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Abstract
Two-dimensional correlation spectroscopy (2D-COS) is a technique that permits the examination of synchronous and
asynchronous changes present in hyperspectral data. It produces two-dimensional correlation coefficient maps that represent
the mutually correlated changes occurring at all Raman wavenumbers during an implemented perturbation. To focus our
analysis on clusters of wavenumbers that tend to change together, we apply a k-means clustering to the wavenumber profiles in
the perturbation domain decomposition of the two-dimensional correlation coefficient map. These profiles (or trends) reflect
peak intensity changes as a function of the perturbation. We then plot the co-occurrences of cluster members two-
dimensionally in a manner analogous to a two-dimensional correlation coefficient map. Because wavenumber profiles are
clustered based on their similarity, two-dimensional cluster member spectra reveal which Raman peaks change in a similar
manner, rather than how much they are correlated. Furthermore, clustering produces a discrete partitioning of the wave-
numbers, thus a two-dimensional cluster member spectrum exhibits a discrete presentation of related Raman peaks as opposed
to the more continuous representations in a two-dimensional correlation coefficient map. We demonstrate first the basic
principles of the technique with the aid of synthetic data. We then apply it to Raman spectra obtained from a polystyrene
perchlorate model system followed by Raman spectra from mammalian cells fixed with different percentages of methanol. Both
data sets were designed to produce differential changes in sample components. In both cases, all the peaks pertaining to a given
component should then change in a similar manner. We observed that component-based profile clustering did occur for
polystyrene and perchlorate in the model system and lipids, nucleic acids, and proteins in the mammalian cell example. This
confirmed that the method can translate to “real world” samples. We contrast these results with two-dimensional correlation
spectroscopy results. To supplement interpretation, we present the cluster-segmented mean spectrum of the hyperspectral
data. Overall, this technique is expected to be a valuable adjunct to two-dimensional correlation spectroscopy to further
facilitate hyperspectral data interpretation and analysis.
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Introduction

Changes that occur in a sample over time or in response to
some experimental treatment, a perturbation, are common
targets of spectral analysis. These changes are often probed
using Raman spectroscopy, an information-rich optical
technique especially suitable for use with biological
samples.1–7 These include that the macromolecular compo-
sitional changes occurring in human embryonic stem cells
undergoing differentiation exhibit an increase in protein
content relative to that of nucleic acids,8 in Chinese hamster
ovary cells, lipid content increases in late stages of apoptosis,9

in red blood cell concentrates stored in transfusion bags,
oxyhemoglobin and lactate levels increase with storage time
while glucose levels decrease,10–12 and the hydrolysis of
peptide bonds is observed at high temperature in freeze-dried
tissue.13

A well-established technique to examine the synchronous
(in-phase) and asynchronous (out-of-phase) changes observed
between different peaks in Raman spectra that occur in the
course of a perturbation is two-dimensional correlation
spectroscopy (2D-COS).14 2D-COS is based on the analysis
and two-dimensional representation of covariances and
correlation coefficients that reveal correlated synchronous
changes between peaks while the application of the Hilbert–
Noda transform permits an examination of asynchronous
changes.14,15 2D-COS is used to understand the relationship
between peaks,12 to identify the types of macromolecule that
contribute to peaks,16,17 to assess the correspondence be-
tween Raman peak changes and bioanalytical
measurements,12,18 to gain insight into structural changes in
molecules,19 and to analyze kinetic processes.20 However,
synchronous or asynchronous changes, even though highly
correlated, may not show the same qualitative profile or trend
across the perturbation.

Due to their highly complex composition, the interpre-
tation of Raman spectra from cells can be particularly chal-
lenging, a situation mitigated by the fact that many peaks
repeatedly represent each of the few major macromolecules
(lipids, proteins, nucleic acids, and carbohydrates21,22) that
make up more than 85% of the dry weight of cells.23 The peaks
pertaining to each type of macromolecule can, in general, be
expected to vary together. In particular, peaks that vary to-
gether should exhibit highly similar profiles and clustering
techniques can be used to group them. Though complex
changes should generally be expected, focusing on the limited
number of major macromolecules provides a starting point
from which subtler changes can be unraveled and, in con-
junction with 2D-COS, the interpretation of Raman spectra
can be improved.

K-means clustering is a method to partition an n-dimen-
sional population into k clusters such that for every cluster the
distances between cluster members are less than the distances
between clusters.24–26 For example, it can be done based on
Raman spectra to segment images,27 classify molecular

structures,28 used in conjunction with principal component
analysis (PCA) to extract cluster spectral information,29 and
separate healthy from breast cancer tissues.30 Though nor-
mally applied to the spectra themselves, we report here on a
method to use k-means clustering on the profiles at all the
wavenumbers in a hyperspectral data set to group similar
profiles. The cluster memberships are then displayed two-
dimensionally in a manner analogous to a two-dimensional
correlation coefficient map to create a two-dimensional
cluster member spectrum (2D-CMS). A 2D-CMS shows
which Raman peaks change similarly based on the clustering of
their profiles rather than a similarity based on the correlation
coefficients between their profiles.

