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Abstract: Chitosan is a naturally occurring polymer derived from the deacetylation of chitin, which
is an abundant carbohydrate found mainly in the shells of various marine and terrestrial (mi-
cro)organisms. Chitosan has been extensively used to construct nanoparticles (NPs), which are
biocompatible, biodegradable, non-toxic, easy to prepare, and can function as effective drug delivery
systems. Moreover, chitosan NPs have been employed in gene and vaccine delivery, as well as
advanced cancer therapy, and they can also serve as new therapeutic tools against viral infections.
In this review, we summarize the most recent developments in the field of chitosan-based NPs
intended as nucleic acid delivery vehicles and gene therapy vectors. Special attention is given to the
technological aspects of chitosan complexes for nucleic acid delivery.

Keywords: chitosan; nanoparticles; DNA; RNA; nucleic acid delivery; gene therapy; polyelectrolyte
complexation; polyplex

1. Introduction

Recent developments in the field of biomedical nanotechnology offer new pathways
against infectious diseases that are the leading cause of human morbidity and mortality.
Infections caused by bacteria, viruses, fungi, and parasites are responsible for a vast number
of deaths annually worldwide [1]. They remain one of the main health concerns and threats
globally with substantial social and economic impacts. The successful prevention and
treatment of various types of infections is one of the primary concerns of modern medicine.
For this reason, the development of novel methods and materials suitable for biotechnolog-
ical applications aiming at different therapeutic routes is always essential. One particular
category of materials that has attracted broad interest in this regard is that of nanoparticles
(NPs) of either organic or inorganic origin. With sizes below 100 nm, they have special
properties due to their high surface-area-to-volume ratio and have been proven to be very
advantageous when it comes to nanomedicine and biomedical applications such as drug
and gene delivery vectors, antimicrobial agents, tissue engineering, wound healing scaf-
folds, anticancer nanosystems, and therapeutic delivery platforms [1–3]. NPs are produced
using either top-down procedures, such as sonication, high pressure, and homogeniza-
tion, or bottom-up processes, such as solvent displacement and reactive precipitation [2,4].
Furthermore, polymeric NPs can be constructed from natural and synthetic polymers,
offering additional advantages since they are characterized by increased stability and ease
of surface modification [2,4]. Biopolymer NPs which intrinsically exhibit biocompatibility,
biodegradability, and reduced toxicity hold especially great promise for bioapplications.

The ever-growing need for natural polymers that can serve as building blocks for de-
veloping nanomaterials relevant to various biological applications has attracted particular
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interest in naturally occurring carbohydrates and polysaccharides. One such example is
chitosan, which is derived from the deacetylation of chitin (Figure 1), the second most abun-
dant biopolymer in nature since it represents the primary component of marine crustaceans
(i.e., shrimp, crab, lobster), cuticles of insects, and cell walls of micro-organisms [3,5]. Chi-
tosan has a cellulose-like carbohydrate structure composed of D-glucosamine and N-acetyl
glucosamine alternating repeating units, linked by a β-(1→4)-glycosidic linkage [2,4,6,7].
Directly correlated to the biocompatible, biodegradable, and non-toxic structure of chitosan
are its unique antimicrobial and mucoadhesive properties that render it ideal for a plethora
of biotechnological functions. Apart from its uses in the biomedical industry and genetic
engineering, chitosan has also been proven valuable in agriculture, the food manufacturing
sector, environmental pollution control, water treatment, paper manufacturing, cosmetic
products, and photography, among others [2,4,6,8]. As one might expect, chitosan NPs
have even greater applicability and utilization potential as they combine the intrinsic
biorelevant properties of chitosan with the versatility and benefits of polymeric nanosized
particles. They are relatively easily produced without the need for toxic organic solvent
due to chitosan’s solubility in aqueous acidic solutions [9], while at the same time, they
demonstrate interesting interface and surface effects, owing to their high surface-to-volume
fraction [1,2]. Over the years, the use of chitosan NPs in numerous processes involving
varying delivery approaches for drugs, genes, vaccines, and chemotherapeutic agents has
been established [9].
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Among the vast variety of possible biomedical applications of chitosan NPs, their
employment as non-viral gene delivery vectors has lately gained increasing scientific
momentum, ever since gene therapy emerged as a promising therapeutic approach for
challenging genetic diseases [10–12]. One of the main objective difficulties of this approach
is the successful delivery of the genes, owing to the fact that naked nucleic acids cannot
cross the cell membrane, are easily degraded by serum nucleases, and bear non-specificity
toward targeted cells [10,11]. Therefore, it is of predominant importance to develop safe
and efficient gene delivery systems, and chitosan seems an excellent candidate for this task
due to its cationic nature that enables electrostatic complexation with oppositely charged
DNA and RNA chains. This subfield of biotechnological research is the main focus of this
review, with the aim of highlighting the most current and significant scientific advances in
utilizing chitosan and its NPs as nanocarriers for gene delivery systems.
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2. Properties and Applications of Chitosan

Chitosan is obtained from the deacetylation of chitin by chemical or enzymatic hydrol-
ysis, resulting in a linear cationic polysaccharide that exhibits reduced crystallinity and
increased solubility compared to its chitin precursor [1,2,6,8]. The degree of deacetylation
(DD) along with the molecular weight (Mw) of the resulting chitosan polymer mainly
determine its physicochemical and biological properties since they define the total number
of primary amine residues [1]. Due to the presence of the protonatable amino groups,
chitosan can be dissolved in dilute acidic (e.g., acetic, formic, hydrochloric, lactic, citric)
solutions [6,7]. Moreover, chitosan contains numerous primary and secondary hydroxyl
groups that further enhance interactions with water. In practice, the solubility is affected
not only by the deacetylation degree and molecular weight of the chitosan chain (with
higher DD and lower Mw being more favorable) but also by the concentration, pH, and
ionic strength of the solution, while agitation can assist in the dissolution process [1]. In
addition to its biodegradability, biocompatibility, bioactivity, and non-toxicity, another
important advantage of chitosan is that it can be processed in different forms, such as solu-
tions, blends, sponges, membranes, gels, pastes, tablets, microspheres, or microgranules,
depending on the intended application [1]. Chitosan’s solubility and overall properties can
be additionally improved through appropriate either physical or chemical modification
that is facilitated by the presence of the amino and hydroxyl active groups [5–8]. Physical
modification usually entails mixing or blending with other hydrophilic polymers such as
polyvinyl alcohol (PVA), polyethylene oxide (PEO), and polyvinyl pyrrolidone (PVP), thus
generating a new polymeric material with different and distinct physical properties [8].
When it comes to chemical modification, the functional groups in the chemical structure of
chitosan enable a plethora of reactions [7,8]. More specifically, etherification, esterification,
cross-linking, graft copolymerization, and O-acetylation are carried out on the hydroxyl
groups, while acetylation, quaternization, Schiff’s base reaction, and grafting are carried
out on the amino groups [7]. The produced functionalized analogues are characterized by
quicker gel-formation properties, greater aqueous solubility, and the capability of forming
self-assembling nanostructures [6]. Consequently, chitosan derivatives have attracted con-
siderable interest due to their tunable biological and chemical characteristics, along with
their compelling application capabilities [13,14].

