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Abstract: In the present study, we generalize our recently proposed nomenclature scheme for
porous graphene structures to include graphene flakes and (periodic) edges, i.e., nanographenes
and graphene nanoribbons. The proposed nomenclature scheme is a complete scheme that similarly
treats all these structures. Beyond this generalization, we study the geometric features of graphene
flakes and edges based on ideas from the graph theory, as well as the pore–flake duality. Based on
this study, we propose an algorithm for the systematic generation, identification, and numbering of
graphene pores, flakes, and edges. The algorithm and the nomenclature scheme can also be used for
flakes and edges of similar honeycomb systems.

Keywords: nanographenes; graphene flakes; carbon dots; graphene quantum dots; graphene edges;
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1. Introduction

Although graphene is a semi-metal, graphene flakes (also called nanographenes) and
graphene nanoribbons, which are the zero- and one-dimensional counterparts of graphene,
are semiconductors, due to quantum confinement. This makes them particularly useful
for optoelectronic applications [1] and explains why they have attracted a lot of interest
recently [1–20]. In the last decade, several such structures have been synthesized and both
top-down and bottom-up methods have been developed for their fabrication [2,4–8,21].

Depending on their sizes, shapes, and edge structures, these structures exhibit a
variety of different electronic, optical, and chemical properties [1,10,22]. For instance,
graphene nanoribbons with zig-zag termination were found to exhibit localized edge
states, while their armchair counterparts do not [23], and for a mixed edge profile, hav-
ing both zig-zag and armchair sites, non-negligible edge states were found to survive.
The different electronic properties of graphene edges provide different reactivity and
functionalization [24,25], as well as different reconstruction [26,27], and their optical prop-
erties make them potential candidates for optoelectronic, photocatalytic, and other
applications [1,3]. Moreover, periodic arrangements of graphene nanostructures with differ-
ent shapes are potential metamaterial absorbers based on surface plasmon resonance [28–31].

The infinite number of nanographenes and graphene nanoribbons, due to their dif-
ferent edge structures, and the increasing interest in them, give rise to the necessity for a
nomenclature scheme, which would have the ability to accurately distinguish them from
each other and provide a particular and accurate name for each such different structure.

So far, attempts for naming nanographenes are restricted to (a) the smaller members
of polycrystalline aromatic hydrocarbons and (b) high symmetry flakes. For the former,
empirical names have been adopted, for instance, coronene, ovalene, pentacene, pyrene,
anthracene, etc. [10]. For the latter, there were attempts to classify them according to
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the number of C atoms in zig-zag and armchair-terminated hexagonal and/or trigonal
flakes [14,16], or (for the hexagonal flakes) to name them after the number of hexagon
layers around a central hexagon [15]. However, none of these attempts are able to cover the
variety of nanographene structures. On the other hand, there is already a well-established
name for two types of graphene edges, the so-called zig-zag and armchair edges [18], which,
however, are not the only edges that may appear in nature. An attempt to name edges
using the sequence of zig-zag and armchair units along the edge boundary, as described
in [23], lacks generality, as it cannot accommodate edges not exclusively formed by zig-
zag and/or armchair units. Thus, none of those attempts provide a general scheme to
uniquely identify and name flakes and edges. Moreover, some interesting recommendations
from the international editorial team of Carbon, regarding the nomenclature of graphene-
based two-dimensional materials [32], mainly apply to a few-layered or multi-layered
graphene flakes or nanosheets. A similar attempt within the European Union GRAPHENE
Flagship project [33] suggested a classification based on three raw descriptors, which
are the carbon–oxygen (C/O) ratio, the average lateral dimension, and the number of
layers. Although, in these studies, it is generally admitted that the nomenclature should
be based on morphological descriptors, the proposed descriptors are rather based on raw
morphological characteristics, thus, allowing classification, but not allowing a unique
description at the atomic level. Therefore, there is a need for a general, accurate, and
straightforward nomenclature scheme for graphene flakes and edges, following the IUPAC
specifications, which currently do not exist.

Recently, we proposed a nomenclature scheme for porous graphene structures based
on the arrangement of two-fold coordinated atoms (2-FCAs) in the pore boundary [34].
In the present work, we generalize that scheme, showing that it may include both graphene
flakes and (periodic) edges. Due to the structure of this nomenclature scheme, it allows
systematic numbering and recording of both graphene flakes and edges, which, in turn,
allows a systematic study of their properties. Moreover, considering that flakes and pores
can have the same edge boundary, flakes can be considered as pore duals and vice versa.
As we explain, on the other hand, not all pores have flakes as their dual, and not all flakes
have pores as their dual. That duality, however, allows the application of the same strategy
for naming both flakes and pores, even in cases where a dual structure does not exist. This
is what we show and use in the present study. In addition, the same strategy can be used to
name infinite graphene edges (i.e., edges extended to infinity, not forming a closed path),
which might or might not be periodic, taking into account that edges do not have a closed
boundary.

It is worth noting that the proposed nomenclature scheme and the generation and
numbering algorithm apply to graphene flakes and edges, which are composed of hexago-
nal rings, including either three-fold coordinated atoms (3-FCAs) or two-fold coordinated
atoms (2-FCAs) only. Flakes or edges, including (i) atoms bonded with only one atom, (ii)
parts of the flake (or the edge) bonded with the rest of the flake (or the edge) system with
only one bond, (iii) helical-like flakes [9], or (iv) flakes containing non-hexagonal rings,
are not taken into account in the present study. These cases include extra complexity and
they should be studied separately. The nomenclature scheme proposed here offers just
the basis on which nomenclature schemes for more complex cases can be built. However,
an expansion of the proposed nomenclature scheme for flakes and edges, to cover edge
functionalization and/or edge reconstruction, is possible, in accordance with the expansion
proposed in the case of graphene pores [34].

2. Materials and Methods
2.1. From Graphene Pores to Graphene Flakes and Edges

In the current section, we show the connection between flakes and edges with pores,
which has been studied previously [34]. Considering that, in terms of graph theory, a
graphene pore is a non-crossed closed path composed of edges (bonds) and vertices (atoms),
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we showed that each such closed path (i.e., circuit) can be uniquely defined by the sequence
of path lengths li along the pore boundary connecting the 2-FCAs [34].

The term “non crossed” means that if we move along that path, each vertex and edge is
visited only once. The term “closed path” or “circuit” means that the path begins and ends
at the same vertex. In terms of graph theory, these properties describe both an Eulerian
and Hamiltonian circuit. The term “path length” is also used from the point of view of graph
theory, i.e., it is the number of edges along the path. For convenience, we use the term
“2-2 path” for the path along the pore boundary connecting two adjacent 2-FCAs, and the
term “2-2 hexagon” for the hexagon of the vacuum space associated with the 2-2 path, which
contains the 2-2 path, i.e., the edges of the 2-2 path are edges of the associated 2-2 hexagon.
As we showed in our recent work [34], the length li of a 2-2 path i is an integer number
between 1 and 4 (1 ≤ li ≤ 4), and the sequence l1l2 . . . ln2 of the 2-2 path lengths li uniquely
determines a pore. However, there are many different sequences corresponding to the
same pore, depending on the starting point and the direction one uses to travel along the
pore boundary. For a one-to-one correspondence between pores and sequences, we select
the “minimum image” of all possible sequences that one can find, starting from a different
vertex of the circuit, and moving along it clockwise or counterclockwise. Considering that
the different sequences l1l2 . . . ln2 corresponding to the same pore are n2-digit numbers
composed of the li digits (1 ≤ li ≤ 4), the “minimum image” is the sequence representing
the minimum of those numbers. According to the nomenclature scheme we proposed, a
pore is named after the unique sequence of 2-2 path lengths li provided by the “minimum
image”. That scheme provides an accurate, simple, and unique way to name pores. A pore
with the minimum image sequence l1l2 . . . ln2 was proposed to be named as “the l1l2 . . . ln2

pore”. The same nomenclature scheme is used here for naming graphene flakes and edges.
In Ref. [34], for pores, we introduced the term “edge vectors” ek. An edge vector ek