We use synthetic “spectra”, each with eight peaks and
simple profiles as described further below, to explain the
principles and application of the method. We then apply the
method to experimentally obtained Raman spectra. First, we
use a relatively uncomplicated model system of polystyrene
beads submerged in a NaClO4 solution to assess and dem-
onstrate its utility for the analysis of spectroscopic data.31 By
scanning from the center across the edge of a polystyrene
bead cluster, the polystyrene peak intensities would decrease
while those of the perchlorate ion would increase, thus
producing contrary profiles. We then extend the application
to the more challenging case of spectra obtained from
mammalian cells fixed with different percentages of methanol.
Because methanol is a fixative used for cells that coagulates
proteins and also dissolves lipids from cell membranes,32

varying the percentage of methanol used for cell fixation
would induce different profiles in the macromolecules of cells.

Methods

Two-Dimensional Correlation Spectroscopy.14,15 Two-dimensional
correlation spectroscopy (2D-COS) is a well-known analysis
technique with various implementations17,18,33–36 and several
reviews and tutorials are available about its principles and
applications.14,15,19,37–42

Perturbation Domain Decomposition.43,44 Perturbation do-
main decomposition (PDD) unfolds profiles during calculation
from 2D-COS maps, that is, from two-dimensional correla-
tion spectra (2D-COV) and two-dimensional correlation
coefficient maps (2D-COR) by augmenting the spectra, before
calculating the maps, with a sequence of single channel delta
functions at successive channels—one for every perturbation
stage. This produces profiles similar to those of the measured
data, but they are directly commensurate with the 2D-COS
maps, for example, being mean centered and scaled. The
profiles so extracted can then be used separately or as part of
an extended 2D-COS map to aid the interpretation of 2D-
COS features.

K-Means Clustering.24–26 K-means clustering is an unsu-
pervised partitioning procedure. To perform k-means clus-
tering, the number of clusters, k, must be specified at the
outset. Every profile in a data set is then assigned to exactly

836 Applied Spectroscopy 77(8)



one of a number of non-empty clusters by an iterative pro-
cedure. Initial cluster “cores” or centroids start with k profiles
randomly selected from the data set and the distance between
every profile and every centroid is determined using one of a
number of distance measures. Every profile is then assigned to
the cluster of its nearest centroid and thereafter every
centroid is modified such that it is now the mean profile of all
the members of its cluster. Because the centroids have
changed from their initial values, the distances between every
profile and every centroid might now be different and they are
recalculated. For the same reasons, some profiles might now
be reassigned to different clusters and the resultant changes in
cluster members produce further centroid modifications as
they now are the new means of the cluster members. This
procedure is repeated until profiles no longer change clusters
or a specified iteration number is reached. A difficulty that
may arise using this procedure is that, depending on the initial
selection of centroids, clustering might converge to a local
minimum. It might also be unclear on what basis to specify the
best number of clusters to use for a given task though an
inspection of the distribution of cluster members might show
whether effective clustering was obtained and, by extension,
whether the number of clusters chosen was appropriate.

Two-Dimensional Cluster Member Spectra. Separately, for
each of the data sets, a 2D-COR with PDD is performed and
the profiles at all the channels or wavenumbers are parti-
tioned with k-means clustering into groups of similar profiles.
This can also be done without performing a 2D-COR asso-
ciated PDD by using the standard normal variates of the
profiles. Importantly, constant peak profiles are mean cen-
tered and thus would be zero and coincide with zero baseline
profiles. Peaks are identified by a mean profile that exceeds a
small threshold, for instance, based on the limit of detection
(LOD) criterion.45 Before clustering, peaks that are constant
(e.g., fluctuating with a standard deviation < LOD/3) are added
back into the PDD at a constant level that exceeds the LOD,
for example, 10% of the maximum absolute PDD value.
Baseline profiles (mean profiles < LOD) are set to zero.

Constant profiles cannot feature in analyses based on cor-
relation coefficients because their standard deviations are
zero and the calculation of correlation coefficients involve
division by the standard deviation.

Cluster-Segmented Spectra. Besides the generation of a 2D-
CMS from the clustering of profiles in Raman hyperspectra,
cluster-segmented spectra can be generated for all the
spectra. A cluster-segmented spectrum shows which channels
or wavenumbers of a spectrum belong to the same cluster.
This is done, for example, by differential color coding of all the
wavenumbers of the data set mean spectrum that belong to
the same cluster.

Synthetic Spectra. Nine spectra of 1610 channels were
simulated each consisting of eight rectangular “peaks” with a
width of 100 channels. They were centered at channels 100,
300, 500, 700, 900, 1100, 1300, and 1500 and labeled in the
same order from Peak 1 (P1) to Peak 8 (P8). The maximum
intensity of the first five peaks was 1 and that of the remaining
three peaks was 0.5. P1 decayed exponentially by 50% of its
initial value at each perturbation stage; P2 increased linearly
from 0 to 1.00; P3 was present only at stages 4 (intensity 0.8),
5 (intensity 1.0), and 6 (intensity 0.8); P4 increased linearly
from 0 at stage 1 to 1.0 at stage 8 and then remained at 1 for
stage 9. P5 was constant at 1.0 throughout all perturbation
stages. P6 decreased by 50% at each stage starting at an in-
tensity of 0.5. P7 decreased linearly from 0.5 to 0 and P8 was
also constant, but at intensity 0.5. These peaks are shown in
Fig. 1a and their profiles in Fig. 1b. The profiles of these peaks
constitute six distinct clusters.