The chemical structure of the chitosan polymer greatly influences its overall physical
properties as well, since each free amino group of the D-glucosamine monomer can also
become positively charged, promoting its solubility and antibacterial activity [6]. Moreover,
these moieties can serve as excellent chelating ligands and can potentially bind several
metal ions, either through interaction with the free amino groups (at near-neutral pH) or
by electrostatic attraction on protonated amino groups (in acidic solutions) [6,8]. Along
the same lines, other ways of improving chitosan’s solubility entail lowering its Mw and
crystallinity [6]. The cationic nature of chitosan is also responsible for most of its corre-
sponding biological properties and functionalities. For example, the antibacterial effect of
chitosan is attributed to the interaction of its positively charged amino groups with the
negatively charged phosphoryl groups of phospholipids at the bacterial cell wall, which
changes their metabolism and eventually leads to cell death [7]. Moreover, it was estab-
lished in various in vitro experiments that this antibacterial function could result from
chitosan’s DNA binding capacity, in the sense that when it comes in contact with the
nuclei of bacteria, it combines with DNA and prevents mRNA synthesis [8]. The same
cytocidal mechanism is also responsible for the anti-fungal property of chitosan, which is
influenced to a significant degree by its DD and Mw (i.e., it is enhanced when the DD is
higher and the Mw is smaller) [8]. Another prominent biological property of chitosan is
that it does not cause severe inflammation or stimulation of the immune system, or in other
words it has low toxicity, as it has been established in several animal models [4,6,15–17].
Furthermore, it shows anti-inflammatory action by reducing the release of interleukin-8
(IL-8) and tumor necrosis factor (TNF) from mast cells and even an analgesic effect by
reducing the concentration of inflammatory mediators (bradykinin) at the site of injury [8].
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Chitosan also exhibits wound healing and hemostatic properties and stimulates the for-
mation of granulation tissue and the activity of fibroblast proliferation, while at the same
time it suppresses fibrosis and promotes erythrocyte adhesion, fibrinogen adsorption, and
platelet adhesion and activation [7,8]. Ultimately, its innate biodegradability and biocom-
patibility are especially important properties since in biological organisms, bioenzymes can
catalyze the depolymerization of chitosan with the breakdown products N-acetyl glucose
and glucosamine, as well as the degradation intermediates, being non-harmful to the hu-
man organism [4]. Specifically in the human body, chitosan is known to be degraded mainly
by lysozyme, a proteomic enzyme present in all human tissues, as well as lipase, which
can be found in the human gastric or pancreatic fluid or saliva [18,19]. Moreover, several
human chitinases, glucosidases, and proteases have been identified to have enzymatic
activity and be able to degrade chitosan to varying degrees [20]. Nevertheless, the DD and
Mw of the biopolymer play a crucial role when it comes to its biodegradability, with the
degradation of chitosan chains with lower DD and Mw being more feasible [20,21].

On top of all the above, chitosan’s ability to form NPs with relative ease has been
vastly exploited as a means of producing nanocarriers with exceptional characteristics that
exhibit greater affinity for negatively charged biological membranes and thus can be used
to effectively load drugs, enzymes, and nucleic acids [4]. In fact, various anticancer drugs,
antimicrobials, peptides, anti-inflammatories, growth factors, and other pharmaceuticals
have been successfully delivered using chitosan-based polymeric drug carriers [4]. Several
methods are being utilized for the production of chitosan NPs, including ionotropic gela-
tion, microemulsion, emulsification solvent diffusion, polyelectrolyte complex formation,
and the reverse micellar method [1,2,4,9]. Among these methods, the most widely used
ones are ionotropic gelation and polyelectrolyte complexation, which are simple and do
not apply high shear force or use organic solvents [2]. In more detail, ionotropic gelation
is based on the electrostatic interaction between the amine groups of chitosan and the
negatively charged groups of polyanions such as tripolyphosphate (TPP), while a stabi-
lizer such as a poloxamer may be also used. The size and surface charge of the formed
ionically/electrostatically cross-linked NPs can be finetuned by changing chitosan’s concen-
tration, chitosan-to-polyion or stabilizer ratio, and/or ionic strength of the solution [1,2]. In
a similar manner, the polyelectrolyte complex method includes the addition of an anionic
polymeric macromolecule such as nucleic acid (DNA and RNA) or a protein solution to
a cation-based polymeric chitosan dissolved in acetic acid solution, with the consequent
charge neutralization being assisted by mechanical stirring at room temperature [9]. The
advantages of this method are its simplicity under typical conditions and the spontaneous
formation of loaded NPs.