is a vector attributed to the edge k of the pore circuit, where k serially numbers all edges
(or vertices) of the pore boundary. The direction of ek is the direction one has, moving
along the pore boundary counterclockwise, so that, if ek is directed from left to right,
bottom to top, right to left, or top to bottom, the vacuum pore area is above, on the left,
below, and on the right of the edge vector, respectively. For those edge vectors, we show
that each vector ek of the pore boundary can be derived from the previous ek−1 vector.
In particular, if the origin of ek (or equivalently the head of ek−1) coincides with the position
of a 3-FCA, then ek can be derived by the rotation of ek−1 counterclockwise by +π/3.
On the other hand, if it coincides with the position of a 2-FCA, then ek can be derived by
the rotation of ek−1 counterclockwise by −π/3. Adopting the alternative notation ei,j for
the edge vectors ek, where i denotes the 2-2 path and j the edge vector belonging to the
i 2-2 path, and considering that R(φ) is the 2× 2 rotation matrix for rotations in-plane
by φ, we have ei,j+1 = R+ei,j, for 1 ≤ j ≤ 4 and 1 ≤ i ≤ n2, and ei+1,1 = R−ei,li , for
1 ≤ i ≤ n2. In those relations, R± = R(±π/3). Recalling that for in-plane rotations
R(φ)R(θ) = R(θ)R(φ) = R(φ + θ) and taking into account that for a closed path, en2+1,1 =

e1,1, we find Rn2
−R

n3
+ = Rn2

−R
L−n2
+ = I, where I is the 2× 2 unit matrix and L = l1 +

l2 + . . . + ln2 is the total length of the pore circuit. Thus, −n2π/3 + (L− n2)π/3 = 2k0π,
k0 ∈ Z or

L = 2n2 + 6k0, k0 ∈ Z. (1)

In Ref. [34], we show that for pores, if en2+1,1 = e1,1, then

L− 2n2 = 6. (2)

Equation (1) leads to the same result if k0 = 1. However, Equation (1) shows that there
are also many other solutions, depending on k0, for which en2+1,1 = e1,1. The question,
therefore, which rises, is what do the other cases for k0 6= 1 represent? These cases will be
examined next.
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As we have shown in Ref. [34], ei,j can be expressed through a rotation of e1,1. In par-
ticular, we showed that

ei,j = Ri−1
− Rk−i

+ e1,1, (3)

where

k = (1− δi,1)
i−1

∑
i′=1

li′ + j, (4)

where δi,j is the Kronecker δ. Thus, if ei,j = R(φi,j)e1,1, then φi,j = (k − i)π/3 − (i −
1)(−π/3), or

φi,j = (k− 2i + 1)π/3, (5)

and, consequently, φn2+1,1 = (L + 1− 2(n2 + 1) + 1)π/3 = (L− 2n2)π/3. Thus, using
Equation (1), we find φn2+1,1 = 6k0π/3 = 2k0π, which for k0 = 1 represents the angle of
the full (2π) rotation of e1,1, which has already been examined in Ref. [34]. Therefore, for
k0 > 1, the rotation angle φn2+1,1 of e1,1 represents more than one full rotation. In that case,
there are three options: (i) The pore circuit closes earlier, having the first full rotation for
i = i0 < n2 + 1, i.e. φi0+1,1 = 2π, (ii) the pore circuit crosses itself, or/and (iii) it forms a
spiral. These cases obviously do not correspond to Eulerian and Hamiltonian paths, i.e.,
moving along those paths, either we visit the same vertex (or vertices) and edge (or edges)
more than once, and/or the path does not close. A simple example of a circuit that closes
earlier is a circuit that is repeated after its end, e.g., the 444444 path. The 444 path represents
the smallest pore, which is formed if a single atom is removed from the graphene structure.
For the 444 pore, L = 12 and n2 = 3, satisfying Equation (2). The 444444 path is also a
circuit, with L = 24 and n2 = 6, satisfying Equation (1) for k0 = 2. Moving along that path,
we visit its vertices and edges twice, as shown in Figure 1a and, consequently, the path does
not represent a pore. An example of a circuit that crosses itself is the circuit 23332333444,
which is presented in Figure 1b. Both 444 and 23332333 paths represent pores and they are
shown with different colors in Figure 1b. The 444 has already been mentioned above, and
for the 23332333 path, L = 22 and n2 = 8, also satisfying Equation (2). The 23332333444
path, with L = 34 and n2 = 11, satisfies Equation (1) for k0 = 2. Moving along this path,
we visit three vertices and two edges twice. An example of a spiral path, (which is not a
circuit), is the 442242222422222422222242222224 path, which is shown in Figure 1c. This
spiral path satisfies Equation (1) for k0 > 1, while its vertices and edges are not visited
more than once, as we travel along it.
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Figure 1. (a–c) Circuits and a path with L = 2n2 + 12. (a) The 444444 circuit composed of two
444 pore circuits overlapping each other. (b) The 233233444 circuit composed of the 233233 and
444 circuits crossing each other. (c) The non-closed 4423323232313322233 path forming a spiral.
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Different colors of edge vectors and 2-FCAs indicate the first and second circle (i.e., the path for
which L = 2n2 + 6). The black arrow in (a,b) indicates the starting vertex. (d,e) A pore and its dual
flake, respectively. Shaded hexagons and dark yellow colored sticks represent the graphene bulk
area and bonds between the three-fold coordinated atoms. Red and blue colored arrows represent
edge vectors in the pore and flake boundaries, respectively. Red-colored edge vectors have opposite
directions compared to their blue counterparts. (h) Periodically arranged edge vectors with L = 2n2

forming an edge. The blue arrow represents the period.

In conclusion, cases for k0 > 1 represent either spiral or crossed paths, with no interest
in the present work since they do not represent pores.

2.1.1. Graphene Flakes

The case for k0 = −1 corresponds to a rotation angle φn2+1,1 = −2π, which cor-
responds to a clockwise rotation. Following the same convention as the one used for
pores, regarding the relative position of the vacuum space with respect to the direction
of the edge vectors, it is easy to understand that a closed and non-crossed path with
φn2+1,1 = −2π forms a flake, as can be seen in Figure 1e. For comparison, Figure 1d
shows its counterpart pore structure. In accordance with paths or circuits corresponding to
rotation angles φn2+1,1 = 2k0π, with k0 > 1, the paths or circuits corresponding to rotation
angles φn2+1,1 = 2k0π with k0 < −1 are similar but rotated clockwise. In conclusion, no
interesting circuits or paths can be obtained for k0 < −1, while the case for k0 = −1, which
yields

L = 2n2 − 6, (6)

corresponds to graphene flakes.
As in pores, where Equation (2) is a necessary but not sufficient condition for a closed

path [34], Equation (6) is a necessary, but not sufficient condition for a closed path in the
flakes. In accordance with our study for pores [34], the position vectors of the vertices
(atoms) at the flake boundary are

ri,j = hi + vmi,j , (7)

where
vm = a0

(
cos

mπ

3
, sin

mπ

3

)
, m = 0, 1, 2, 3, 4, 5, (8)

and hi is the position vector of the center of the 2-2 hexagon i, as shown in Figure 1f.
The indices i and j are the same as those used in the notation of the edge vectors ei,j, and

ei,j = vmod(mi,j+2,6). (9)

mi,j are integer numbers between 0 and 5, with

mi,j = mod(m1,1 + k− 2i + 7, 6), (10)

where k is given in Equation (4). Moreover,

hi+1 = h1 +
i

∑
j=1

umj,lj
, (11)

where
um =

√
3a0

(
− sin

mπ

3
, cos

mπ

3

)
, m = 0, 1, 2, 3, 4, 5, (12)
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as shown in Figure 1g, (see Ref. [34] for more details). For a closed path, hn2+1 = h1, i.e.,

n2

∑
i=1

umi,li
= 0, (13)

where according to Equations (10) and (4),

mi,li = mod(mi−1,li−1
+ li + 4, 6). (14)

Equations (2) and (13) are the necessary and sufficient conditions for a close path.
However, they still are not enough to determine a flake boundary, since they do not ensure
that the path is not a crossed path. As we showed for pores [34], a non-crossed path is
the one for which (i) two 2-2 hexagons do not have common edges belonging to the pore
boundary and (ii) traveling along the pore boundary, the corresponding 2-2 hexagons are
not visited more than once unless some of them are visited twice. For those visited twice,
the lengths of the associated 2-2 paths must be 1 and their sole edge vectors must have
opposite directions. For the same reason, these conditions should also be satisfied for flakes.