Polystyrene Perchlorate Model System.31 The method was
applied to a model system consisting of an aqueous suspension
of ∼10 μm diameter polystyrene carboxylated microspheres
(Sigma-Aldrich, US) that was deposited on a 12.5 mm di-
ameter glass-encapsulated gold mirror (ThorLabs, US) with
the mirror placed in a Petri dish and then submerged in 2.5 M
NaClO4. To obtain spectra, we scanned across the edge of a
close-packed area of beads where a transition from a beaded
to a bead-free area occurred as shown in Fig. 2a. The scanning

Figure 1. (a) Surface plot of eight synthetic peaks (P1 to P8) that change in a correlated, anticorrelated, or independent manner. (b) Profiles
of individual peaks.
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produced increasing perchlorate ion and decreasing poly-
styrene peak intensities, thus producing opposite profiles. The
perchlorate ion is insoluble in the polystyrene beads and its
major Raman band at ∼935 cm�1 is well separated from
strong polystyrene Raman bands as evident in Fig. 2b. The
Petri dish containing the mirror with beads was placed under a
confocal Raman microscope (InVia, Renishaw, Gloucester-
shire, UK) and a water-immersion 40× (0.80 NA, 3300 µm
working distance; Leica Microsystems, Germany) objective
lens used to focus the laser beam to a spot of approximately
3 µm × 30 µm. Thirty-eight Raman spectra, one per step, with
1s per spectrum were collected at room temperature while
moving in ∼1 µm steps through the edge of the bead array. A
50 µm slit width, 785 nm excitation, and ∼80 mW power at
the sample were used.

Cell Culture and Fixation. T-75 flasks containing 15 mL
Immunocult-XF medium (Stemcell Technologies, Canada)
supplemented with 1X antibiotic–antimycotic cocktail (Gibco,
US) were seeded with 2*106 Human Jurkat T-cells (ATCC,
TIB-152). Thereafter, they were incubated in a humidified
incubator at 37 °C and 5% CO2 for 72 h. When exponentially
growing, cells were harvested and fixed for Raman
spectroscopy.

Four groups of approximately 2 × 106 cells were collected
and centrifuged for fixation with different volumes (12.5, 25,
37.5, or 50 μL) of methanol where smaller volumes of
methanol were augmented with water to 50 μL, to perform
fixation in 25, 50, 75, or 100% methanol. The supernatant was

removed, and the cells were washed once with saline. The
washed cell pellets were then resuspended in one of the given
amounts of methanol and incubated at�20 °C for 20 min. The
cell/methanol suspension was then pipetted onto 12.5 mm
diameter glass-encapsulated gold mirrors (ThorLabs, US) and
allowed to air-dry in a biosafety cabinet with no further
manipulation. The fixed cell samples were then stored at 4 °C
until Raman spectra were collected.

Mammalian Spectra. Approximately 55 Raman spectra
were measured from each of the four groups of fixed samples.
The spectra were acquired in map acquisition mode using a
50× objective lens (Leica Microsystems, Germany) with 10 s
acquisition time per spectrum with each spectrum containing
information from 10 to 15 cells. These spectra with some
macromolecular peak identities are shown in Fig. 2c. Various
literature sources are available where Raman band assign-
ments can be found.7,46

Data Generation and Processing. Matlab R2017b (The
MathWorks Inc., US) was used to generate synthetic data, for
spectral processing, and for data analyses. Raman spectra were
preprocessed with an automated moving average-based
baseline-flattening method (15 iterations),47 a two-
dimensional second difference cosmic ray-induced spike re-
moval method48 and a contiguous single-channel Voigt dis-
tribution fitting method for smoothing.49 2D-COS
computations were implemented with Matlab and the Mat-
lab kmeans function with Euclidean distance measure was used
for k-means clustering.

Figure 2. (a) Image of polystyrene perchlorate model system showing the line scan performed from left to right. (b) Raman spectra from the
model system, spectra were not normalized. (c) Constant sum normalized Raman spectra from Jurkat cells fixed with different percentages
of methanol.
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Results and Discussion

Demonstration of 2D-CMS. To orient the reader, we briefly
discuss some aspects of the 2D-COS for the synthetic data.
The 2D-COV is shown in Fig. 3a and the 2D-COR in Fig. 3b.
P1 and P6 have identical exponentially declining profiles even
though the P6 intensities are only 50% of the P1 intensities.
Thus, modest positive 2D-COV cross-peaks are observed at
channels 100 × 1100 and 1100 × 100 but perfect correlation
coefficients in the 2D-COR. P1 and P2 change in opposite
directions because the P2 profile increases linearly. Thus, the
2D-COV and 2D-COR channel 100 × 300 and 300 × 100
cross-peaks are negative. The P3 profile is symmetric around
perturbation stage 5; thus, the increasing first half of the
profile changes inversely to the sharp exponential drop of
the corresponding part of P1, while its decreasing second half
changes in concert with the corresponding part of the P1
profile, but with the latter now exponentially declining with
very low intensities and the net result being negative 2D-
COV and 2D-COR channel 100 × 500 and 500 × 100 cross-
peaks. Proceeding likewise, all the cross-peaks can be in-
terpreted in the standard 2D-COS manner, keeping in mind
that the P5 and P8 profiles are constant thus the rows and

columns at channels 900 and 1500 will have no cross-peaks
due to zero covariations (2D-COV) and undefined corre-
lation coefficients (2D-COR) with themselves and other
profiles.