It comes as no surprise that the unique set of properties of chitosan and its correspond-
ing NPs render them suitable for a wide range of biologically relevant applications of major
significance. To name but a few, chitosan finds usage in drug delivery, anti-tumor and
anti-cancer therapy, nucleic acid delivery and gene therapy, protein delivery, tissue engi-
neering and regeneration, wound dressing and healing, bioimaging, and as an antimicrobial
agent and a vaccine adjuvant but also in other fields such as food industry, wastewater
treatment, cosmetics industry, and agriculture [1–9]. Especially regarding nucleic acid
delivery for the design of the optimal polymeric delivery system, several factors should be
taken into consideration. These include the ability to form a stable complex/nanoparticle
upon coupling with the nucleic acids, protect the cargo from nuclease degradation, target
the desired cells, and promote cellular entry. The preparation protocol of these delivery
systems usually entails the mixing of diluted chitosan and nucleic acid solutions followed
by incubation, thus generating chitosan/DNA or RNA complexes driven by strong electro-
static interactions, also known as polyplexes, that protect condensed nucleic acids from
enzymatic degradation [10]. The properties of such polyplexes mostly depend on the
structural properties and concentration of chitosan, the mixing ratio of the two components,
and the pH value of the solution [10]. After entering the cell, the carrier and cargo must
escape from endosomes and lysosomes, release the genes in the cytoplasm, and interact
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with target cellular elements while showing low toxicity [10]. By carefully selecting the
properties of the chitosan biopolymer used for the formation of the DNA/RNA polyplexes
and especially its Mw, one can finetune the size and stability of the resulting complexes,
along with the cellular uptake and release of genes inside the cytoplasm, and finally influ-
ence the transfection efficiency [10]. The use of chitosan as a gene delivery vehicle has been
intensively studied due to its unambiguous advantages, for instance its cationic nature,
biocompatibility, relatively low cost of production, and facile functional modification [10].

3. Technological Aspects of Chitosan Complexes for Nucleic Acid Delivery

The preparation of chitosan complexes for nucleic acid delivery and targeting is of
paramount importance for the behavior of polyplexes in vitro and in vivo. Chitosan, with
its highly positive charge, can easily interact with negatively charged nucleic acids, forming
polymeric complexes—polyplexes [22–26]. There are three different ways of incorporating
genetic material into chitosan and/or chitosan derivatives: encapsulation, adsorption, and
electrostatic interactions. Each incorporation mechanism exhibits a different release profile
and endosome escape route of the genetic material. Chitosan-based non-viral gene vectors
can be fabricated in different morphologies and shapes, ranging from nanoparticles and
nanocapsules to micelles, each of which exhibits unique physicochemical and biological
properties, as well as loading and release properties.

Several parameters affect the technology and the properties of the nanoparticulate
systems self-assembled from chitosan [22–26]. Firstly, the molecular weight of chitosan is
one of the most crucial parameters for the design and development of chitosan gene vectors.
The size of pure nanoparticles, the size of the complexes, the physicochemical stability, the
transfection efficiency, and the targeting to the subcellular organelles can be altered by the
different molecular weights of chitosan [27,28]. Secondly, the molar stoichiometry of the
mixed chitosan/nucleic acid which is expressed as the ratio of chitosan nitrogen N per
gene phosphate. This molar ratio is an important formulation attribute for the stability of
the polyplex, its interaction with the cellular membrane by the endocytosis mechanism,
and the transfection efficiency [27,28]. Thirdly, the pH of the dispersion medium, which is
usually constant between 5.6 and 6.5. Alteration of the pH values leads to different surface
characteristics of the chitosan nanoparticles and complexes, as well as their stability [22–26].

Various protocols for the preparation of chitosan nanoparticles are reported in the liter-
ature, i.e., ionic cross-linking, covalent cross-linking, reverse micellar method, etc. [10,29,30].
Brunel et al. [30] used a preparation protocol based on a reverse emulsion of a chitosan
solution in a Miglyol/Span 80. The limitation of this method is that the degree of acetylation
of chitosan should be lower than 30% and the advantage is the preparation of colloids with
a “green” method controlled by the concentration of the surfactant and temperature. Emul-
sification has also been used as a preparation method that includes both the mechanical
shaking and the high-pressure homogenization for the o/w emulsion [29]. Namely, the
emulsification solvent diffusion method was used for the preparation of chitosan nanopar-
ticles with the aid of lecithin and poloxamer 188 as emulsifiers. The prepared nanoparticles
were around 100 nm with positive zeta potential. It should be noted that the reverse
emulsion and the emulsification solvent diffusion method are used for the preparation of
chitosan nanoparticles and not for the encapsulation of genetic material. For their loading
with nucleic acids, further formulation steps are required [1].

On the other hand, two different fabrication protocols for the preparation of chitosan-
based carriers for gene delivery are used widely in the literature [10]. The first one is
based on the strong electrostatic interactions between the chitosan and the genetic material.
This technique is also described as the polyelectrolyte complexation process. Soliman
et al. [31] prepared nanoparticles composed of chitosan with different degrees of deacety-
lation and hyaluronic acids, incorporating mRNA via the polyelectrolyte complexation
process. Namely, chitosan and hyaluronic acid stock solutions were dispersed to spe-
cific molar glucosamine 1 (N) to mRNA phosphate (P) to carboxyl (C) ratio (N:P:C) of
5:1:0, 5:1:1, and 5:1:7. The physicochemical characteristics of the complexes, as well as



Pharmaceutics 2023, 15, 1849 6 of 22

the transfection efficiency, were strongly dependent on the ratio of the components. The
same preparation protocol was used by Nicolle et al. [32] for the development of covalent
chitosan–polyethyleneimine derivatives as non-integrating DNA delivery systems.

The other method is the ionic gelation protocol, which needs an ionic crosslinker.
For example, Cao et al. [33] designed an siRNA/chitosan–methacrylate complex with UV
cross-linkable gels for prolonged gene silencing. Ionic gelation was used for the preparation
of anti-rabies chitosan–DNA nanoparticles as vaccines [34]. Namely, chitosan compact
particles were self-assembled by ionic gelation and conjugated by coacervation with a
pDNA rabies vaccine to investigate their encapsulation and transfection efficiency. The
resulting polyplexes exhibited a size close to 100 nm, positive zeta potential, and maximum
attachment efficiency strongly dependent on the genetic material. In Figure 2, the two
fabrication processes are visualized. In a recent study published in the literature, chitosan
nanoparticles loaded with siRNA were prepared with the synergetic protocol, combining
electrostatic complexation and chemical cross-linking for the treatment of melanoma in
mice [35]. Namely, phenylboronic acid-modified chitosan oligosaccharide nanoparticles
were used for the delivery of survivin-targeted siRNA. The size and the surface charge of
the polyplexes were found to be dependent on the ratio of the components, but in all series
of the formulation, the particulate systems were below 400 nm with zeta potential values.
These nanosystems significantly inhibited the proliferation of cell lines in vitro and also
inhibited the growth and metastasis of melanoma in mice.
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The codelivery of transcription 3 siRNA and BV6, a well-known inhibitor of apoptosis,
was achieved by the combination of the aforementioned methods for carboxymethyl
dextran trimethyl chitosan nanoparticle preparation. In this case, the nanoparticles were
around 100 nm, with low polydispersity and a positive surface charge [36].