2.1.2. Graphene Edges

For k0 = 0, Equation (1) yields L/n2 = 2. In terms of the rotating angle φi,j, one can
see that φn2+1,1 = 0. Assuming that a path with φn2+1,1 = 0 is not a crossed path, the edge
vectors of that path will be rotated negatively and positively, so that at the end, the overall
rotation angle will be zero. Even if for some specific i and j indices of ei,j, φi,j ≥ 2π, or
φi,j ≤ −2π, these rotations will be followed by opposite rotations, which at the end will
lead to a zero overall rotation for the final edge vector en2+1,1. This means that that path
will not be able to close and, therefore, it does not represent a pore or a flake. Assuming
that the l1l2 . . . ln2 sequence is repeated, as can be assumed in a pore or a flake circuit, the
starting edge vector en2+1,1 of the first repetition will be the same as the starting edge vector
e1,1; consequently, the whole repeated path will be arranged parallel to the initial l1l2 . . . ln2

path. This will also happen for all repetitions that follow, and the overall path will form
a periodic edge, which divides the plane into the vacuum and a semi-infinite graphene
structure (see Figure 1h). In conclusion, the case k0 = 0 of Equation (1) can be considered
as corresponding to an infinite periodic graphene edge, which is obviously characterized
by the l1l2 . . . ln2 sequence, and can be named after it. For a one-to-one correspondence
between edge names and l1l2 . . . ln2 sequences, the minimum image could be selected for
the smallest period. In that case, n2 is the number of 2-FCAs (or 2-2 paths) in that smallest
periodic arrangement of atoms at the boundary, e.g., the edge 131313 . . . will be named “the
13 edge”, with n2 = 2.

As in pores and flakes, a boundary path representing an edge should not be a crossed
path. The conditions for a non-crossed path in the edges are the same as those in pores
and flakes.

It is worth noting that in the case of a path l1l2 . . . ln2 corresponding to a graphene edge,
the average length of 2-2 paths L/n2 is L/n2 = 2, while for pores and flakes, L/n2 > 2 and
L/n2 < 2, respectively.

2.2. Flakes and Flake–Pore Duality

Obviously, a circuit representing a pore boundary can be either considered the bound-
ary of a pore, or the boundary of a flake, depending on the side where the vacancies are.
A flake boundary can be considered (in several cases) the dual of a pore boundary, and vice
versa, although, as we have already mentioned in the introduction and will explain below,
not all pores have a flake as a dual, and not all flakes have a pore as a dual.

If the dual exists, then for the transformation of a pore to its dual flake, and the
transformation of a flake to its dual pore, we consider the following:

• The dual of the dual of a pore (flake) is the pore (flake) itself. As a consequence, the
dual is unique, i.e., there is a one-to-one correspondence between a pore and its dual
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flake and between a flake and its dual pore. If this is not true, we consider that the
dual of a pore or flake does not exist.

• The pore (or flake) boundary is the same as that of its dual. The difference is that
the edge vectors of the pore (flake) boundary have opposite directions compared to
those of its dual flake (pore). This convention for the direction of edge vectors is
used so that we have the same determination of the vacuum area and graphene bulk
area, regarding their relative position, with respect to the direction of the edge vectors
(see above).

• Excluding the atoms of the boundary, all other atoms are transformed into vacancies
and vacancies are transformed into atoms.

The above can be seen in Figure 1d,e, which schematically shows a pore and its dual
flake, respectively. As a consequence of the above, the boundary of the pore (flake) dual
is again formed by a sequence of 2-2 paths, which are different from the 2-2 paths of the
pore (flake) boundary, but they both have the same number of edges and vertices and,
consequently, the same length L. Moreover, 2-FCAs of a pore (flake) are transformed into
3-FCAs in its dual flake (pore) and vice versa. Thus, n2p = n3 f and n3p = n2 f , where n2p
and n2 f are the numbers of 2-FCAs in the pore and its dual flake, respectively, and n3p and
n3 f are the numbers of 3-FCAs in the pore and its dual flake, respectively.

Considering that n3p = L − n2p, Equation (2) yields n3p − n2p = 6. Thus, using
the above relations, n3p = n2 f and n2p = n3 f , Equation (2) turns into n2 f − n3 f = 6, or
n2 f − (L − n2 f ) = 6, or L − 2n2 f = −6, which is exactly the same as Equation (1), for
k0 = −1 and, consequently, consistent with the discussion of Section 2.1.1, for k0 = −1.
Therefore, it is evident that if a pore boundary has n2 2-2 paths, its dual has L− n2 2-2 paths,
and vice versa.

In Ref. [34], we showed that the maximum number of adjacent 2-2 paths with length
li = 1 in a pore boundary is three, as shown schematically in Figure 2a. It is worth noting
that, excluding the case of the hexagonal 111111 flake, the restriction of the maximum three
adjacent 2-2 paths with length li = 1 is also valid for flakes, for the same reason as in pores
(see Ref. [34]). Moreover, in the same work, we showed that a 2-2 hexagon of a pore cannot
be visited more than once as we travel along the path of the pore boundary unless there are
only two 2-2 paths corresponding to the same 2-2 hexagon with lengths l = 1, and their
sole edge vectors having opposite directions. Such a case can be seen in the pore shown
schematically in Figure 2c. This restriction also applies to flakes for the same reason it
applies to graphene pores.

(c) (d)(a)

(b)

l=1
l=1

l=1

l=1
l=1l=1

Figure 2. Cases of pores and flakes, which do not have a dual. Yellow sticks represent bonds between
3-FCAs. (a) The transformation of a pore to a flake and then the transformation of that flake to a
pore. (b) The transformation of a flake to a pore and then the transformation of that pore to a flake.
Excluding atoms in the pore or flake boundary, which remain atoms, all other atoms are transformed
into vacancies and vice versa. The final pore of (a) and flake of (b) is not the same as the initially
transformed one. The blue and red arrows in (a,b) represent edge vectors at the flake and pore
boundaries, respectively. A pore (c) and a flake (d) with two 3-FCAs, which are not adjacent along
the pore or flake boundary, and are bonded with each other. The bond is shown in blue. The circuit
formed by connecting the centers of hexagons adjacent to the edges of the pore or flake boundary
(green arrows) is not the Eulerian circuit when the dual does not exist.



Nanomaterials 2023, 13, 2343 8 of 19

Let us now examine cases of flakes that do not have a pore as a dual and pores that
do not have a flake as a dual. Pores or flakes that include three adjacent 2-2 paths in their
boundaries with length li = 1 do not have a dual, as shown in Figure 2a,b. In such pores,
those three 2-2 paths are edges of the same hexagon, which is part of the graphene bulk.
In the transformation of such a pore to its dual flake, the hexagon remains part of the flake.
Thus, the derived flake has a different boundary compared to that of the pore. Therefore,
the derived flake does not have a one-to-one correspondence with the transformed pore, as
Figure 2a shows; consequently, such a pore does not have a dual. For the same reason, a
flake with more than two adjacent 2-2 paths with length li = 1 does not have a dual pore,
as Figure 2b shows.

The above cases are not the only cases for which a pore or a flake does not have a dual.
In fact, those cases can be considered as special cases of a more general one, where two
3-FCAs of the pore (or flake) boundary, which are not adjacent along the pore (or flake)
path, are bonded with each other. The reason is that the transformation from the pore to
the flake (or from the flake to the pore) is expected to be accompanied by the conversion of
3-FCAs to 2-FCAs. However, two such 3-FCAs of the pore or flake boundary will remain
3-FCAs in the transformation from the pore to the flake or from the flake to the pore since
their bond will not be lost in the transformation. Thus, those atoms will not be converted to
2-FCAs, and the converted structure will have a different boundary compared to the initial
one, not allowing the transformed one to be considered as the dual of the initial one. This
can be clearly seen in the examples shown schematically in Figure 2c,d for a pore and a
flake, respectively. From a different point of view, a flake or a pore does not have a dual
if the closed path connecting the centers of the hexagons, which are adjacent to the pore
boundary and are part of the flake or the graphene bulk (for pores), is not the Eulerian
circuit. This means that if traveling along that path we visit the same edge more than once,
(as shown in Figure 2c,d), then the dual does not exist.