Performing six-cluster k-means clustering on the decom-
posed perturbation domain profiles of the synthetic data
produced six centroids with profiles that correctly matched
those of the peaks in each cluster shown in Fig. 3c. The 2D-
CMS is shown in Fig. 3d. Consistent cluster colors are used for
Figs. 3c and 3d (ordering of clusters occur randomly). In Fig.
1a, P1 has the same profile as P6 (assigned to Cluster 5 in Fig.
3c). Both decline exponentially, but from different initial in-
tensities. Thus, the 2D-CMS in Fig. 3d shows yellow squares at
channels 100 × 100 and 1100 × 1100 where P1 and P6, re-
spectively, cluster with themselves. Yellow squares also occur
at channels 100 × 1100 and 1100 × 100 showing that P1 and P6
cluster together. Since P2 is the only member of Cluster 6, it is
represented by only one 2D-CMS square (magenta) at
channels 300 × 300 where it clusters by itself. This is also true
for P3 (blue), P4 (red), and P7 (black) at 500 × 500, 700 × 700,
and 1300 × 1300, respectively. P5 and P8 do not change, thus
have constant profiles that were assigned to Cluster 3 (green).
As for P1 and P6 above, in Fig. 3d the 2D-CMS shows with

Figure 3. 2D-COS and 2D-CMS performed on synthetic data. (a) The 2D-COV and (b) 2D-COR for the synthetic data. (c) Using k-means
clustering, the profiles of the eight synthetic peaks (P1 to P8), shown in Fig. 1b, were grouped into six clusters. (d) The 2D-CMS shows the
cluster auto- and cross-peaks between cluster members. The 2D-CMS displays in (d) as green squares cluster membership between the
constant profiles of Cluster 3, whereas the green circles in (b) show where the 2D-COR does not display a correlation coefficient because
these are constant profiles. The 2D-COR also displays a relatively high correlation coefficient between the profiles of Clusters 2 and 6 as
shown by the reddish squares highlighted by magenta circles in (b), but in the 2D-CMS they are assigned to different clusters as shown by the
red and magenta squares, respectively, in (d) thus no cluster cross-peaks occur between them as shown by the empty magenta circles.

839Schulze et al.



green squares at channels 900 × 1500 and 1500 × 900 that P5
and P8 have the same cluster membership.

The sparsity of the 2D-CMS that is focused on identifying
clusters of synchronously changing peaks contrasts sharply
with the synchronous 2D-COS maps. The 2D-COV in Fig.
3a and the 2D-COR in Fig. 3b include numerous auto- and
cross-peaks with various degrees of mutual covariance and
correlation between peaks. An important advantage of the
2D-CMS is that constant profiles, as shown by the Cluster 3
profile in Fig. 3c, are clustered and represented in a 2D-
CMS, for example, green squares in Fig. 3d. They are not
present in the corresponding 2D-COR as shown by the
green circles because a constant profile does not have a
defined standard deviation and the correlation coefficients
between constant profiles cannot be determined. Indeed,
the correlation coefficient between any profile and a
constant profile cannot be determined as evidenced by the
empty rows and columns along channels 900 and 1500 in
Fig. 3b. Being able to include constant profiles in the seg-
mentation or grouping of peaks, provided that baseline
profiles are treated separately, aids in analysis by permitting
unchanging peaks to be distinguished from others. How-
ever, including constant profiles actually reduces the 2D-
CMS matrix sparsity.

Another difference underlying the sparsity effect is that
profiles may be relatively highly correlated yet belong to
different clusters when the differing characteristic features of
their profiles can be more readily captured by a clustering
procedure (that correlation coefficients are not designed to
do). Thus, Clusters 3 and 5 (green and yellow, respectively)
each have two autopeaks (i.e., there are two green peaks and
two yellow ones on the diagonal) signifying two members in
each cluster. On the other hand, though strong correlation
coefficients are observed for the profiles at channels 300 and
700 (highlighted by the magenta circles in Fig. 3b), they belong
to different clusters, those being the Fig. 3c Clusters 6
(magenta) and 2 (red). Consequently, there are no corre-
sponding “cross-clusters” (i.e., indicating joint cluster mem-
bership) for these profiles in Fig. 3d (magenta circles).
Relatedly, unlike 2D-COS and principal components in PCA,
clusters cannot contain anticorrelated elements and there are
no negative clusters. These effects contribute to the general
sparsity observed in 2D-CMS.