Different chitosan derivatives were synthesized and were complexed with plasmid
DNA in different N/P ratios via the ionic gelation method. The size, size distribution,
zeta potential, and transfection efficiencies were evaluated in terms of N/P ratios of
each chitosan derivative. The outcomes showed that all the chitosan derivatives could
encapsulate plasmid DNA at N/P equal to two. The majority of polyplexes exhibited a
size of around 120 nm, a spherical shape, and a positive surface charge ranging from 10
to 30 mV. In Figure 3, the dependence of the N/P ratio on the transfection efficiency is
presented for the different chitosan derivatives [24].
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mean ± SEM. (Thiolated trimethyl chitosan: TMC-Cys; methylated 4-N,N dimethyl aminobenzyl
N,O carboxymethyl chitosan: MABCC; and thiolated trimethyl aminobenzyl chitosan: MABC-Cys.)
(Adapted from [24]).

The design of this experiment (D-optimal design with two factors) has been also used
in the literature for the development of chitosan-based polyelectrolyte nanoparticles for
gene delivery. The independent variables were the concentration of trimethyl chitosan and
the type of negatively charged polyelectrolyte, while the factors were the size, size distribu-
tion, loading efficiency, and cellular uptake. The optimized concentration of chitosan was
0.32 mg/mL, while the optimized concentration of hyaluronate was 0.35 mg/mL with a
particle size of around 100 nm and a gene loading efficiency of around 100%, presenting
appropriate properties for tumor accumulation gene therapy [37].

4. Chitosan Complexes for Nucleic Acid Delivery

Gene therapy can be briefly described as the delivery of exogenous genetic material
into targeted cells [38,39]. To achieve this, a gene delivery vector is required. The biggest
challenge in the field is the utilization of effective carriers that will not generate toxicity and
immunogenicity and will promote the successful delivery of nucleic acids into human cells.
These carriers can be divided into two main categories: non-viral [40,41] and viral [42]
gene delivery vehicles. Both categories offer advantages and disadvantages. On the
one hand, viral vectors present higher transfection efficiency; still, they exhibit increased
immunogenicity issues. On the other hand, non-viral vectors are cost-effective and display
reduced immune response and significantly reduced transfection efficiency [43].

In recent years, chitosan and its derivatives have gained considerable attention as
non-viral carriers for the delivery of nucleic acids. Chitosan can form complexes with
nucleotides through electrostatic interactions between the negatively charged primary
amines present in the CS backbone and the positively charged phosphoric groups of the
DNA/RNA [44]. The advantages of CS are biodegradability, increased biocompatibility,
low toxicity, low immunogenicity, and a high density of positive charges that promotes the
complexation with nucleotides and enhances the membrane permeability [44]. Chitosan
NPs’ role as gene delivery vectors is to protect the therapeutic gene from degradation
generated by endonucleases which are present in physiological fluids and simultaneously
to prolong the half-life of the nucleotides, leading to increased transfection efficiency [45].
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Cell uptake can occur via electrostatic interactions or passive endocytosis. Cell penetrating
molecules, peptides, or ligands can be also functionalized onto chitosan NPs to further
enhance this procedure [46–49]. Chitosan is also able to perform endosome escape via
the so-called “proton sponge effect”. The acidic environment protonates chitosan amino
groups inside the endosome, causing the drawing of water and chloride ions from the
endoplasm, leading to endosome rupture [10]. As many research works have revealed, the
transfection efficiency is highly influenced by a series of formulation parameters which can
tune/affect the properties of CS/genetic material complexes, such as the form of chitosan
used, the molecular weight, and the degree of deacetylation of chitosan as well as the pH
and the N/P ratio, which can influence the size and morphology of the complexes [1,50,51].
A schematic representation of how CS NPs interact with nucleic acids as well as the
transfection mechanisms are portrayed in Figure 4.
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4.1. Chitosan–DNA Complexes

Chitosan has been used widely as a delivery vehicle for DNA. Some of the most recent
works reported on chitosan/DNA nanoparticles are summarized below.

Casper et al. [52] reported on the synthesis of core-shell-structured ternary complexes
for DNA delivery. Depolymerized chitosan (dCS) conjugated with linear PEI was used as
the DNA encapsulating core, while dCS conjugated with PEG and cell-penetrating peptides
(CPPs, sequence of 5–30 amino acids) served as the shell. The presence of PEG and CPPs
induces enhanced biocompatibility and shielding of the cationic charge as well as improved
DNA encapsulation and cellular uptake. The complexes were formed through electrostatic
interactions between the negatively charged shells and the positively charged cores. The
resulting complexes were monodispersed, with an average size of 120 nm and excellent
colloidal stability. Nanovector DNA was used for the studies. The ternary complexes were
characterized both in vitro and in vivo, and the results revealed improved encapsulation of
nucleic acids, great transgene expression, and cellular uptake.

Dogan et al. [53] demonstrated that Artificial Neural Networks (ANNs) could be a
powerful tool in our efforts to understand/predict the effect of crucial parameters (such as
type of DNA, the type of the cells, concentration, Mw) as far as the transfection efficiency
of such systems is concerned in a fast, cost-effective way with fewer experiments needed.
At first, PEGylated CS derivatives utilizing PEG of different molecular weights and various
PEG concentrations were synthesized. Later, these systems were mixed with pDNA-
encapsulated nanoparticles and crosslinker. The obtained nanoparticles were then used to
modify human embryonic cells genetically, and the transfection was investigated. An ANN
model was then created using the obtained experimental data, and it was proven that the
above-mentioned parameters could be predicted with accuracy.