If the dual of a pore (or a flake) exists, the conversion of the pore (or the flake) to
its dual implies the replacement of 2-FCA vertices and 2-2 paths of its boundary to other
2-2 paths, according to the following scheme:

(i) The central edge vector ei,2 of a 2-2 path i with li = 3 is replaced by a 2-2 path with
length l = 1;

(ii) The central edge vectors ei,2 and ei,3 of a 2-2 path i with li = 4 are replaced by two
adjacent 2-2 paths with length l = 1;

(iii) The ei,li and ei+1,1 edge vectors of the 2-2 paths i and i + 1 with lengths li ≥ 2 and
li+1 ≥ 2 are replaced by a 2-2 path with length l = 2;

(iv) Two adjacent 2-2 paths i and i + 1 with lengths li = li+1 = 1 appearing between two
other 2-2 paths with lengths li−1 > 1 and li+2 > 1, and their adjacent edges, ei−1,li−1
and ei+2,1, are replaced by a 2-2 path with length l = 4;

(v) A 2-2 path i with length li = 1 appearing between two other 2-2 paths with lengths
li−1 > 1 and li+1 > 1, and their adjacent edges ei−1,li−1

and ei+1,1 are replaced by a
2-2 path with length l = 3.

For example, the dual of the 444 pore is the 112112112 flake. The transformations are
shown schematically in Figure 3.

Considering that in a flake circuit with a total length L, there are n(1), n(2), n(3), and
n(4) 2-2 paths with lengths 1, 2, 3, and 4, respectively, the total length L of the circuit is
L = 1 · n(1) + 2 · n(2) + 3 · n(3) + 4 · n(4), and the total number of 2-2 paths, n2 = n(1) +
n(2) + n(3) + n(4). Recalling that for flakes L = 2n2 − 6 and combining all these equations,
we find n(1) + 2n(2) + 3n(3) + 4n(4) = 2(n(1) + n(2) + n(3) + n(4))− 6 or

n(3) + 2n(4) = n(1) − 6. (15)

The quantities n(3) and n(4) are positive numbers or zero. Thus, the above equation yields
n(1) − 6 ≥ 0 or n(1) ≥ 6, which means that a flake circuit does not exist, not including at
least six 2-2 paths with length l = 1.
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Figure 3. The transformation of 2-2 paths of a pore or flake to their dual. The red and blue arrows
represent edge vectors at the pore or flake boundary. Blue-colored edge vectors are those that are
transformed. The 2-FCAs are shown with light blue spheres. The dark yellow sticks represent bonds
between 3-FCAs.

An interesting question that needs to be answered has to do with the number N of
atoms constituting a flake. Using the same strategy as the one used to find the number
of vacancies in a pore (see Ref. [34]), we can consider that if the number of hexagons
constituting a flake is nh, then those hexagons have 6nh vertices in total. The vertices
corresponding to 2-FCAs in the flake boundary are not shared between those hexagons,
while the 3-FCAs in the flake boundary are shared by two, and all other 3-FCAs are shared
by three. Assuming that the number of all other 3-FCAs is nv, then 6nh = n2 + 2n3 + 3nv
and N = n2 + n3 + nv. This means that 6nh = 3N − 2n2 − n3. Recalling that n2 + n3 = L
and L = 2n2 − 6, the last equation yields 6nh = 3N − L − n2 = 3N − 2n2 + 6− n2 =
3N − 3n2 + 6, or

N = 2nh + n2 − 2. (16)

A method used to count the hexagons of a flake is very similar to the method used to count
the hexagons in the pore vacuum area, which has been described in Ref. [34]. This method
is presented below.

Let us assume that the hi vectors determining the 2-2 hexagons are hi = λa,ia +
λb,ib = (λa,i, λb,i)h, and λa,i between amin and amax, (i.e., amin ≤ λa,i ≤ amax), where a =√

3a0(
√

3/2, 1/2) and b =
√

3a0(0, 1) are the lattice vectors in the Cartesian coordinates of
the hexagonal graphene lattice, as shown schematically in Figure 4, where a0 = 1.42 Å is the
bond length in graphene. The subscript h of the above notation is used to distinguish the
coordinates expressed in the base of a and b from the corresponding Cartesian coordinates.
Let us further consider that h′ = (λ′a, λ′b)h is a vector pointing to the center of a hexagon
belonging to the flake. As one can see in Figure 4, amin + 1 ≤ λ′a ≤ amax − 1. In the same
figure, one can see that there are 2-2 paths associated with specific 2-2 hexagons, which
include the edge vectors ei,j = v0 and ei′ ,j′ = v3 depicted by red colored arrows pointing to
the right and to the left, respectively. Therefore, it is evident that the hexagons belonging
to the flake are those between those 2-2 hexagons, which have as the upper bound the
2-2 path, which includes the ei,j = v0 vector, and the lower bound, the one including the
ei′ ,j′ = v3 vector. Noting that the position vectors of the vertices at the origin of the edge
vectors ei,j = v0 and ei′ ,j′ = v3 are ri,j = hi + v4 and ri′ ,j′ = hi′ + v1, respectively, (see
Equation (9) and Figure 4), the hexagons belonging to the flake, which are between hi and
hi′ can be equivalently determined by the mi,j values of their associated 2-2 paths. Thus, if
(i) for hi = (λ′a, λb1), ∃ j ∈ [1, li] : mi,j = 4, (ii) for hi′ = (λ′a, λb2), ∃ j′ ∈ [1, li′ ] : mi′ ,j′ = 1,
and (iii) λb1 > λb2, then there are λb1 − λb2 − 1 hexagons belonging to the flake between
the 2-2 hexagons determined by hi and hi′ . Those hexagons belonging to the flake can be
determined by the vectors (λ′a, λ′b), with λb2 + 1 ≤ λ′b ≤ λb1 − 1. This can also be used to
find the positions of the flake atoms. Summing the numbers of these hexagons for each
different λ′a value in the range amin + 1 ≤ λ′a ≤ amax − 1, we can find nh, and then using
Equation (16), we can find N.



Nanomaterials 2023, 13, 2343 10 of 19

2−fold coordinated atom
at the flake boundary
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2−2 hexagons

Figure 4. A flake example for the calculation of flake atoms.

2.3. Edges and Periodic Arranged l1l2 . . . ln2 Paths

A graphene edge can be considered a non-crossed, non-closed, and theoretically
infinite path, dividing the honeycomb lattice into two discrete areas. One of them only
has vacancies and the other one is the remaining graphene structure. Practically, however,
a graphene edge is part of the boundary of a typically large graphene flake and not the
boundary of a semi-infinite plane. Therefore, in terms of graph theory, a graphene edge is
both an Eulerian and Hamiltonian path, which, contrary to the boundaries of flakes and
pores, is a path and not a circuit. Such a path should not form a spiral because a spiral
might correspond to a non-crossed and non-closed infinite path, but it does not divide the
honeycomb lattice plane into the two discrete areas described above.

From the point of view of an infinite path, the graphene edge can be considered
periodic. Even if it is not periodic, it can be considered periodic with infinite period-
icity. Let us assume that the smallest possible period of a specific edge is represented
by the sequence l1l2 . . . ln2 of 2-2 paths with length L = l1 + l2 + . . . ln2 , where n2 is the
number of 2-FCAs in the period. It is worth noting that the length L is the period of
edge lengths at the boundary. This means that after the sequence l1l2 . . . ln2 , another such
sequence will follow, and the edge will be a repeated sequence of 2-2 paths of the form
(l1l2 . . . ln2)(l1l2 . . . ln2)(l1l2 . . . ln2) . . .. Obviously, there is no reason for Equation (3) not
to be valid; therefore, the angle φi,j between the edge vector ei,j at the graphene edge
boundary and the e1,1 (first edge vector of the period) is again given by Equation (5). As
already reported in Section 2.1, for an infinite (not closed) path, the angle φln2+1,1 of the
first edge vector of the second period should be φln2+1,1 = 0. If it is not zero, then at each
period, the angle will increase (or decrease) by a multiple of π/3, and finally, the path
will either cross with itself or will close, thus not forming an infinite periodic edge. For
instance, if φln2+1,1 = π/3, then φ2ln2+1,1 = 2π/3, φ3ln2+1,1 = 3π/3, φ4ln2+1,1 = 4π/3,
φ5ln2+1,1 = 5π/3, and φ6ln2+1,1 = 2π, and the considered periodic edge will form a pore
unless it crosses with itself during the repetitions, which again does not form an edge.
Negative multiples of π/3 for φln2+1,1 produce flakes and positive multiples produce pores.
It is, therefore, clear that for an infinite periodic edge, φln2 ,1 = φ1,1 = 0, corresponding to
k0 = 0 in Equation (1), or

L/n2 = 2, (17)

which, as already explained, is the average path length.
A question that rises is whether or not there are specific combinations of path lengths

for which L/n2 = 2. Assuming that the periodic path is composed by n(1), n(2), n(3), and
n(4) 2-2 paths with lengths 1, 2, 3, and 4, respectively, the last equation yields

n(3) + 2n(4) = n(1). (18)

The independent integer solutions of this equation are

(i) n(1) = 0, n(2) = 1, n(3) = 0 and n(4) = 0;
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(ii) n(1) = 1, n(2) = 0, n(3) = 1 and n(4) = 0; or
(iii) n(1) = 2, n(2) = 0, n(3) = 0 and n(4) = 1.