The asynchronous results of performing a six-cluster k-
means clustering are shown in Fig. S1 (Supplemental Material).
Besides spectral resolution enhancement, the asynchronous
2D-COS maps represent phase differences between profiles
and are useful for inferring the sequential order of spectral
events.50 Applying the Hilbert–Noda transform15 changes the
correlations between profiles, thus the asynchronous 2D-
COS maps differ from the synchronous 2D-COS maps.
However, we think it unlikely that the transform would
change cluster memberships, as shown in Fig. S1, where the
“asynchronous” 2D-CMS is identical to the “synchronous”
2D-CMS.

Application of 2D-CMS. To illustrate the application of 2D-
CMS to Raman spectra, we used a model system of poly-
styrene beads submerged in a sodium perchlorate solution.
Scanning from the beads, where polystyrene is present and
some perchlorate is covering the beads, to the bead-free area
where only perchlorate is present (Fig. 2a) produced de-
creasing polystyrene Raman bands and increasing perchlorate
Raman bands. In Fig. 4, we show 2D-COS and 2D-CMS maps
of a spectral region of interest of the Fig. 2b Raman spectra
that contains the major polystyrene and perchlorate bands.
Because the polystyrene and perchlorate peaks in this model
system changed in an opposite manner, all the negative peaks
in the 2D-COS and 2D-COR maps (Figs. 4a and 4b, re-
spectively) are cross-peaks between polystyrene and per-
chlorate Raman bands. Hence, the simplicity of this model
system permits the use of positive and negative peaks to
identify peaks belonging to each of the two components
present. We focus on the 800 cm�1 to 1200 cm�1 region
containing the major autopeaks of polystyrene (at
∼1002 cm�1) and perchlorate (at ∼935 cm�1). They are
shown by arrows in Figs. 4a and 4b, and a cross-peak between
them with blue (Fig. 4a) and cyan (Fig. 4b) arrows.

For the 2D-CMS processing, peaks below the LOD
threshold were set to zero, thus very small peaks and baseline
levels were constant. Clustering using three clusters produced
the profile centroids in Fig. 4c. The sinusoidal changes in the
centroid profiles for polystyrene and perchlorate are due to
the spherical nature of the beads and how they were packed
together. The 2D-CMS map in Fig. 4d distinctly shows peaks
pertaining to perchlorate (green rectangles), polystyrene
(black rectangles) and baseline levels with small peaks (red
rectangles). In contrast to 2D-COS, there are no cross-
clusters between any of the above three groups. Where
cross-clusters do occur, they occur between Raman bands
pertaining to the same group (e.g., only between polystyrene
peaks). In 2D-COS, negative cross-peaks reveal that peaks
change in an opposite manner, but in 2D-CMS such infor-
mation must be determined from an inspection of the
centroids.

We next performed 2D-COS and 2D-CMS on a more
complex data set. This set contained spectra from fixed Jurkat
cells. The results of an instructive subset of the entire mea-
sured spectral window, the 600 cm�1 to 900 cm�1 spectral
region, is presented in Fig. 5 and the complementary section is
shown in Fig. S2 (Supplemental Material). The 2D-COV and
2D-COR for this data set are presented in Figs. 5a and 5b,
respectively. It is easier to identify related weak and strong
peaks using the 2D-COR than the 2D-COV because the
profiles are normalized to their standard deviations. However,
this can make the 2D-COR map more complex. Thus, we
discuss, only for orientation, the 2D-COV autopeaks and
cross-peaks by proceeding along the y-axis 782 cm�1 row
indicated by the left arrow.We use the peaks numbered along
the mean spectrum (of the Fig. 2c cell spectra) shown in the
top side panel of Fig. 5a.
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Peak 7 is a composite nucleic acid peak and its autopeak is
prominent on the diagonal where the left arrow would in-
tersect with the Peak 7 arrow. Peak 7 covaries positively
(warm colors) with the protein Peaks 1 and 2 at 621 cm�1 and
643 cm�1, respectively, the 668 cm�1 nucleic acid Peak 3, the
Peak 5 adenine part of the composite 720 cm�1 peak, and the
tryptophan protein Peak 6 at 757 cm�1. Note that, without
consulting band assignments, it is not possible to tell from 2D-
COV which autopeaks and cross-peaks belong to the same
macromolecules. Because methanol leaches lipids from cells
but coagulates proteins32 and compacts nucleic acid confor-
mations,51 cross-peaks related to lipids will covary inversely
with those of proteins and nucleic acids. This is shown for the
714 cm�1 Peak 4 phosphatidylcholine part of the composite
720 cm�1 peak. Consequently, only contrary variations afford
here some discrimination between macromolecules.

The 2D-CMS results for the cell spectra are presented in
Figs. 5c and 5d. The PDD profiles consisted of four groups of
spectra fixed with 25, 50, 75, or 100%methanol. They were k-
means clustered into five clusters. The number of clusters was
chosen to represent the major classes of macromolecules:

lipids, proteins, nucleic acids, carbohydrates, plus one more
for other components. The color-coded centroids of these
clusters, across the four methanol percentages spanning all
214 spectra, are shown in Fig. 5c. The auto- and cross-clusters
from the same clustering are shown in Fig. 5d with the same
color coding. Three macromolecular groups, lipids, proteins,
and nucleic acids, were most clearly separated (see Fig. 6c
further below for the basis of the macromolecular group
identification). These are shown as green, black, and red
squares, respectively. Comparing the 2D-CMS with the 2D-
COR, it can be seen, for example, that the same related
nucleic acid peaks (782, 725, and 668 cm�1) represented by
red squares inside the dashed circles of Fig. 5d are evident as
reddish squares of high correlation coefficients inside the
dashed circles of Fig. 5b.