Interpolyelectrolyte complexes (IPEC) comprising DNA/CS hydrogels were prepared
by Morikawa et al. [54] at various anionic-to-cationic charge ratios. CS of 50–190 kDa
Mw and a degree of acetylation of 85–95% were used along with DNA (>5 kbp). The
properties of the hydrogels, both chemical and mechanical, can be tailored accordingly,
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as they are influenced by the anionic/cationic charge ratio. The results showed that at
non-stoichiometric ratios, the DNA/CS hydrogels have the properties of the dominant
component. The research group took advantage of the property possessed by both DNA and
CS to bind with metals and introduced Au to the IPECs via metal-ion absorption–reduction
in order to prepare a catalytic system. The catalytic activity of the Au functionalized
hydrogels was proven to be increased when the CS ratio in the system was higher. The
synthesized hydrogels, apart from applications in the field of biomedicine, could find
potential use in other fields, such as agriculture and food science.

PLA-PEG copolymers are one the most attractive systems for gene delivery applica-
tions, as they offer great biocompatibility. However, one major drawback is the low efficacy
they demonstrate when used for such purposes. To overcome this issue, Afrouz et al. [55]
introduced chitosan–folic acid (CS-FA) to PLA-PEG nanoparticles. The aim of this research
was to increase the encapsulation efficiency of DNA within the nanoparticles and increase
the protection of DNA from enzyme digestion damage. The latter is achieved by the
co-presence of CS, FA, PLA, and PEG in the system simultaneously. MCF-7 cells were used
for the purpose of this study. Increased biocompatibility, improved release of the DNA,
and remarkable ability of gene transfer to the MCF-7 cells were observed.

Ma et al. [56] demonstrated that the solution pH has a significant effect on the size,
morphology, charge, and compaction of DNA/CS nanoparticles. For this study, chi-
tosan oligosaccharide lactate (average Mn = 5000) and double-stranded λ-phage DNA
(48,502 b.p.) were used. The complexes were characterized with light scattering, atomic
force microscopy, and magnetic tweezers. Under acidic conditions, where CS is protonated,
the charge density is increased. At high CS concentrations, the electrophoretic mobility of
the complexed nanoparticles remains practically the same and is dramatically reduced at
elevated pHs. On the other hand, the electrophoretic mobility seems to increase at more
acidic pH conditions and CS concentrations below the critical value. The obtained data
were consistent when both free CS and CS/DNA complexes were measured.

Another interesting research work reports on the chemical modification of CS, aiming
to improve solubility in water [57]. More specifically, CS reacted with 2-acrylamido-2-
methylpropane sulphonic acid (AMP) by Michael addition. The derived CSAMP was found
to be water-soluble and was able to form well-defined, small-sized particles (in the range of
150 nm) when complexed with plasmid DNA. CSAMP/DNA complexes also exhibit lower
cytotoxicity and higher transfection efficiency in comparison with non-modified CS.

Bravo-Anaya et al. [27] studied the complexation of calf thymus DNA (13,000 b.p.)
with CS molecules of different molecular weights (Mw = 500,000 kDa and a degree of
acetylation of 0.19 and of 0.04 and Mw = 50,000 with a degree of acetylation of 0.04). It was
found that particles formed when the higher Mw CS was used were 280 nm in size, while
smaller particles with an average size of 150 nm were formed when the lower Mw CS was
involved. Moreover, CD spectra revealed small changes regarding the conformation of the
DNA, while thermal stability studies showed that the melting temperature of the DNA
was elevated in the CS/DNA complexes, in comparison with free DNA.

4.2. Chitosan–RNA Complexes

The delivery of oligonucleotides has been a hot topic in the last decades since it can be
utilized for the treatment of several genetic diseases, cancer, or virus infections. Regulatory
non-coding RNA molecules that are used in therapeutic applications can be categorized
into short interfering (si), micro (mi), messenger (m), and antisense RNA. Problems arise
from the solo delivery of such molecules since they are prone to degradation from nucleases
in the human serum, leading to poor bioavailability and an inherent inability to enter the
negatively charged cell membranes [58–60].

The biocompatibility of chitosan [61] and its cationic nature make it a potential candi-
date as a non-viral vector for RNA delivery [62,63]. Researchers have initially investigated
the importance of specific parameters, such as molecular mass, degree of deacetylation (DD),
and amine-to-phosphoric groups (N/P) ratio in order to improve the RNA delivery efficacy
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of chitosan-based polyplexes. Studies also incorporate chemical modification and peptide
or polymer grafting on CS to further improve the RNA delivery abilities [11,12,64,65].

Molecular mass is a rather significant factor in the aggregation process and the forma-
tion of chitosan polyplexes in aqueous media through self-assembly. Although lower molar
masses (e.g., <10 kDa) exhibit better dispersibility in aqueous media, they do not form sta-
ble nanostructures when complexed with RNA due to insufficient aggregation. In addition,
low-molecular-mass chitosan creates strong electrostatic forces with RNA, preventing it
from release and successful delivery [66,67]. Increasing the Mw to over 10 kDa leads to
hydrogen bonding between the –OH and –NH groups, which leads to the stacking of the
chitosan molecules. Studies have shown that a Mw of 10 kDa is the starting point of stable
chitosan–RNA polyplexes in aqueous media [68]. Mws of ~60–140 kDa seem to have the
optimal effect in terms of particle size, aggregation, complexation capacity, stability, and
transfection ability, not only for plain chitosan but for chitosan/polyanions also [69–74].
The increase in Mw subsequently leads to higher nanoparticle sizes due to extended aggre-
gation. Nevertheless, much higher molar masses of 500 kDa have been reported in a recent
work [75] utilizing galactosylated-chitosan-5-fluorouracil miRNA polyplexes for specific
delivery to the liver.

The degree of deacetylation (DD) is another crucial factor for the effectiveness of the
formed chitosan polyplexes that dictates the number of chitosan amino groups that are
available to interact with RNA molecules. Studies have shown the importance of DD not
only on the complexation efficiency and capacity of the formed nanocomplexes but also
on their transfection ability [76]. A higher degree of deacetylation means more readily
available amino groups that take an active part in the complexation and penetration of the
cytoplasm. Studies report that a DD over 90% increased the transfection efficiency up to
80%, in contrast to 25% efficiency with DD < 80 [68].

Another important factor is the ratio of nitrogen atoms of chitosan per phosphoric
atoms of RNA. The N/P ratio also dictates the free amino groups and the charged state of
the whole polyplex. The higher the ratio, the more binding points are available for DNA,
and better dispersibility/stabilization and transfection efficacy arise. It is very important
for this ratio to be higher than 1:1, otherwise the overall charge is neutralized, all amino side
groups are taken, large aggregates are formed, and precipitation is observed [68,77–79].