This means that any combinations of the sets (i) A = {2}, (ii) B = {1, 3} and/or (iii) C = {1, 1, 4}
of 2-2 path lengths provide an infinitely periodic path, unless that path crosses itself, and
any infinitely periodic path is composed of the combinations of the above sets of 2-2 paths.
This does not mean that those sets of 2-2 paths should necessarily follow one another in
the periodic l1l2 . . . ln2 sequence. The members of those sets may mix with each other, but
the sequence l1l2 . . . ln2 should be composed of a certain number of those sets. Thus, if
λ2, λ13, and λ114 are the numbers of A, B, and C sets in the periodic l1l2 . . . ln2 sequence,
respectively, then n(1) = 2λ114 + λ13, n(2) = λ2, n(3) = λ13, and n(4) = λ114.

It is worth noting that the . . . 2222 . . . edge is the well-known zig-zag edge, while the
. . . 131313 . . . is also the well-known armchair edge. Moreover, it is worth noting that when
adding any combination of the above sets of 2-2 paths in a pore or flake circuit, Equation (2)
(for pores) and Equation (6) (for flakes) are still satisfied. On the other hand, this does not
mean that by adding such a combination in the pore or flake boundary circuit, the derived
path is still a circuit.

The last task for periodic edges is the construction of the semi-infinite structure,
which is terminated in the l1l2 . . . ln2 periodic edge. Obviously, the structure, which will
be constructed, cannot be semi-infinite. The only option is to construct a periodic flake
representing a ribbon, which can have a large width, and may be terminated with hydrogen
atoms so that it can be used for simulations on edges. The idea, therefore, is to find the
corresponding 2-2 hexagons represented by their hi vectors pointing to their centers, in
accordance with flakes. Then, we can use the same method to find the coordinates of the
flake hexagon centers, according to the method described for flakes, and finally, construct
the structure.

2.4. An Algorithm for the Numbering, Identification, and Generation of Graphene Flakes and Edges

The algorithm we present is based on the algorithm used for the numbering, identi-
fication, and generation of graphene pores (see Ref. [34]). Let us assume that we want to
find all possible sequences of l1l2 . . . ln2 , 1 ≤ li ≤ 4 representing a flake or the minimum
period of an edge composed of n2 2-2 paths. According to what has been reported previ-
ously, the total length L = l1 + l2 + . . . + ln2 of the flake circuit is L = 2n2 − 6, while the
corresponding length (minimum period) L of an edge is L = 2n2. Thus, as a first step,
the algorithm, using a nested DO-loop, searches for all possible combinations of l1l2 . . . ln2

for which l1 + l2 + . . . + ln2 = 2n2 − 6 (for flakes), and l1 + l2 + . . . + ln2 = 2n2 (for edges).
If the algorithm finds such a sequence, it moves to the next step. Otherwise, it rejects that
sequence and moves to the next sequence.

Recalling that for flakes n(1) ≥ 6, it is obvious that the first digit l1 of the minimum
image for flakes will always be l1 = 1. Moreover, according to Equation (18) for edges,
n(1) ≥ 0, with n(1) being zero only if n(3) = n(4) = 0, i.e., only if n(2) 6= 0. There is only
one such case representing the zig-zag edge (i.e., the 222 . . . edge) corresponding to the
sole 2-2 path sequence with l1 = 2 and n2 = 1. Thus, excluding that case, the first 2-2 path
length of the minimum image will always be l1 = 1. Consequently, with l1 = 1 for both
flakes and edges, the search for the possible l1l2 . . . ln2 sequences is restricted to the values
of the l2, l3, . . ., ln2 , reducing the effort by four times. Moreover, recalling Equation (15), one
can see that for constant n(4), if n(3) increases by 1, n(1) also increases by 1, and for constant
n(3), if n(4) increases by 1, n(1) increases by 2. This means that the sequence l1l2 . . . ln2 of a
flake is constituted by six paths with length 1, maybe some others with length 2 and/or an
amount of (114) and (13) path sections. All these paths or path sections may be mixed with
each other in the l1l2 . . . ln2 sequence. Thus, any combination of them, which leads to the
minimum image of the l1l2 . . . ln2 sequence, will start with either l1 = l2 = 1 or l1 = 1 and
l2 = 2. This means that l2 6= 3 or 4; consequently, this reduces the computational effort by
another 1/2 (i.e., totally 1/8).
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The second step of the algorithm checks whether or not the sequence l1l2 . . . ln2 rep-
resents the minimum image of the equivalent sequences, representing the same flake or
edge. In the serial search for lis, imposed by the nested DO-loops, with the outer one corre-
sponding to l2 and the inner ones to l3, l4, etc., the minimum image will be reached first.
Thus, if the algorithm finds a sequence l1l2 . . . ln2 not corresponding to the minimum image,
it means that the corresponding minimum image has already been found and examined
earlier. In that case, the l1l2 . . . ln2 sequence is rejected and the algorithm moves to the next
l1l2 . . . ln2 sequence.

In the third step, the algorithm checks whether or not l1 = l2 = l3 = l4 = 1. As already
reported above, such a sequence does not represent a flake or an edge, unless it is the
111111 flake. Therefore, if such a part of the l1l2 . . . ln2 sequence is found, the sequence
is again rejected, and the algorithm moves to the next l1l2 . . . ln2 sequence. It is worth
noting that if the first four digits l1l2l3l4 of the l1l2 . . . ln2 sequence are not all “1”s, then the
sub-sequence 1111 will not appear elsewhere in the l1l2 . . . ln2 sequence because if such a
sub-sequence has to appear, it should appear in the first digits, due to the minimum image
convention. Therefore, this check is enough to ensure that a sub-sequence of 1111 will not
appear anywhere else in the l1l2 . . . ln2 sequence.

In the fourth step, the algorithm calculates the mi,li values using Equation (14), and in
the fifth step, it calculates the hi vectors using Equation (11), i.e., summing the umi,li

vectors.
The calculated mi,li values and hi vectors are stored for further processing. For convenience,
the algorithm starts with m1,1 = 0 and h1 = (0, 0), and in the summations of Equation (11),
the um vectors are expressed as um = λaa + λbb = (λa, λb)h, i.e. u0 = b = (0, 1)h,
u1 = b− a = (−1, 1)h, u2 = −a = (−1, 0)h, u3 = −b = (0,−1)h, u4 = a− b = (1,−1)h,
and u5 = a = (1, 0)h.

