baeza, Y.

(2020). SciPy 1.0: Fundamental algorithms for scientific computing

in Python. Nature Methods, 17(3), 261–272. https://doi.org/10.1038/
s41592-019-0686-2

33. Liebschner, D., Afonine, P. V., Baker, M. L., Bunkóczi, G., Chen, V. B.,

Croll, T. I., Hintze, B., Hung, L.-W., Jain, S., Mccoy, A. J., Moriarty, N.W.,

Oeffner, R. D., Poon, B. K., Prisant, M. G., Read, R. J., Richardson, J. S.,

Richardson,D.C., Sammito,M.D., Sobolev,O.V., . . . Adams, P.D. (2019).

Macromolecular structure determination using X-rays, neutrons and

electrons: recent developments in Phenix. Acta Crystallographica Sec-
tion D: Structural Biology, 75(Pt 10), 861–877. https://doi.org/10.1107/
S2059798319011471

34. Kanehisa, M. (2000). KEGG: Kyoto encyclopedia of genes and

genomes.Nucleic acids research,28(1), 27–30. https://doi.org/10.1093/
nar/28.1.27

35. Cox, J., Hein, M. Y., Luber, C. A., Paron, I., Nagaraj, N., & Mann, M.

(2014). Accurate proteome-wide label-free quantification by delayed

normalization and maximal peptide ratio extraction, termedMaxLFQ.

Molecular & Cellular Proteomics, 13(9), 2513–2526. https://doi.org/10.
1074/mcp.M113.031591

36. Hein, M. Y., Hubner, N. C., Poser, I., Cox, J., Nagaraj, N., Toyoda, Y., Gak,

I. A., Weisswange, I., Mansfeld, J., Buchholz, F., Hyman, A. A., & Mann,

M. (2015). A human interactome in three quantitative dimensions

organized by stoichiometries and abundances. Cell, 163(3), 712–723.
https://doi.org/10.1016/j.cell.2015.09.053

37. Skalidis, I., Kyrilis, F. L., Tüting, C., Hamdi, F., Chojnowski, G., &Kastritis,

P. L. (2022). Cryo-EM and artificial intelligence visualize endogenous

protein community members. Structure (London, England), 30(4), 575–
589.e6 e576. https://doi.org/10.1016/j.str.2022.01.001

38. Kyrilis, F. L., Meister, A., & Kastritis, P. L. (2019). Integrative biology

of native cell extracts: A new era for structural characterization of

life processes. Biological Chemistry, 400(7), 831–846. https://doi.org/
10.1515/hsz-2018-0445

39. Lomakin, I. B., Xiong, Y., & Steitz, T. A. (2007). The crystal structure

of yeast fatty acid synthase, a cellular machine with eight active sites

working together. Cell, 129(2), 319–332. https://doi.org/10.1016/j.
cell.2007.03.013

40. Wei, J., & Tong, L. (2015). Crystal structure of the 500-kDa yeast

acetyl-CoA carboxylase holoenzyme dimer. Nature, 526(7575), 723–
727. https://doi.org/10.1038/nature15375

 16159861, 2023, 17, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/pm

ic.202200096 by N
atl H

ellenic R
es Fndtn (N

H
R

F), W
iley O

nline L
ibrary on [09/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1038/415141a
https://doi.org/10.1038/415141a
https://doi.org/10.1016/0968-0004(85)90266-X
https://doi.org/10.15252/msb.20167412
https://doi.org/10.1042/EBC20180008
https://doi.org/10.1042/EBC20180008
https://doi.org/10.1038/s41467-021-27287-4
https://doi.org/10.1038/s41467-021-27287-4
https://doi.org/10.1146/annurev-biochem-032620-110705
https://doi.org/10.1042/BCJ20210708
https://doi.org/10.1042/BCJ20210708
https://doi.org/10.3390/molecules26206224
https://doi.org/10.3390/molecules26206224
https://doi.org/10.1038/nmeth.4169
https://doi.org/10.1038/nmeth.4169
https://doi.org/10.1017/s0033583504003920
https://doi.org/10.1017/s0033583504003920
https://doi.org/10.1093/jmicro/dfv370
https://doi.org/10.1093/jmicro/dfv370
https://doi.org/10.3389/fmolb.2021.660542
https://doi.org/10.3389/fmolb.2021.660542
https://doi.org/10.1101/2022.07.15.498668
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1093/nar/gkaa1074
http://conference.scipy.org/proceedings/SciPy2008/paper_2/
https://doi.org/10.1002/pro.3943
https://doi.org/10.1093/nar/gkaa1100
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1107/S2059798319011471
https://doi.org/10.1107/S2059798319011471
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1074/mcp.M113.031591
https://doi.org/10.1074/mcp.M113.031591
https://doi.org/10.1016/j.cell.2015.09.053
https://doi.org/10.1016/j.str.2022.01.001
https://doi.org/10.1515/hsz-2018-0445
https://doi.org/10.1515/hsz-2018-0445
https://doi.org/10.1016/j.cell.2007.03.013
https://doi.org/10.1016/j.cell.2007.03.013
https://doi.org/10.1038/nature15375


