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Abstract
Recent technological advances have deepened our perception
of cellular structure. However, most structural data doesn’t
originate from intact cells, limiting our understanding of cellular
processes. Here, we discuss current and future developments
that will bring us towards a structural picture of the cell. Elec-
tron cryotomography is the standard bearer, with its ability to
provide in cellulo snapshots. Single-particle electron micro-
scopy (of purified biomolecules and of complex mixtures) and
covalent crosslinking combined with mass spectrometry also
have significant roles to play, as do artificial intelligence algo-
rithms in their many guises. To integrate these multiple ap-
proaches, data curation and standardisation will be critical –
as is the need to expand efforts beyond our current protein-
centric view to the other (macro)molecules that sustain life.
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Introduction
The pioneering work of Hodgkin, Pauling, Corey,
Astbury and others in the 1930s and 1940s marked the
start of a new era for biology: one that promised a
molecular understanding of life itself. The ensuing 80

years have seen a succession of ground-breaking tech-
nical advances in X-ray crystallography, NMR spec-
troscopy and most recently single-particle electron
cryo-microscopy that have made huge inroads on that
early promise. The dramatic appearance of artificial
intelligence (AI) in the form of AlphaFold and related
software has also begun to reshape the landscape of
structural biology and will undoubtedly evolve rapidly
in the near future.
By necessity, the overwhelming majority of this
work has been carried out on isolated macromolecules
that are trapped in the confines of a crystal, an
NMR tube, an EM grid orein the case of molecular

dynamics e a small box of water. Furthermore, most
studies have examined proteins that are truncated and
lacking their biological binding partners (be they
other proteins, membranes, other macromolecules,
cofactors .), although we now appreciate that
intrinsically disordered regions and the formation of
macromolecular complexes can be essential for proper
cellular function. In this regard, it is notable that
AlphaFold has almost in passing highlighted the
prevalence of unstructured regions across the protein
universe, particularly to those who are not struc-

tural biologists.
Although these approaches have yielded enormous mo-

lecular insight across nearly every field of biology, it has
not gone unappreciated by the field that the lack of
cellular context for most macromolecular structures
represents a yawning chasm that must be crossed if we
are to bring the fields of structural biology and cell
biology to a common ground. Put most simply, what is the
structure of a cell?
Fortunately, work to bridge this chasm has been un-
derway for a number of years and in this review, we’ll
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explore recent advances in the field now recognized as
structural cell biology or visual proteomics, discussing
the associated opportunities, challenges, and prospects
that underpin the ongoing pursuit of this e perhaps
unobtainable e goal.
Advances in cellular tomography open
doors to visualizing the cellular milieu in
unprecedented detail
Conceptually, perhaps the simplest approach to
obtaining an atomic resolution snapshot of a cell is to use
electron cryo-tomography (cryoET). In cryoET, micro-
graphs are recorded of a thin (<w500 nm) slice of a cell

or any other sample tilted at many angles and the images
are computationally combined to create a three-
dimensional image (a tomogram). This concept was
introduced in 1968 in three independent reports [1e3]
but only recently was it substantially advanced by
Baumeister and others for high-resolution in-cell struc-
tural analysis [4]. Furthermore, if multiple copies of a
structure are present in a single tomogram, these can be
computationally combined (sub-tomogram averaging) to
improve both contrast and resolution of that entity, as in
the case of the 80 S ribosome, reconstructed at 3.1 Å,

from inside human cells [5].

The unique power of cryoET is that structures are
observed in their native cellular environment (albeit at
temperatures lower than �155 �C), and this approach
has yielded exquisite images and reconstructions of
large cellular structures such as nuclear pore complexes
(NPCs) [6], flagella and injectisomes [7], as well as
diverse macromolecular complexes including ribosomes
[5,8,9], proteasomes [10], actin [11] and tubulin [12]
structures, and calcium channels [13]. These studies
offer new perspectives on both structure and function,

as well as informing on spatial relationships between
cellular structures. For example, cryoET was used to
elucidate the molecular architecture of native cardiac
sarcomeres [14,15], revealing the organization of thick
filament proteins such as myosin, titin, and myosin-
binding protein C; these proteins have specialized
roles in strain susceptibility, force generation, and
length-dependent activation. This pioneering study also
lays the groundwork for understanding muscle disorders
associated with sarcomeric components (Figure 1).