In the sixth step, which applies to flakes, but not to edges, the algorithm checks if
Equation (13) is satisfied, i.e., if the path is a circuit. If Equation (13) is not satisfied, the
sequence l1l2 . . . ln2 is rejected, and the algorithm moves to the next sequence. Otherwise, it
moves to the seventh and eighth steps, which apply both to flakes and edges, and checks if
the circuit or path crosses itself. In the seventh step, the algorithm compares the hi vectors
between each other. If ∃ i and i′ for which hi = hi′ , then if (i) li 6= 1 6= li′ , or (ii) li = li′ = 1,
but vi,li 6= −vi′ ,li′

, the sequence l1l2 . . . ln2 is rejected, and the algorithm moves to the next
sequence. If for all cases for which hi = hi′ , it finds that li = li′ = 1 and vi,li = −vi′ ,li′

, the
algorithm moves to the next step, finding whether or not two adjacent 2-2 hexagons have a
common edge, which belongs to the flake or edge boundary. For that reason, the algorithm
checks if ∃ i and i′, for which

• hi′ − hi = (1, 0)h, and mi,j = 0, mi′ ,j′ = 3,
• hi′ − hi = (0, 1)h, and mi,j = 1, mi′ ,j′ = 4,
• hi′ − hi = (−1, 1)h, and mi,j = 2, mi′ ,j′ = 5,
• hi′ − hi = (−1, 0)h, and mi,j = 3, mi′ ,j′ = 0,
• hi′ − hi = (0,−1)h, and mi,j = 4, mi′ ,j′ = 1,
• hi′ − hi = (1,−1)h, and mi,j = 5, mi′ ,j′ = 2.

If any of the above cases is true, the 2-2 hexagons determined by hi and hi′ are adjacent
with a common edge, which belongs to the flake boundary. The existence of an mi,j value
in a 2-2 path depends on the values of li and mi,li , according to the relation [34]

0 ≤ mod(mi,li −mi,j + 6, 6) ≤ li − 1, (19)

which is used by the algorithm. If any of the above cases is true, the l1l2 . . . ln2 sequence
is rejected, otherwise, the sequence represents a graphene flake, which is numbered and
exported as the output. In particular, for edges, the algorithm performs those checks of
steps seven and eight, for the minimum period and for two periods, to ensure that the path
of the current and the next period do not cross each other. To minimize the computational
time for this procedure, the algorithm performs the above tests (i) for the hi and hi′ vectors,
which correspond to the same period, and (ii) for the hi and hi′ + L vectors, belonging to
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the current and the next period, respectively, where L = ∑n2+1
i=1 ui is the period. Therefore,

it does not perform those tests for vectors hi + L and hi′ + L, both belonging to the next
period, which would not provide any new information that is not known from the tests
performed in the current period.

The above procedure is repeated recursively for all possible l1l2 . . . ln2 sequences.
If our aim is to find and number the l1l2 . . . ln2 sequences representing flakes or edges,

the algorithm has to do nothing more than the above steps. If, on the other hand, we also
want to find the number of atoms in the flake or the structure (atomic position) of the flake
and edge, some extra steps are needed.

To find the number N of atoms in a flake, we find the number nh of hexagons in the
flake first, using the method described in Section 2.2. Then, using Equation (16), we find
N. Thus, the eighth step of the algorithm, which will follow each successful l1l2 . . . ln2

sequence, is the following: (a) The algorithm finds the maximum amax and the minimum
amin coordinates along the a direction of the hi = (λa, λb)h vectors. If h′ = (λ′a, λ′b)h is
a vector pointing to the center of a hexagon belonging to the flake area, then amin + 1 ≤
λ′a ≤ amax − 1. (b) For each such λ′a value, the algorithm shorts the λb coordinates of the
hi = (λ′a, λb) vectors of the 2-2 hexagons in ascending order. (c) Using the value of mi,li ,
associated with each of those hi = (λ′a, λb) vectors, the algorithm finds if for that for i,
∃ j : mi,j = 1 or 4. The cases for which for a certain i,

• ∃ j and j′ : mi,j = 1 and mi,j′ = 4, are those for which li = 4 and mi,li = 1 or 4,
• ∃ j : mi,j = 1, but @ j : mi,j = 4 are the following:

- li = 4 and mi,li = 2 or 3,
- li = 3 and mi,li = 1, 2 or 3,
- li = 2 and mi,li = 1 or 2, and
- li = 1 and mi,li = 1.

• ∃ j : mi,j = 4, but @ j : mi,j = 1 are the following:

- li = 4 and mi,li = 5 or 0,
- li = 3 and mi,li = 4, 5 or 0,
- li = 2 and mi,li = 4 or 5, and
- li = 1 and mi,li = 4.

The details of these results can be found in Ref. [34]. The values of mi,li are calculated
in the fourth step of the algorithm, see above. Having this information, and the ordered
λb values, the algorithm finds the number of hexagons for each λ′a value in the range
[amin + 1, amax − 1] and sums them to find nh. During this step, the algorithm stores the
coordinates (λ′a, λ′b)h of the h′ vectors, pointing to the center of the flake hexagons. Those
vectors are used in the next step for the determination of the flake structure.

Considering that the hexagonal graphene structure can be constructed by vectors
hλa ,λb + v4 and hλa ,λb + v5, where hλa ,λb = (λa, λb)h = λaa + λbb, ∀ λa, λb ∈ Z, the flake
structure can be found using the h′ = (λ′a, λ′b)h vectors, which were found in the previous
step, and the vectors hi corresponding to the 2-2 hexagons. Thus, the positions of the
flake atoms are determined by (i) the vectors R′1 = h′ + v4 and R′2 = h′ + v5, for each h′

vector, (ii) the vectors R1 = hi + v4, if ∃ j : mi,j = 4, for 1 ≤ j ≤ li, and (iii) the vectors
R2 = hi + v5 if ∃ j : mi,j = 5, for 1 ≤ j ≤ li. In a similar way, we may find the structure of
a ribbon that has the edge of interest, as described above.

3. Results and Discussion

Using the algorithm described above, we developed two Fortran codes, which can
be found at https://github.com/fthenak/Graphene-Pores-Flakes-Edges (accessed on 3
July 2023). The first one with the name “pore_flake_edge_generation.f90” takes as input (i) the
system kind (i.e., pore, flake, or edge) and (ii) the number n2 of 2-FCAs in the boundary
of each system, and provides as output (i) the number n2:m of each pore, flake, or edge,
(ii) the corresponding minimum image of the l1l2 . . . ln2 sequence, and (iii) the length L of

https://github.com/fthenak/Graphene-Pores-Flakes-Edges
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the pore or flake circuit, or periodic edge path. Moreover, for flakes, it provides (iv) the
number of hexagons of the flake and (v) the number of atoms constituting the flake, and
for pores, (iv) the number of hexagons in the vacuum area and (v) the number of vacancies.
The second code with the name “pore_flake_edge_structure.f90” takes as input (i) the system
kind (i.e., pore, flake, or edge), (ii) the number n2 of 2-FCAs in the boundary of each system,
and (iii) the sequence l1l2 . . . ln2 in separated digits. For the case of pores, a width d of atoms
around the pore is also an input, considering that pores are periodically arranged in the
infinite graphene sheet. If that sequence corresponds to the selected system (pore, flake,
or edge), it provides as output (i) the structure in the xyz format, which is stored in a file
under the name “structure.xyz”, (ii) the corresponding minimum image of the sequence, (iii)
and the length L of the circuit or path. Moreover, (a) for a flake, it provides (iv) the number
of hexagons and (v) the number of atoms in the flake, (b) for a pore, (iv) the number of
hexagons in the vacuum area and (v) the number of vacancies, and (c) for an edge, (iv) the
number of ribbon atoms and the vector period L. Those codes are extensions of the codes
pore_generation.f90 and pore_structure.f90, which were developed exclusively for pores
and can be found in the Supplementary Information of Ref. [34].

Using the first code, we find the number of graphene flakes (N f ) and periodic edges
(Ne) for different numbers n2 of 2-FCAs in their boundaries. In Table 1, we present those
numbers as functions of n2. For comparison and completeness, in the same table, we also
present the corresponding numbers of different graphene pores (Np), which are presented
in Ref. [34]. In the same table, in parenthesis, we present the number of pores (dp) and
flakes (d f ), which have a dual.