Many researchers have reported certain reactions to introduce extra hydrophilic or
hydrophobic groups onto the chitosan macromolecules, depending on the application.
Several ligands have been utilized, such as glutathione [80], galactose [75,81], mannose [82],
aptamers [83,84], folic acid [85,86], RGD [87], and REDV peptides [88–90], to chemically
modify the side groups of chitosan for specific cell targeting. The PEGylation of chitosan is a
common strategy utilized for the increase in hydrophilicity, stability, and bioavailability, the
avoidance of opsonization, and the reduction in toxicity [91,92]. Nevertheless, it was found
that longer PEG chains lower the ability of the polyplexes to enter the cell and decrease the
transfection efficiency [88,93–98]. Quaternization, the process of turning a tertiary amine
into quaternary ammonium, has been utilized in some cases, converting the chitosan into a
strong polyelectrolyte. The N,N,N-trimethyl chitosan (TMC) provides excellent stability to
the formed polyplexes, since it is soluble in a wide range of pH values, while the overall
transfection efficiency is improved [77,88,99–101]. The introduction of diethylaminoethyl
(DEAE) groups is yet another chemical modification that adds more amine groups to
chitosan, resulting in increased complexation capacity and transfection [102,103].

Despite all the hard work conducted in investigating the above parameters, the cell
penetration and cell uptake abilities of the chitosan/RNA polyplexes are yet to be im-
proved [104]. Hybrid/chimeric nanostructures have been synthesized by grafting peptides
or synthetic polymers onto chitosan. Several important studies have been conducted in
this field, utilizing synthetic or natural cell-penetrating peptides, such as histidine [46],
TAT, TAT-trans, CGKRK, arginine [46], nona-arginine [47], poly-L-arginine [48], and pro-
tamine [49]. The conjugation of such peptides might need the use of a linker molecule, such
as glycine [105], glycol [106], PEG [94], or fatty acids [107,108]. The incorporation of such
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peptides led to increased complexation and better protection of RNA from serum protease.
The most important result was the much higher cellular uptake of such polyplexes, while
the transfection and gene silencing ability were significantly improved.

The use of other polysaccharides, such as dextran [69] and hyaluronic acid
(HA) [70,109,110], has been also reported, either as simple complexation with chitosan
or via ionic gelation in order to improve biocompatibility, solubility, and stability. This
process refers to the ionic complexation with the utilization of a crosslinker molecule such
as tripolyphosphate (TPP), and it was reported to offer better stability and stronger inter-
actions between chitosan and RNA [98,111,112]. Another study reports the complexation
of RNA with a triple polysaccharide system of chitosan/hyaluronic acid and chondroitin
sulfate, crosslinked via ionic gelation [113].

Conjugation with polyethyleneimine is also another idea for improving chitosan’s
properties for gene delivery. PEI is a synthetic polymer comprised of an amine group and
two carbon aliphatic CH2CH2 spacers in its main chain and is widely known as a non-viral
gene delivery agent since it bears strong cationic charges. Despite its impressive abilities for
such applications, it exhibits a rather high toxicity on its own. Conjugation with chitosan
though leads to the best of two worlds, with significantly decreased toxicity and enhanced
gene delivery abilities [114–116].

5. Applications of Multifunctional Chitosan-Based Nanoparticles in Pharmaceutics,
Medicine, and Precision Medicine

As mentioned previously, chitosan is a safe biomaterial and pharmaceutical multifunc-
tional excipient with several applications in gene delivery. Several routes of administration
have been already reported for chitosan-based nanoparticles, including oral, intravenous,
intramucosal, nasal, and transdermal delivery, as well as targeting to brain [22–26,117]. Fur-
thermore, chitosan–nucleic acid complexes are widely used for cancer therapy, photothermal
cancer therapy, vaccine platforms, and adjuvants [22–26]. Here, we are going to discuss
some of the multifunctional chitosan-based nanoparticles and their applications in the fields
of pharmaceutics, medicine, and precision medicine. A summary of the most recent studies
with applications and outcomes is also presented in Table 1 at the end of this section.

Chitosan Au nanorods were loaded with siRNA for the treatment of triple-negative
breast cancer. Tail vein injection in animals showed improved effectiveness through pho-
tothermal ablation (significant synergistic effect) [118]. N-succinyl chitosan-poly-L-lysine-
palmitic acid micelles stable in conditions of human plasma were loaded with doxorubicin
and P-glycoprotein siRNA for reversal of multidrug resistance and synergistic effect in
human liver cancer in cell lines and in animal studies [119]. Nanoparticles composed
of low-molecular-weight chitosan were co-loaded with methylprednisolone and plasmid
DNA for the reduction in inflammation at the injury site and future treatment of spinal
cord injury [120]. Xiao et al. [22] prepared a chitosan-based hydrogel for the co-delivery
of TNFα gene silencing siRNA and interleukin-22 for the therapy of ulcerative colitis via
oral administration. Chitosan-coated polyplexes for the co-encapsulation of multidrug-
resistance-inhibiting siRNA and doxorubicin were used for the improvement of the therapy
of multidrug-resistant tumors [121].

Additionally, it has been reported that chitosan enhances the gene delivery of oligonu-
cleotide complexes with magnetic nanoparticles and incorporated cell-penetrating pep-
tides [122]. Namely, cell-penetrating-peptide-conjugated chitosan-modified iron oxide
magnetic nanoparticles were loaded with genetic material with increased colloidal stability
and transfection efficiency. Chitosan nanoparticles were investigated for vaccination against
viral infections as sub-unit vaccines and as adjuvants platforms too [1]. The mechanism re-
lies on the transfer of small oligonucleotides to the virus core, changing its mRNA sequence,
hence disabling vital abilities, such as cell binding, replication, etc. [79]. In addition, the
transfer of oligonucleotides to macrophages is another way to enable an immune response
for certain viruses and bacteria [34,123]. Chitosan derivative nanoparticles enhanced the
immunogenicity of a DNA vaccine encoding hepatitis B virus core antigen in mice [124].
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Methylenetetrahydrofolate dehydrogenase 1-like (MTHFD1L) shRNA was encapsu-
lated into chitosan/tripolyphosphate nanoparticles with a size of around 150 nm with
efficacy on the gene expression of oral squamous cell carcinoma cells in combination
with photodynamic/gene therapy [125]. Fernández-Paz et al. [126] proposed chitosan-
based nanocapsules for pulmonary gene delivery to promote gene-transfection in the lung
epithelium. The plasmid encapsulation efficiency was more than 90%.