Recent work has demonstrated that atomic resolution
(2.3 Å) can be achieved by cryoET for purified proteins
[9], and sub-4 Å reconstructions for in-cell ribosomes
[9] e though more typical values are in the range
10e20 Å. Resolution is limited by several factors,
including sample thickness, low contrast, number of
subtomograms, radiation damage, and the missing
‘wedge’ (only w120� of rotation is typically possible).
These resolutions mean that structures cannot be built
directly from the reconstructed maps, and models
Current Opinion in Structural Biology 2024, 87:102843
therefore must be built from complementary data,
including high-resolution structures or models of sub-
units. Machine learning has begun to have a significant
impact in this space, as demonstrated by AI-driven
models derived for the human NPC and its ATP-
dependent large-scale dilation properties that inte-
grated cryoET data with decades of biochemical and
structural knowledge [6,16]. Battles to improve resolu-

tion are likely to be won by combining several different
strategies. Cryo-focused ion beam milling methods like
plasma milling [17] will provide controllable, cleaner
and more uniform samples and will also improve
throughput to furnish significantly larger datasets, as
will emerging methods for parallel acquisition of mul-
tiple tilt series [18]. Mirroring cryoEM, advances in
microscope hardware, including detectors and phase
plates, will certainly have an impact, as will better al-
gorithms for image alignment and reconstruction.

The biggest challenge, however, likely lies in the iden-
tification and analysis of small and/or less abundant
macromolecules and assemblies, where conventional
template matching approaches fail. Two recently
described algorithms based on deep learning allowed the
de novo extraction of ‘structural signatures’ for unknown
complexes [19,20]. Structural signatures are single-
particle 2D projections, 2D class averages, or subtomo-
grams that correspond to a specific, clear view of a
macromolecular structure e and provide a starting point
for more detailed structural analysis. Overall, the effi-

cacy of neural networks in recovering structural signa-
tures from electron tomograms has grown, enabling this
task to be accomplished without reliance on pre-trained
data. In particular, combinations of machine learning
models are currently being explored to allow an unbi-
ased, comprehensive search of structural signatures
within tomograms [19,20].

Thus, drawing a parallel to AlphaFold’s success in
predicting protein structures via leveraging experimen-
tally derived structural data, one can envisage a similar
algorithmic approach that would mine structural signa-

tures from an extensive repository of cellular cryo-
electron tomograms, consequently unveiling biomole-
cular signatures and their interrelationships. The suc-
cess of such strategies will rely heavily on the public
availability of extremely large cryoET datasets (by
analogy to the relationship between AlphaFold and the
PDB). Towards this goal, the open-access EMPIAR
database (https://www.ebi.ac.uk/empiar/) must play a
leading role in centralizing such data for the decades
to come.

Cellular electron microscopy: high contrast,
low dose, and high-resolution content
A significant issue in cryoET is the high electron dose
and consequent sample damage that is accumulated
www.sciencedirect.com
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Figure 1

(a) Tomographic slice of a cardiac sarcomere, centered on the M band, depicting thick and thin filaments. Scale bar, 50 nm. (b) Reconstructed thick and
thin filaments mapped into a tomogram. Thin filaments obstructing the view on the thick filament were removed for clarity. Scale bar, 50 nm. (c) Structure
of the thick filament from the M band to the C zone. For clarity, only the first four cMyBP-C stripes are shown (c, d). The 3D reconstruction (d) and atomic
model (e) of the C zone, from cMyBP-C stripe no. 4 to stripe no. 9. The volume is colored according to its atomic model. The dotted boxes on the right side
depict Z-ward views of cross-sections of the map (d) and model (e), providing a more detailed view of the arrangement within the core of the thick filament.
(f) Illustration of the various sarcomere components and their color code, which is maintained throughout this figure. Data reproduced and adapted from
Ref. [15].
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during the recording of a tilt series that might comprise
>100 individual images. If only single images are
recorded e an approach termed single-particle electron
microscopy e the consequent reduction in sample
damage leads directly to higher resolution data, though
at the cost of the loss of information on spatial organi-
zation. The Grigorieff laboratory has shown that recov-
ery of structural signatures from high-resolution cryo-

electron micrographs of cells is feasible [21,22], allowing
the high-throughput accumulation of these signatures
that can be utilized in subsequent structural analysis.