Table 1. Number of pores (Np), flakes (N f ), and periodic edges (Ne) for n2 2-fold coordinated atoms
in their boundary. The columns under dp and d f (the numbers in parenthesis) are the numbers of
pores and flakes, respectively, which have a dual.

n2 Np dp N f d f Ne

1 - - - - 1
2 - - - - 1
3 1 (1) - - 2
4 1 (1) - - 5
5 1 (1) - - 12
6 5 (5) 1 (0) 31
7 5 (5) - - 84
8 15 (15) 1 (0) 239
9 29 (29) 1 (1) 666
10 81 (81) 3 (1) 1962
11 181 (181) 2 (1) 5746
12 523 (517) 12 (5) 17,253
13 1327 (1305) 14 (5) 51,928
14 3790 (3672) 49 (15) 158,154
15 10,408 (9944) 95 (29) 483,238
16 29,882 (28,028) 298 (81) 1,486,402
17 84,932 (78,180) 701 (181) 4,587,114
18 246,507 (222,195) 2099 (517) 14,215,986
19 714,738 (630,379) 5546 (1305) 44,184,779
20 2,094,636 (1,805,397) 16,279 (3672) 137,748,147
21 45,583 (9994)
22 133,454 (28,028)

Recalling that the length L of the circuit of a flake or a pore is the same as the length
of its dual, and for a pore L = 2n2p + 6, while for a flake L = 2n2 f − 6, we conclude that
for flakes and pores with the same length L, n2 f = n2p + 6. This means that the number of
flakes and pores with the same length L should have the same number of duals. This is
clearly shown in Table 1, where the number of pores that have a dual for n2 = n2p is the
same as the number of flakes, which have a dual for n2 = n2 f = n2p + 6, e.g., for n2 = 12,
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dp = 517, and for n2 = 18 = 12 + 6, d f = 517. Moreover, Table 1 shows that most of the
pores have a dual, contrary to flakes, where only a few of them have a dual, indicating that
for the same L, N f >> Np, while for the same n2, Np >> N f .

Using a semi-logarithmic plot, we present the results of Table 1 in Figure 5a, and we
fit logarithmic quadratic functions of the form log(N) = an2

2 + bn2 + c to those points.
The fitted functions are presented in the legends of that figure. As one can see, they fit
almost perfectly (particularly for large n2 values) to the (N, n2) points. It is worth noting
that a simple logarithmic linear function of the form log(N) = an2 + b does not have
the same fitting quality as the logarithmic quadratic one, although the coefficients of the
quadratic terms in all three cases are relatively small.
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Figure 5. (a) Number N of pores, flakes, and periodic edges as functions of the number n2 of 2-fold
coordinated atoms at the pore, flake, and edge boundaries, respectively. (b) Computational time
needed to find the number N of pores, flakes, and edges having n2 2-fold coordinated atoms in their
boundaries.

In Tables 2 and 3, we present the minimum image sequences l1l2 . . . ln2 of flakes with
n2 ≤ 15 and periodic edges with n2 ≤ 7, respectively, which were found using the above-
mentioned pore_flake_edge_generation.f90 code. In the same tables, the corresponding flake and
edge numbers n2:m are also presented, as well as the length L of the circuit of the flakes and
paths of the edge periods, respectively. Moreover, Table 2 also contains the number nh of flake
hexagons and the number N of atoms in the flake. The star symbol (*), which appears in some
lines of Table 2, indicates that the flake corresponding to that line has a dual.

Table 2. All possible flakes for n2 ≤ 15. The table shows the flake numbering n2:m, the sequences
l1l2 . . . ln2 , the number of atoms N and hexagons nh in the flake, and the length L of the flake circuit.
The star symbol (*), which appears in some lines, indicates that that flake has a dual.

n2 : m Sequence N nh L n2 : m Sequence N nh L n2 : m Sequence N nh L

06:01 111111 6 1 6 14:27 11123112121213 26 7 22 15:38 111222121131123 29 8 24
08:01 11121112 10 2 10 14:28 11131122121123 26 7 22 15:39 111222121211232 27 7 24

09:01 * 112112112 13 3 12 14:29 11131131113113 24 6 22 15:40 111222121211313 29 8 24
10:01 1112121113 14 3 14 14:30 11131131121213 26 7 22 15:41 111222121212123 31 9 24
10:02 1112211122 14 3 14 14:31 11131211311213 26 7 22 15:42 111222211123113 25 6 24

10:03 * 1121211212 16 4 14 14:32 11131212121213 28 8 22 15:43 111222211131213 27 7 24
11:01 11122112113 17 4 16 14:33 11211222112114 24 6 22 15:44 111222211211322 25 6 24

11:02 * 11212121122 19 5 16 14:34 11211231121123 24 6 22 15:45 111222211212132 27 7 24
12:01 111212121114 18 4 18 14:35 * 11211312121123 26 7 22 15:46 111222211212213 29 8 24
12:02 111212211123 18 4 18 14:36 * 11212122121123 28 8 22 15:47 111231112311123 25 6 24
12:03 111213111213 18 4 18 14:37 * 11212131121213 28 8 22 15:48 111231113121123 27 7 24
12:04 111221211213 20 5 18 14:38 * 11212211311213 28 8 22 15:49 111231121221123 29 8 24
12:05 111222111222 18 4 18 14:39 * 11212212113113 28 8 22 15:50 111231122112132 27 7 24
12:06 111311131113 18 4 18 14:40 * 11212212121213 30 9 22 15:51 111231122112213 29 8 24
12:07 111311212113 20 5 18 14:41 * 11212221121222 28 8 22 15:52 111231211213113 27 7 24
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Table 2. Cont.

n2 : m Sequence N nh L n2 : m Sequence N nh L n2 : m Sequence N nh L

12:08 * 112113112113 20 5 18 14:42 * 11213112211222 28 8 22 15:53 111231211221213 29 8 24
12:09 * 112121212113 22 6 18 14:43 * 11213121121312 26 7 22 15:54 111311132112114 25 6 24
12:10 * 112122112122 22 6 18 14:44 * 11213121122122 28 8 22 15:55 111311213112114 27 7 24
12:11 * 112211221122 22 6 18 14:45 * 11221131122113 28 8 22 15:56 111311221131114 27 7 24
12:12 * 121212121212 24 7 18 14:46 * 11221212122113 30 9 22 15:57 111311221212114 29 8 24
13:01 1112122112114 21 5 20 14:47 * 11221212211222 30 9 22 15:58 111311222112123 29 8 24
13:02 1112131121123 21 5 20 14:48 * 11221221122122 30 9 22 15:59 111311311221123 29 8 24
13:03 1112211221114 21 5 20 14:49 * 12121221212122 32 10 22 15:60 111311312112213 29 8 24
13:04 1112211311123 21 5 20 15:01 111212131121124 25 6 24 15:61 111312113121123 29 8 24
13:05 1112212121123 23 6 20 15:02 111212211311124 25 6 24 15:62 111312121221123 31 9 24
13:06 1112221113113 21 5 20 15:03 111212212121124 27 7 24 15:63 111312122112213 31 9 24
13:07 1112221121132 21 5 20 15:04 111212221113114 25 6 24 15:64 112112221211214 27 7 24
13:08 1112221121213 23 6 20 15:05 111212221121133 25 6 24 15:65 112112311212114 27 7 24
13:09 1113112211213 23 6 20 15:06 111212221121214 27 7 24 15:66 112112312112123 27 7 24