High correlations are also evident between proteins and
nucleic acids, for example, between the 782 cm�1 composite
nucleic acid peak and the 854 cm�1 composite protein peak
indicated by the reddish square within the upper dotted circle
in Fig. 5b. However, no corresponding cross-cluster is ob-
served in Fig. 5d (upper dotted circle) because the clusters are

Figure 4. 2D-COS and 2D-CMS performed on a polystyrene perchlorate model system. (a) The 2D-COV and (b) 2D-COR maps for the
model data. The major autopeaks for polystyrene and perchlorate are shown with arrows and a cross-peak between polystyrene and
perchlorate is indicated by a blue or cyan arrow. The y-axis labels in (a) also apply to (b). (c) Using k-means clustering the PDD profiles of the
model system peaks (Fig. 2b) were grouped into three clusters. The cluster legend applies to both (c) and (d). (d) The 2D-CMS shows the
cluster auto- and cross-peaks between cluster members. For example, all the green rectangles indicate auto and cross-peaks, but they
pertain only to the perchlorate ion bands. Because the very small perchlorate 1129 cm�1 peak is above the used threshold but not visible in
the (a) and (b) top side panels that contain spectra, the 1129 cm�1 green rectangle auto cluster appears not matched to a peak. Unlike 2D-
COS, where cross-peaks between polystyrene and perchlorate bands occur, there are no cluster cross-peaks between them because they
are members of different clusters.
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exclusive: a profile cannot belong to two clusters simulta-
neously and hence a nucleic acid–protein cross-cluster cannot
exist. However, contrary to 2D-COR, opposing or anti-
correlated changes between peaks cannot be directly de-
termined from 2D-CMS because they will simply be assigned
to different clusters. Instead, opposing changes must be in-
ferred from the profiles of their centroids in Fig. 5c. The
anticorrelated change between declining lipid intensities (due
to methanol-provoked lipid leaching)32 and increasing nucleic
acid intensities (possibly from nucleic acid precipitation)51 can
be determined for the 717 cm�1 phosphatidylcholine and
782 cm�1 composite nucleic acid 2D-COR cross-peak (solid
circle in Fig. 5b) but not for 2D-CMS (solid circle in Fig. 5d) as
there is no cross-cluster.

Overall, as for the 2D-CMS of synthetic data in Fig. 3d and
model system data in Fig. 4d, the discrete nature of the 2D-

CMS of measured Raman spectra permits a differential as-
sessment of relationships between different Raman peaks that
makes it complementary to 2D-COS while displaying greater
sparsity than the corresponding 2D-COV and 2D-COR. The
more complex example, indicated by the two bottom circles
above 782 cm�1 and 827 cm�1 on the x-axis in Figs. 5b and 5d,
will be discussed with the aid of Fig. 6.

Cluster-Segmented Spectra. Cluster-segmented spectra for
the synthetic data are shown in Fig. 6a, for the model system
Raman spectra in Fig. 6b and for the Jurkat cell Raman spectra
in Fig. 6c. A cluster-segmented spectrum shows those
channels or wavenumbers of a spectrum with profiles that
belong to the same cluster, hence peaks belonging to the same
cluster can be discerned. Though we have previously intro-
duced and used cluster-segmented spectra to cluster spec-
troscopic with non-spectroscopic data,18,52 our objective was

Figure 5. 2D-COS and 2D-CMS performed on Jurkat cell Raman spectra showing the 600–900 cm�1 spectral region; the complementary
region is shown in Fig. S2 (Supplemental Material). (a) The 2D-COV and (b) 2D-COR for the spectra. The y-axis labels in (a) also apply to (b).
Auto- and cross-peaks along the row indicated by the left arrow are discussed in the main text. (c) Shown are the PDD profile centroids for all
wavenumbers from 600 cm�1 to 900 cm�1 that were k-means clustered into five groups intended to represent lipids, proteins, nucleic acids,
carbohydrates, and other components. The cluster legend applies to both (c) and (d). The perturbation consisted of fixing cells with four
different percentages of methanol. Approximately 55 spectra were obtained from each fixation. The x-axis shows the number of spectra in
the set and the vertical lines indicate where the perturbation boundaries are. (d) Lipids, proteins, and nucleic acids were recognizably captured
by the clustering process as revealed by the 2D-CMS cluster auto- and cross-peaks between cluster members. A comparison of (b) and (d)
shows the complementary nature of 2D-COR and 2D-CMS. For example, the nucleic acid peaks that cluster together indicated by the dashed
circles in (d) also have relatively high correlation coefficients as indicated by the same dashed circles in (b). In contrast, the 2D-COR can display
relatively high correlation coefficients between nucleic acid and protein peaks as indicated by the square inside the upper dotted circle in (b)
for the 782 cm�1 nucleic acid peak and the 854 cm�1 protein peak, but with 2D-CMS the protein peak is clustered with proteins and no cross-
cluster exists as indicated by the upper dashed circle in (d). The solid circle in (b) shows that anti-correlations are evident in the 2D-COR, but
they do not appear in the 2D-CMS as evident by the empty solid circle in (d). Anticorrelated profiles are assigned to different clusters and
there are no “negative” clusters.
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merely to group similar profiles together and not, as we do
here, to segregate into groups with highly correlated yet
qualitatively different profiles.