10 of 10

41. Ho, Y., Gruhler, A., Heilbut, A., Bader, G. D., Moore, L., Adams, S.-

L., Millar, A., Taylor, P., Bennett, K., Boutilier, K., Yang, L., Wolting,

C., Donaldson, I., Schandorff, S., Shewnarane, J., Vo, M., Taggart, J.,

Goudreault, M., Muskat, B., . . . Tyers, M. (2002). Systematic iden-

tification of protein complexes in Saccharomyces cerevisiae by mass

spectrometry. Nature, 415(6868), 180–183. https://doi.org/10.1038/
415180a

42. Chojnowski,G., Simpkin,A. J., Leonardo,D.A., Seifert-Davila,W.,Vivas-

Ruiz, D. E., Keegan, R. M., & Rigden, D. J. (2022). findMySequence: A
neural-network-based approach for identification of unknown pro-

teins in X-ray crystallography and cryo-EM. IUCrJ, 9(Pt 1), 86–97.

https://doi.org/10.1107/S2052252521011088

43. Pfab, J., Phan, N. M., & Si, D. (2021). DeepTracer for fast de novo

cryo-EM protein structure modeling and special studies on CoV-

related complexes. Proceedings of the National Academy of Sciences of
the United States of America, 118(2), e2017525118. https://doi.org/10.
1073/pnas.2017525118

44. Jamali, K., Kimanius, D., & Scheres, S. (2022). ModelAngelo: Auto-

mated model building in cryo-EMmaps. arXiv preprint, https://doi.org/
10.48550/arXiv.2210.00006

45. Beck, M., & Baumeister, W. (2016). Cryo-electron tomography: Can

it reveal the molecular sociology of cells in atomic detail? Trends in
Cell Biology, 26(11), 825–837. https://doi.org/10.1016/j.tcb.2016.08.
006

46. Erdmann, P. S., Hou, Z., Klumpe, S., Khavnekar, S., Beck, F., Wilfling, F.,

Plitzko, J. M., & Baumeister, W. (2021). In situ cryo-electron tomog-

raphy reveals gradient organization of ribosome biogenesis in intact

nucleoli.Nature Communications,12(1), 5364. https://doi.org/10.1038/
s41467-021-25413-w

47. Verbeke, E. J., Mallam, A. L., Drew, K., Marcotte, E. M., & Taylor, D.

W. (2018). Classification of single particles from human cell extract

reveals distinct structures human cell extract reveals distinct struc-

tures. Cell Reports, 24(1), 259–268.e3 e253. https://doi.org/10.1016/

j.celrep.2018.06.022

48. Kemmerling, S., Arnold, S. A., Bircher, B. A., Sauter, N., Escobedo, C.,

Dernick, G., Hierlemann, A., Stahlberg, H., & Braun, T. (2013). Single-

cell lysis for visual analysis by electronmicroscopy. Journal of Structural
Biology, 183(3), 467–473. https://doi.org/10.1016/j.jsb.2013.06.012

49. Mund, A., Coscia, F., Kriston, A., Hollandi, R., Kovács, F., Brunner, A.-D.,

Migh, E., Schweizer, L., Santos, A., Bzorek, M., Naimy, S., Rahbek-

Gjerdrum, L. M., Dyring-Andersen, B., Bulkescher, J., Lukas, C., Eckert,

M. A., Lengyel, E., Gnann, C., Lundberg, E., . . . Mann, M. (2022).

Deep Visual Proteomics defines single-cell identity and heterogene-

ity. Nature Biotechnology, 40(8), 1231–1240. https://doi.org/10.1038/
s41587-022-01302-5

50. Meyer, J. G. (2021). Deep learning neural network tools for pro-

teomics. Cell Rep Methods, 1(2), 100003. https://doi.org/10.1016/j.
crmeth.2021.100003