As mentioned above, there are several examples of chitosan-based nanoparticles for
nucleic acid delivery in different diseases and vaccines. The biocompatibility and low
immunogenicity of chitosan in comparison to other cationic polymers which exhibit a
toxicity profile make it a pharmaceutical excipient with added value for clinical translation.
The formulation versatility, the high loading capacity of nucleic acids, the co-delivery of
drugs and genes, the physicochemical characteristics, and the colloidal stability are some
of the advantages of chitosan-based delivery carriers. Additionally, the mechanism of inter-
nalization by creating tight junctions between the epithelial cells is also another advantage
of this biopolymer due to its penetration-enhancing mechanism [22–26]. Furthermore, drug
delivery nanosystems and those composed of chitosan have inherent toxicity, primarily
as a result of their nanosize and nanoparticulate nature but also occasionally as a result
of their ADME(T) and pharmacokinetic profile. Although most of the systems discussed
in this manuscript are thought to be biocompatible, it is crucial to undertake in vitro and
in vivo nanotoxicity and immunogenicity studies in order to verify the biosafety of the
systems [127]. Namely, according to the recent literature, any biopolymer’s viability for
drug delivery purposes is largely determined by how it will be metabolized in the human
body [128]. Generally, chitosan is considered a safe material, i.e., chitosan’s cytotoxicity to-
ward human lymphoblastic leukemia and human embryonic lung cells was negligible when
tested in vitro [128]. There is a report in the literature where an intravenous chitosan dose of
50 mg/kg was found to be lethal, perhaps because of blood aggregation [129]. On the other
hand, there are some limitations and challenges associated with chitosan-based nanopar-
ticles. The stability, scalability, immunogenicity, and potential nanotoxicity are the main
problems that should be solved in their preclinical evaluation. The therapeutic stability of
both nucleic acids and nanoparticles is also a crucial issue for the design of nanomedicines.
The physicochemical degradation pathways, the stability of the dispersion state, and the
extracellular and intracellular delivery issues are of paramount importance for the de-
velopment and high-end manufacturing of nanopharmaceuticals [130,131]. Regarding
scalability, large-scale production is costly, and several physicochemical and morphological
techniques, as well as methods to prove loading and encapsulation efficiency (%), should
be addressed to monitor and prevent batch-to-batch variability. Even though there are
many chitosan-based nanoparticles as gene carriers in the literature with significant results
in the fields of nanomedicine, there have not been yet any formulation in clinical trials. The
formulations that are currently on the market or in clinical trials belong to the category
of medical devices. Some authors believe that there are some limitations for the clinical
translation of chitosan, such as physiological pH deduction and poor targeting capacity.

Taking all of the above into account, chitosan-based nanoparticles exhibit great poten-
tial and impact in the larger context of biomedical research due to several reasons. Firstly,
there is a deeper understanding of the interactions between chitosan and nucleic acids
during the pre-formulation studies. Secondly, the design and development of biopolymer-
based nanoparticles are very useful in the fields of pharmaceutical technology, materials
science, and nanotechnology. Thirdly, several physicochemical, morphological, and ther-
modynamic techniques are used for the full characterization of these multifunctional nanos-
tructures, according to the requirements of the regulatory framework. Last but not least,
new techniques and processes are created in order to prevent and monitor batch-to-batch
variability, leading to high-end manufacturing and the adoption of the “Quality-by-Design”
overview in the pharmaceutical industry [132]. Chitosan and, in general, the biopolymers
meet the criteria for materials that can be used as excipients with several properties for the
development of advanced drug delivery platforms with added value for patients.
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Table 1. List of recent studies regarding chitosan–oligonucleotide polyplexes, applications, outcomes, limitations, and future perspectives.

Polyplexes Aim of the Study Application Study Outcome Limitations Future Research

CS-dsRNA
[63]

RNA interference (RNAi) in fall
armyworm (FAW), Spodoptera

frugiperda
Pesticides Chitosan helps endosome escape and

protects dsRNA
Not as effective as cellfectin II transfection

reagent

Better formulation, better
efficiency, cellular uptake, and

biodistribution

CS-dsRNA
[133]

RNA interference (RNAi) in
Caenorhabditis elegans Pesticides Chitosan NPs under real environmental

conditions
Not useful in elevated pH and natural organic

material conditions

Durable materials against high
pH values and real

environmental conditions

CS-siRNA
[62]

Silencing of the lncRNA NEAT1
expression vector Colon cancer

High transfection to colon cancer cells,
growth inhibition and accelerated

apoptosis
- In vivo research

CS-microRNA
[78]

Downregulation of MCF-7 cell
mRNA expression Breast cancer

Mw ~40 kDa, DA ~12%, N/P ratio = 1.5
for particles, N/P = 8, and DA of 30%

for transfection
-

Conditions must be further
optimized, cell penetration

mechanism to be studied further.
In vivo research

CS-Zn-miR-224 [86] Delivery of LNA-miR-224 to
colon cancer cells Colon cancer - - -

CS-CMD-miR-145
[69]

Delivery of miR-145 to breast
cancer cells Breast cancer

Many parameters were tested for
stability, biocompatibility, and

transfection

High CMD-Chi ratio, better stability; lower
ratio, better transfection

In vivo studies, better
optimization with the known

parameters

TMC-g-PEG-
VAPG/miRNA-145

[101]
Transfer of miRNA to SMCs -

Low cytotoxicity, RNA condensation,
great transfection to SMCs, controlled
proliferation after 56 days of release

- In vivo studies should be
performed

tCS/nHAp/nZrO2-miR-
590-5p
[134]

Transfer RNA to MSCc for bone
regeneration

Bone
regeneration

Activating different signaling pathways
that promote osteogenesis

In vivo studies should be
performed

CS-Glu-TA-miRNA-
219a-5P

[80]
Brain delivery of miRNA219a-5P Multiple

sclerosis

miR-219 overexpression, crystallin
alpha B upregulation, apolipoprotein E
downregulation, lower inflammation