The cluster-segmented spectrum in Fig. 6a represents the
same data (clusters and their color coding) as in Figs. 3c and
3d. Presenting the clustered information this way makes it
easy to see which peaks belong to each profile cluster.18 Thus,
peaks at channels 100 and 1100 belong to the same cluster
(yellow) as can be seen from the 100 × 1100 and 1100 × 100
cross-clusters in Fig. 3d because they have the same cluster
profile that is shown in Fig. 3c. A similar argument applies to
the green peaks at channels 900 and 1500 while the other
color-coded peaks each belongs to separate clusters with
different Fig. 3c profiles.

The model system contained only polystyrene and per-
chlorate and their peak intensities changed in opposite ways,
thus their peaks belong to different clusters. Furthermore,
except for two peaks near 600 cm�1, their peaks do not overlap.
Consequently, their cluster-segmented spectra in Fig. 6b almost
match the complete spectra of polystyrene and perchlorate.
This is illustrated by imposing a scaled perchlorate spectrum on
the cluster-segmented spectrum of the perchlorate ion.

In Fig. 6c we show with the same cluster colors the cluster-
segmented mean spectrum of the Figs. 5c and 5d clustered

profiles. All the wavenumbers belonging to the same cluster,
hence the most qualitatively similar Fig. 5c profiles, are shown
by the color of their cluster. The inset shows an expansion of
the 600 to 900 cm�1

fingerprint spectral region that contains
peaks from lipids (e.g., phosphatidylcholine at 717 cm�1),
nucleic acids (e.g., composite peak at 782 and adenine at
725 cm�1), and proteins (e.g., composite peaks at 854, 827,
643, and 621 cm�1); thus, we assigned the green cluster to
lipid peaks, the red cluster to nucleic acid peaks and the black
cluster to protein peaks (see also Fig. 2c). Extending these
assignments to the remainder of the spectrum showed fairly
consistent labeling of macromolecular peaks. Other lipid
peaks were labeled around 536 cm�1 (cholesterol ester),
1299 cm�1 (CH2 deformation in lipids), and 1446 cm�1

(various CH2 modes in lipids). Nucleic acid peaks were also
labeled around 1099 cm�1 (phosphodioxy modes in nucleic
acids) and 1573 cm�1 (ring breathing modes in nucleic acid
bases). Additional protein peaks were identified around 758
and 887 cm�1 (tryptophan), 1003 and 1031 cm�1 (phenyl-
alanine), and 1233 cm�1 (protein amide III modes).

Not all peaks were labeled in a clear manner. The Raman
peak ∼720 cm�1 in cell and tissue spectra is a composite band
due to the fusing of overlapping peaks from phosphatidyl-
choline (717 cm�1) and adenine (725 cm�1) and they were

Figure 6. (a) The cluster-segmented mean spectrum of the Figs. 3c and 3d clustered and identically color-coded synthetic data shows which
two peaks belong to one of two clusters (yellow, green) and which peaks belong to each of the remaining clusters. (b) The cluster-
segmented mean spectrum of the Figs. 4c and 4d clustered and identically color-coded model Raman spectra shows peaks and peak segments
of which the wavenumbers belong to perchlorate and polystyrene. The spectrum of perchlorate superimposed in blue on the green cluster-
segmented spectrum of perchlorate demonstrates that clustering succeeded in identifying all the perchlorate peaks. (c) The cluster-
segmented mean spectrum of the Figs. 5c and 5d clustered and identically color-coded mammalian cell Raman spectra shows peaks and peak
segments of which the wavenumbers belong to the same cluster. The inset detail of the 600 to 900 cm�1 spectral region shows peaks belonging
to the proteins (black), nucleic acids (red), and lipids (green) clusters. More details are discussed in the main text.
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correctly clustered as shown by the partitioning of the peak
into green (lipid) and red (nucleic acid) segments. Similar peak
segmentations occur for other peaks consisting of overlapping
bands from different macromolecules and these might be
complicated. For example, both protein and nucleic acid bands
occur near 667 cm�1 and the cluster-segmented spectrum for
this region shows a central black protein peak flanked by two
red nucleic acid segments. It is unclear whether the central
black peak with red flanking segments should be interpreted as
being due to a protein peak with distinct nucleic acid moieties
on either side or whether a more intense and narrow protein
peak is superimposed on a weaker but broader composite
nucleic acid peak. Thus, a distinction must be made on the
basis of prior information. Related to this, the reddish 2D-
COR square in the lowest dashed circle in Fig. 5b seems to be
partitioned into the corresponding two red cluster (nucleic
acid) segments in the lowest dashed circle in Fig. 5d. The
central part between these red cluster segments is missing but
present as a black square in the adjacent dotted circle. Though
the precise interpretation of the fragmented 667 cm�1 peak is
unclear, this example demonstrates an important difference. It
shows how the Fig. 5d 2D-CMS lowest circles provide a
complementary interpretation of the same ones in the Fig. 5b
2D-COR by virtue of identifying peaks that are related due to
having highly similar profiles as opposed to peaks that are
related by virtue of being highly correlated.