51. Neijenhuis, T., Van Keulen, S. C., & Bonvin, A. M. J. J. (2022). Interface

refinement of low- to medium-resolution cryo-EM complexes using

HADDOCK2.4. Structure (London, England), 30(4), 476–484.e3 e473.

https://doi.org/10.1016/j.str.2022.02.001

52. Van Zundert, G. C. P., Melquiond, A. S. J., & Bonvin, A. M. J. J.

(2015). Integrative modeling of biomolecular complexes: HADDOCK-

ing with Cryo-electron microscopy data. Structure (London, England),
23(5), 949–960. https://doi.org/10.1016/j.str.2015.03.014

53. Trellet, M., van Zundert, G., & Bonvin, A. (2020). Protein-protein mod-

eling using cryo-EM restraints. Methods in Molecular Biology, 2112,
145–162. https://doi.org/10.1007/978-1-0716-0270-6_11

54. He, J., Lin, P., Chen, J., Cao, H., & Huang, S.-Y. (2022). Model building of

protein complexes from intermediate-resolution cryo-EM maps with

deep learning-guided automatic assembly. Nature Communications,
13(1), 4066. https://doi.org/10.1038/s41467-022-31748-9

55. Mccafferty, C. L., Taylor, D. W., & Marcotte, E. M. (2021). Improv-

ing integrative 3D modeling into low- to medium-resolution electron

microscopy structures with evolutionary couplings. Protein Science,
30(5), 1006–1021. https://doi.org/10.1002/pro.4067

56. Webb, B., Viswanath, S., Bonomi, M., Pellarin, R., Greenberg, C. H.,

Saltzberg, D., & Sali, A. (2018). Integrative structure modeling with

the Integrative Modeling Platform. Protein Science, 27(1), 245–258.
https://doi.org/10.1002/pro.3311

57. Chen, M., Baldwin, P. R., Ludtke, S. J., & Baker, M. L. (2016). De Novo

modeling in cryo-EM density maps with Pathwalking. Journal of Struc-
tural Biology, 196(3), 289–298. https://doi.org/10.1016/j.jsb.2016.06.
004

58. Dimaio, F., Tyka,M.D., Baker,M. L., Chiu,W., &Baker,D. (2009). Refine-

ment of protein structures into low-resolution density maps using

rosetta. Journal of Molecular Biology, 392(1), 181–190. https://doi.org/
10.1016/j.jmb.2009.07.008

59. Kappel, K., Liu, S., Larsen, K. P., Skiniotis, G., Puglisi, E. V., Puglisi, J. D.,

Zhou, Z. H, Zhao, R., & Das, R. (2018). De novo computational RNA

modeling into cryo-EM maps of large ribonucleoprotein complexes.

Nature Methods, 15(11), 947–954. https://doi.org/10.1038/s41592-
018-0172-2

60. D’imprima, E., Floris, D., Joppe, M., Sánchez, R., Grininger, M., &

Kühlbrandt,W. (2019). Protein denaturation at the air-water interface

and how to prevent it. Elife, 8, e42747. https://doi.org/10.7554/eLife.
42747

61. Al-Azzawi, A., Ouadou, A., Max, H., Duan, Y., Tanner, J. J., & Cheng,

J. (2020). DeepCryoPicker: Fully automated deep neural network

for single protein particle picking in cryo-EM. BMC Bioinformatics
[Electronic Resource],21(1), 509. https://doi.org/10.1186/s12859-020-
03809-7

62. Wang, F., Gong, H., Liu, G., Li, M., Yan, C., Xia, T., Li, X., & Zeng, J.

(2016).DeepPicker: Adeep learning approach for fully automatedpar-

ticle picking in cryo-EM. Journal of Structural Biology, 195(3), 325–336.
https://doi.org/10.1016/j.jsb.2016.07.006

63. Terwilliger, T. C., Grosse-Kunstleve, R. W., Afonine, P. V., Moriarty,

N. W., Zwart, P. H., Hung, L.-W, Read, R. J., & Adams, P. D. (2008).

Iterative model building, structure refinement and density modifica-

tion with the PHENIX AutoBuild wizard. Acta Crystallographica Section
D, Biological Crystallography, 64(Pt 1), 61–69. https://doi.org/10.1107/
S090744490705024X

64. Zhu, Y., Ouyang, Q., & Mao, Y. (2017). A deep convolutional neu-

ral network approach to single-particle recognition in cryo-electron

microscopy. BMC Bioinformatics [Electronic Resource], 18(1), 348.