Lack of dual-luciferase reporter and Western
blot assays for better understanding of the

underlying mechanisms

Further clinical trials involving
different species should be

performed

CS-microRNA-222-Silf
fibroin scaffolds

[135]

Transfer miR-222 to NSCs for
neural tissue regeneration

Neural tissue
regeneration

High RNA encapsulation efficiency,
enhancement of NSCs proliferation - In vivo studies to be performed

Chi-Echinococus miRNA
[123]

Echinococus-miRNA delivery for
antibacterial treatment

Antiviral
vaccines

Protection from miRNA degradation,
stability, low cytotoxicity, efficient

transfection, reduction of UBE2N in the
liver, potential target of emu-miR-4989

- Further clinical trials to be
performed

CMD-Tocopherol-
miRNA-218

[136]

Transfer of miRNA-218 to GIST
cells

Gastrointestinal
stromal tumor

Spherical size ~110 nm, inhibit cell
proliferation, superior cell apoptosis - In vivo studies to be performed
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Table 1. Cont.

Polyplexes Aim of the Study Application Study Outcome Limitations Future Research

CS-Chi-HA-microRNA-
149-5p
[113]

Transfer of microRNA-149-5p for
cartilage regeneration Osteoarthritis

Non-toxic, increased microRNA-149-5p
and decreased FUT-1 levels, efficient

transfection, enhanced chondrogenesis
- In vivo studies to be performed

CS-g-PGM-Dex-PEI-
LTX-315-melitin-miR-

34a
[137]

Transfer of microRNA and
cytotoxic peptides to breast

cancer cells
Breast cancer

Spherical size 123 nm, no cytotoxicity,
smart targeting, good encapsulation

efficiency, synergistic effect of increased
cancer cell death

- In vivo studies to be performed

CS-microRNA34a
[138]

Transfer of microRNA34a to
breast cancer cells Breast cancer

Spherical NPs of 135 nm, target cell
uptake, no cytotoxicity, miR-34a

upregulation, inhibit growth, migration,
and invasion of cancer cells

- In vivo studies to be performed

CS-TPP-miR-33
[98]

Transfer miR-33 to macrophages
to lower LDL cholesterol

Cardiovascular
diseases

Biocompatible, efficient transfer to
macrophages, regulate ABCA1

expression and cholesterol efflux
- Same NPs could be used for

atherosclerosis treatment

CS-miR
[139]

Transfer two types of microRNA
to SKOV3 ovarian cell line

Ovarian
cancer

Good biocompatibility, transfer of both
microRNAs to target, suppression of

GLI1
- In vivo studies should be

performed

CS-microRNA
[140]

Transfer microRNA-219 to
human GBM cell line (U87 MG) Gliobstatoma

Biocompatibility, high entrapment
efficiency, increased reduction of

growth after 48 h
- In vivo studies to be performed

CS-microRNA
[141] Transfer of miR-144/451a Oral cancer

Enhanced protection of RNA, reduced
viability, migration, and invasion of

cancer cells
- In vivo studies to be performed

CS-TiO-miRNA
[142]

Transfer of antimir-138 to MSCs
for bone regeneration Osteogenesis

Sustained release over 2 weeks, efficient
cell uptake, even distribution on the

surface, good biocompatibility,
increased MSCs differentiation and

osseointegration

- Additional clinical studies to be
performed

CS-DTX-anti-microRNA
[97]

Transfer of anti-miR-21 to breast
cancer cells

Triple-negative breast
cancer

Spherical NPs of 90 nm size, high
entrapment efficiency, good

transfection ability, stability, and
protection of RNA, blocking of miR-21

expression

- In vivo studies to be performed

CS-miR-141
[143]

Transfer of miR-141 to breast
cancer cells Breast cancer

Metastasis, VEGF, EMT, and invasion
were significantly reduced, increased

apoptosis up to 2.5 times
- In vivo studies to be performed
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Table 1. Cont.

Polyplexes Aim of the Study Application Study Outcome Limitations Future Research

CS-siRNA/hsDNA
[79]

Antiviral activity inhibiting
HIV-1 proliferation HIV-1

Stable complexes, good transfection
efficiency to infected cells, high viral

inhibition
HIV-1 mutations

Mixture of different siRNAs to
target more HIV-1 gene

sequences

CS-pDNA
[144]

Transfer of pDNA for cartilage
regeneration Osteoarthritis

Increased chondrosynthesis, decreased
nitric oxide, ADAMTS-5, and MMP-13

levels
- Further studies in different cell

species are needed

CS-p53 targeting pDNA
[145]

p53 protein expression on HeLa
cells Cancer HeLa Cells

Biocompatibility, high complexation
and transfection efficiency, good p53

upregulation
Upregulation of p53 can be even higher In vivo research is needed

Chi-pDNA
[34]

pDNA delivery to macrophages
as anti-rabies vaccine Anti-rabies vaccine

120 nm size of NPs, 100% attachment
efficiency, biocompatible, improved

pDNA transfection
- More clinical trials have to be

performed

Chi-AMP-DNA
[57]

DNA delivery to A549, HeLa,
and HepG2 cancer cells Cancer Enhanced DNA encapsulation, high

transfection efficiency - Additional clinical trials to be
performed

Chi-PLA-PEG-FA-DNA
[55]

DNA delivery to MCF-7 cancer
cells Cancer Biocompatible, good transfection, high

encapsulation efficiency - In vivo studies to be performed
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6. Conclusions

The biocompatibility and properties of chitosan, as well as its versatility, make it ideal
for applications in medicine, pharmaceutics, and precision nanomedicine. In this review,
we discussed the physicochemical properties of chitosan and its biocompatibility and safety,
which make it an ideal material for medicinal applications. The techniques, protocols,
and properties, as well as all the technological considerations of chitosan complexes for
nucleic acid delivery, were also presented. Special attention was given to the formula-
tion parameters for the design and the development of chitosan-based polyelectrolyte
nanoparticles for gene delivery. Examples from the recent literature on chitosan–DNA and
chitosan–RNA complexes were discussed in terms of their characteristics and added value
for targeting tissues and cells. Considering the recent preclinical evaluation of chitosan-
based nanoparticles for nucleic acid delivery and targeting, the fast clinical translation of
these polysaccharide-based platforms is coming in the next years.
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