Applying 2D-CMS might identify clusters with a large
number of peaks. These peaks provide robust and unam-
biguous perturbation responses and so might be particularly
useful in further analysis and interpretation. Clusters with few
recognizable peaks might be of little use due to a somewhat
random grouping of profiles degraded by overlapping neigh-
bors, low abundance, or other effects. Thus, we have not been
able to identify a carbohydrate or “other” cluster above.

Limitations. Though investigating in more depth is outside
the scope of the current work, we mention several issues that
complicate the utility of 2D-CMS. First, when used in the
manner presented here, conformational changes in a given
type of macromolecule might lead to peak shifts or intensity
changes that would affect the profiles of the peaks involved.
Thus, the profiles of some peaks of the same macromolecule
might be assigned to one cluster while its other peak profiles
might be assigned to a different cluster. This introduces
complications, though such effects might in themselves offer
opportunities for exploitation. For example, an analysis of the
particular peaks assigned to two different clusters might
provide insight into the nature of the conformational changes.
An additional associated difficulty that emerges is the de-
termination of the number of clusters to use in such a case to
obtain meaningful results. Using more clusters might reveal
more types of macromolecules, but it could also lead to more
fragmented results in that overlapping peaks or other effects
modify peak profiles enough to separate some peaks from
their true clusters and group them with others to which they
might be unrelated.

Second, individual lipids or proteins or nucleic acids could
change independently in response to a perturbation. Though
the exact cause is yet uncertain, this is hinted at by the
∼495 cm�1 DNA peak that was assigned to a different cluster
(blue) from the cluster (red) to which the other nucleic acid
peaks in Fig. 5d and Fig. S2d (Supplemental Material) were
assigned. This creates both problems and opportunities, as
mentioned above. Third, overlapping peaks that change in
unrelated ways might sufficiently distort the profiles of as-
sociated wavenumbers to cause misclassification. It is possible
that the 495 cm�1 DNA peak discussed above was assigned to
cluster 4 due to the being affected by changes in the partly
overlapping glycogen band around 485 cm�1.53 Like many
issues that arise in the case of overlapping peaks, this problem
might not be tractable without enhancing the resolution of
spectra.54 A final difficulty relates to the selection and back
addition of constant profiles in a manner that effectively
segregates them from the constant profiles of baseline
wavenumbers. Though the smoothing of spectra can suppress
noise,55 residual noise will be present in such profiles, and this
will be accentuated through division by their standard devi-
ations. One possibility might be to use the square root re-
lationship between Poisson noise and signal intensity.55 For
example, to be considered a constant profile, the mean profile
intensity has to exceed the LOD, its noise distribution has to
be approximately Gaussian and the noise level (i.e., the profile
standard deviation) must be less than the square root of the
mean peak intensity.

Conclusion

The interpretation of two-dimensional correlation spectra
from many types of biomedical, pharmaceutical, or microbi-
ological samples is often not a straightforward task due to
their high complexity.56 With 2D-CMS, we used k-means
clustering to group the wavenumber profiles of Raman hy-
perspectra into discrete classes and constructed sparse two-
dimensional cluster member spectra and cluster-segmented
spectra to complement 2D-COS. 2D-COS maps present
Raman hyperspectral data in a manner where variances and
correlation coefficients between Raman peaks generally
change in a continuous manner, where peak intensity changes
in opposite directions can be visualized because they manifest
as negative cross-peaks and where numerous cross-peaks
exist even between unrelated peaks. 2D-CMS provides
complementary information. It presents hyperspectral data in
a discrete manner showing only peaks whose changes are
highly similar and thus belong to the same cluster. Peak in-
tensity changes that are dissimilar are shown in different
clusters; hence, cross-clusters (analogous to 2D-COS cross-
peaks) do not exist. Peak intensity changes in opposite di-
rections also cannot be represented because opposing peak
intensity changes will be assigned to different clusters. These
attributes make 2D-CMS simpler in appearance than 2D-COS
maps. The partitioning of peak intensity changes into
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meaningful categories also makes them easy to visualize. Ease
of visualization is further supported by cluster-segmented
spectra where the peaks or peak segments (due to over-
lapping peaks) in a spectrum are colored according to their
cluster.We have applied 2D-CMS to synthetic spectra, Raman
spectra from a model system and from highly complex
mammalian cell spectra and successfully shown how 2D-CMS
facilitates the identification of related peaks using cluster-
based as opposed to correlation-based similarities. Thus,
we expect that this approach might be useful on its own as
well as aid in the interpretation of the plethora of auto and
cross-peaks with different amplitudes and signs that are
present in two-dimensional correlation spectra.
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