https://doi.org/10.1186/s12859-017-1757-y

65. Sorzano, C. O. S., Recarte, E., Alcorlo, M., Bilbao-Castro, J. R., San-

Martín, C., Marabini, R., & Carazo, J. M. (2009). Automatic particle

selection from electron micrographs using machine learning tech-

niques. Journal of Structural Biology, 167(3), 252–260. https://doi.org/
10.1016/j.jsb.2009.06.011

SUPPORTING INFORMATION

Additional supporting information may be found online

https://doi.org/10.1002/pmic.202200096 in the Supporting

Information section at the end of the article.

How to cite this article: Tüting, C., Schmidt, L., Skalidis, I., Sinz,

A., & Kastritis, P. L. (2023). Enabling cryo-EM density

interpretation from yeast native cell extracts by proteomics

data and AlphaFold structures. Proteomics, 23, e2200096.

https://doi.org/10.1002/pmic.202200096

 16159861, 2023, 17, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/pm

ic.202200096 by N
atl H

ellenic R
es Fndtn (N

H
R

F), W
iley O

nline L
ibrary on [09/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1038/415180a
https://doi.org/10.1038/415180a
https://doi.org/10.1107/S2052252521011088
https://doi.org/10.1073/pnas.2017525118
https://doi.org/10.1073/pnas.2017525118
https://doi.org/10.48550/arXiv.2210.00006
https://doi.org/10.48550/arXiv.2210.00006
https://doi.org/10.1016/j.tcb.2016.08.006
https://doi.org/10.1016/j.tcb.2016.08.006
https://doi.org/10.1038/s41467-021-25413-w
https://doi.org/10.1038/s41467-021-25413-w
https://doi.org/10.1016/j.celrep.2018.06.022
https://doi.org/10.1016/j.celrep.2018.06.022
https://doi.org/10.1016/j.jsb.2013.06.012
https://doi.org/10.1038/s41587-022-01302-5
https://doi.org/10.1038/s41587-022-01302-5
https://doi.org/10.1016/j.crmeth.2021.100003
https://doi.org/10.1016/j.crmeth.2021.100003
https://doi.org/10.1016/j.str.2022.02.001
https://doi.org/10.1016/j.str.2015.03.014
https://doi.org/10.1007/978-1-0716-0270-6_11
https://doi.org/10.1038/s41467-022-31748-9
https://doi.org/10.1002/pro.4067
https://doi.org/10.1002/pro.3311
https://doi.org/10.1016/j.jsb.2016.06.004
https://doi.org/10.1016/j.jsb.2016.06.004
https://doi.org/10.1016/j.jmb.2009.07.008
https://doi.org/10.1016/j.jmb.2009.07.008
https://doi.org/10.1038/s41592-018-0172-2
https://doi.org/10.1038/s41592-018-0172-2
https://doi.org/10.7554/eLife.42747
https://doi.org/10.7554/eLife.42747
https://doi.org/10.1186/s12859-020-03809-7
https://doi.org/10.1186/s12859-020-03809-7
https://doi.org/10.1016/j.jsb.2016.07.006
https://doi.org/10.1107/S090744490705024X
https://doi.org/10.1107/S090744490705024X
https://doi.org/10.1186/s12859-017-1757-y
https://doi.org/10.1016/j.jsb.2009.06.011
https://doi.org/10.1016/j.jsb.2009.06.011
https://doi.org/10.1002/pmic.202200096
https://doi.org/10.1002/pmic.202200096

	Enabling cryo-EM density interpretation from yeast native cell extracts by proteomics data and AlphaFold structures
	Abstract
	1 | INTRODUCTION
	2 | MATERIALS AND METHODS
	2.1 | Re-analyzed data
	2.2 | Network analysis
	2.3 | Image processing
	2.4 | Unambiguous fitting of AlphaFold2 models
	2.5 | Resolving of C&#x03B1;&#x2010;clashing and real&#x2010;space refinement
	2.6 | Local resolution estimation
	2.7 | Code availability

	3 | RESULTS
	3.1 | High molecular weight protein complexes from native cell extracts-Identifying protein communities by combining MS and database knowledge
	3.2 | Template-free cryo-EM reconstruction
	3.3 | AI-guided protein structure modeling - Identification and refinement of FAS

	4 | DISCUSSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	ORCID
	REFERENCES
	SUPPORTING INFORMATION