13:10 * 1121131211213 23 6 20 15:07 111212311122114 25 6 24 15:67 * 112113113112114 27 7 24
13:11 * 1121212211213 25 7 20 15:08 111212311211223 25 6 24 15:68 * 112113121212114 29 8 24
13:12 * 1121221122113 25 7 20 15:09 111213112211133 25 6 24 15:69 * 112113122112123 29 8 24
13:13 * 1121221211222 25 7 20 15:10 111213112211214 27 7 24 15:70 * 112113211221123 29 8 24
13:14 * 1122121212122 27 8 20 15:11 111213113111223 25 6 24 15:71 * 112121221212114 31 9 24
14:01 11121212211124 22 5 22 15:12 111213121122114 27 7 24 15:72 * 112121222112123 31 9 24
14:02 11121213111214 22 5 22 15:13 111213121211223 27 7 24 15:73 * 112121311221123 31 9 24
14:03 11121221211133 22 5 22 15:14 111213211131123 25 6 24 15:74 * 112121312112132 29 8 24
14:04 11121221211214 24 6 22 15:15 111213211211313 25 6 24 15:75 * 112121312112213 31 9 24
14:05 11121222111223 22 5 22 15:16 111213211212123 27 7 24 15:76 * 112122113121123 31 9 24
14:06 11121231112123 22 5 22 15:17 111214111221123 25 6 24 15:77 * 112122121221123 33 10 24
14:07 11121311131114 22 5 22 15:18 111214112112213 25 6 24 15:78 * 112122122112132 31 9 24
14:08 11121311212114 24 6 22 15:19 111221122211124 25 6 24 15:79 * 112122122112213 33 10 24
14:09 11121312111313 22 5 22 15:20 111221131211214 27 7 24 15:80 * 112122211213113 31 9 24
14:10 11121312112123 24 6 22 15:21 111221132111223 25 6 24 15:81 * 112122211221132 31 9 24
14:11 11121321112213 22 5 22 15:22 111221212211133 27 7 24 15:82 * 112122211221213 33 10 24
14:12 11122113112114 24 6 22 15:23 111221212211214 29 8 24 15:83 * 112122212112222 31 9 24
14:13 11122121131114 24 6 22 15:24 111221213111223 27 7 24 15:84 * 112131121311213 31 9 24
14:14 11122121212114 26 7 22 15:25 111221221121142 25 6 24 15:85 * 112131122113113 31 9 24
14:15 11122122111232 22 5 22 15:26 111221221122114 29 8 24 15:86 * 112131122121213 33 10 24
14:16 11122122111313 24 6 22 15:27 111221221211223 29 8 24 15:87 * 112131211222113 31 9 24
14:17 11122122112123 26 7 22 15:28 111221311131123 27 7 24 15:88 * 112131212121222 33 10 24
14:18 11122131112213 24 6 22 15:29 111221311211232 25 6 24 15:89 * 112211312121213 33 10 24
14:19 11122211221123 26 7 22 15:30 111221311211313 27 7 24 15:90 * 112212122113113 33 10 24
14:20 11122212112132 24 6 22 15:31 111221311212123 29 8 24 15:91 * 112212122121213 35 11 24
14:21 11122212112213 26 7 22 15:32 111222111321114 25 6 24 15:92 * 112212211222113 33 10 24
14:22 11122221112222 22 5 22 15:33 111222112131114 27 7 24 15:93 * 112212212121222 35 11 24
14:23 11123111311132 22 5 22 15:34 111222112212114 29 8 24 15:94 * 112221122211222 33 10 24
14:24 11123111311213 24 6 22 15:35 111222113111232 25 6 24 15:95 * 121221212212122 37 12 24
14:25 11123112113113 24 6 22 15:36 111222113111313 27 7 24
14:26 11123112121132 24 6 22 15:37 111222113112123 29 8 24

For completeness, we present in Figure 5b the computational time versus n2 for the
execution of the pore_flake_edge_generation.f90 code, for the generation and numbering of
the pore, flake, and edge l1l2 . . . ln2 sequences, using an Intel(R) Xeon(R) Gold 6132 CPU @
2.60 GHz processor, with the ability of 761.6 GFlops. As one can see, the computational
time for those calculations rises exponentially with n2, as expected. The computational
time used for flakes seems to be ≈3 times smaller than that for pores and edges, which
can be explained due to the reduction of searches for the l1l2 . . . ln2 sequences, only for
l3, l4, . . . , ln2 , since l1 = 1 and l2 is either 1 or 2, while pore l1 = 1 or 2, and edge l1 = 1.
Moreover, for the edges, the algorithm does not have to check if the path is closed or not,
contrary to the flakes and pores, while for flakes and pores, it also finds the number of flake
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atoms and the number of vacancies, respectively, which explains the lower slope of the
fitted logarithmic lines for edges compared to the slopes for flakes and pores.

Table 3. All possible periodic edges with a period including n2 ≤ 7 2-fold coordinated atoms at the
edge boundary. The table shows the number n2:m of each edge, the sequence l1l2 . . . ln2 corresponding
to the minimum period, and the corresponding length L of the periodic edge path, (L = 2n2).

n2 : m Sequence L n2 : m Sequence L n2 : m Sequence L n2 : m Sequence L n2 : m Sequence L

01:01 2 2 06:08 112224 12 07:05 1112333 14 07:33 1122422 14 07:61 1212323 14
02:01 13 4 06:09 112233 12 07:06 1112342 14 07:34 1123124 14 07:62 1212332 14
03:01 114 6 06:10 112242 12 07:07 1112414 14 07:35 1123133 14 07:63 1212413 14
03:02 123 6 06:11 112314 12 07:08 1112423 14 07:36 1123142 14 07:64 1213124 14
04:01 1124 8 06:12 112323 12 07:09 1113134 14 07:37 1123214 14 07:65 1213133 14
04:02 1133 8 06:13 112332 12 07:10 1113143 14 07:38 1123223 14 07:66 1213214 14
04:03 1214 8 06:14 112413 12 07:11 1113224 14 07:39 1123232 14 07:67 1213223 14
04:04 1223 8 06:15 113124 12 07:12 1113233 14 07:40 1123313 14 07:68 1221224 14
04:05 1232 8 06:16 113133 12 07:13 1113314 14 07:41 1124114 14 07:69 1221233 14
05:01 11134 10 06:17 113214 12 07:14 1114124 14 07:42 1124123 14 07:70 1221242 14
05:02 11224 10 06:18 113223 12 07:15 1121144 14 07:43 1124213 14 07:71 1221314 14
05:03 11233 10 06:19 121224 12 07:16 1121234 14 07:44 1131134 14 07:72 1221323 14
05:04 11242 10 06:20 121233 12 07:17 1121243 14 07:45 1131224 14 07:73 1222124 14
05:05 11314 10 06:21 121242 12 07:18 1121324 14 07:46 1131233 14 07:74 1222133 14
05:06 11323 10 06:22 121314 12 07:19 1121333 14 07:47 1131314 14 07:75 1222214 14
05:07 12124 10 06:23 121323 12 07:20 1121342 14 07:48 1131323 14 07:76 1222223 14
05:08 12133 10 06:24 122133 12 07:21 1121414 14 07:49 1131413 14 07:77 1222232 14
05:09 12214 10 06:25 122214 12 07:22 1121423 14 07:50 1132124 14 07:78 1222313 14
05:10 12223 10 06:26 122223 12 07:23 1121432 14 07:51 1132133 14 07:79 1222322 14
05:11 12232 10 06:27 122232 12 07:24 1122134 14 07:52 1132214 14 07:80 1223123 14
05:12 12313 10 06:28 122313 12 07:25 1122143 14 07:53 1132223 14 07:81 1223132 14
06:01 111234 12 06:29 122322 12 07:26 1122224 14 07:54 1133114 14 07:82 1223213 14
06:02 111243 12 06:30 123132 12 07:27 1122233 14 07:55 1141214 14 07:83 1231232 14
06:03 111324 12 06:31 123213 12 07:28 1122242 14 07:56 1212134 14 07:84 1231313 14
06:04 111333 12 07:01 1112144 14 07:29 1122314 14 07:57 1212224 14
06:05 111414 12 07:02 1112234 14 07:30 1122323 14 07:58 1212233 14
06:06 112134 12 07:03 1112243 14 07:31 1122332 14 07:59 1212242 14
06:07 112143 12 07:04 1112324 14 07:32 1122413 14 07:60 1212314 14

4. Conclusions

Generalizing our nomenclature scheme for graphene pores, we propose a general,
unique, systematic, accurate, and simple nomenclature scheme for naming graphene
flakes and edges, which is based on the arrangement of 2-fold coordinated atoms in their
boundaries. In the proposed nomenclature scheme, flakes and edges are named after the
minimum images of sequences l1l2 . . . ln2 of “lengths" li of the paths along the boundary
connecting 2-fold coordinated atoms, in accordance with the nomenclature scheme for
pores, where the term “length" is used from the point of view of graph theory. We also
systematically study the geometric features of graphene flakes and edges utilizing ideas
from graph theory. Using the results of that study, we present an algorithm for their
generation, numbering, and identification, accompanied by Fortran codes implementing
that algorithm. Using these codes, we found (i) the number of pores and edges for n2 up to
20, and the number of flakes for n2 up to 22, and (ii) the l1l2 . . . ln2 sequences of all possible
flakes with n2 ≤ 15 and edges with n2 ≤ 7.

The proposed nomenclature scheme can be easily expanded to name pores, flakes,
and edges of other two-dimensional systems (e.g., the planar honeycomb structure of BN),
as well as functionalized pores, flakes, and edges, according to the scheme described in our
previous work, thus opening up a new window in the nomenclature of such systems.
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