Furthermore, a recent tour-de-force analysis of photo-
system supercomplexes from intact cells showed that
single particle analysis (SPA) can provide atomic reso-
lution structures of gigantic complexes at unprece-
dented resolution e even within the cellular context
[23]. Figure 2 showcases the incredible power of cryoET
and in situ single-particle analysis demonstrated in this

study. The authors determined several near-atomic-
resolution structures of the monomeric and dimeric
Figure 2

(a) Representative tomogram of the phycobilisome (PBS)–PSII–PSI–LHC me
(light blue boxes) and double (purple boxes) PBS-PSII-PSI. (c) The overall stru
representation; 2.5 million atoms were modeled in the displayed densities. PBS
in dark and lighter green respectively (d) Organization of PBS and PSII media
(d) panels were kindly provided by the authors [23].
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PBSePSIIePSIeLHC megacomplex from the red alga
Porphyridium purpureum. The megacomplex contained
1,792 proteins made from more than 300,000 residues
and featured 4,500 ligands. Remarkable insights into the
assembly of the megacomplex were gained in this work,
including the nature and arrangement of the pigment
network and the mechanisms governing energy transfer
and distribution across the components of the complex

(see Figure 2).

This study shows clearly what is possible in the context
of SPA of intact cells. We envision a future in which
large databases of high-resolution cellular single-
particle cryoEM images not only provide stand-alone
structural information on protein complexes in their
native environment, but can be leveraged for the
interpretation of cryoET data. For this future to
become a reality, an enabling step will be a community-
wide commitment to open data access according to

FAIR (Findable, Accessible, Identifiable, Reproduc-
ible) principles.
gacomplex from P. purpureum [23] (b) Representative 3D classes of single
ctures of the double PBS–PSII–PSI–LHC assembly is shown as a surface
s are corn flower colored whereas PSII dimers and PSI–LHCs are colored
ted by linker proteins (LRC2, LRC3, LPP1 and LPP2). Data for (a, b), and

www.sciencedirect.com
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Figure 3

(a) Representative cryoEM micrograph of fractionated MDa-size complexes. Insets highlight the pluralistic abundance of structural signatures found within
such fractions. Yellow dotted circles enclose fatty acid synthase (FAS), green oxoglutarate dehydrogenase complex (OGDHc), light blue ribosomal
subunits and red color depicts pyruvate dehydrogenase complex (PDHc). (b) Reconstructions of signatures highlighted in panel A: FAS complex with a-
helical bundles (yellow box), reconstruction of the OGDHc E2 core, where the intra-trimeric interfaces at the edge of the core are recapitulated (green
box), reconstruction of the PDHc E2 core, highlighting high-resolution structural features, such as side-chain densities and b-strand separation (red box),
reconstruction of the pre-60 S ribosomal subunit with densities belonging to the rRNA structural elements being visible (light blue box), (c) PDHc E2 core
in proximity to the E3 binding protein (E3BP) with proximal E2 monomers colored green, and distal colored pink. Scale bars in B and C: 5 nm. Bottom bar
illustrates the complexity of cell extracts with uncharacterized structural signatures (orange) representing to the majority (Modified from Refs. [27,28,30]).
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Cell extracts: an intermediate route to
untangling molecular complexity
The direct imaging of cellular sections (lamellae) by
cryoET or cryoEM offers the most native-like incarna-
tion of structural cell biology, but also the one that re-
quires deconvolution of the highest level of complexity.
There are likely to be of the order of a billion individual

protein molecules in a human cell (a number still being
challenged [24]) and those molecules are packed cheek
by jowl into a confined space, a situation that presents
significant contrast challenges for particle picking.

At the opposite end of the complexity scale lies the
widespread practice of expressing and purifying indi-
vidual proteins and protein complexes recombinantly for
structural analysis. Such structures are and will continue
to be invaluable for the interpretation of cryoET data. In
this incarnation, dynamics and other phenomena can

complicate analysis but at least the identity of the study
subject is unambiguous. Of course, the set of proteins
www.sciencedirect.com
(and other molecules) required for such experiments
can only be determined following a substantial (often
decades) investment in biochemistry. In some cases, a

shortcut can be taken by purifying complexes from their
native source e and of course, this was the primary
strategy taken in the first decades of structural biology.
During that time, only abundant and impeccably
behaved proteins could readily be targeted. In contrast,
the modern availability of gene editing tools allows the
insertion of affinity tags at endogenous gene loci, greatly
facilitating the purification of less abundant complexes,
even without full prior knowledge of their composition.

Between these two extremes lies a Goldilocks strategy

for sample preparation: the use of unpurified cell ex-
tracts from which single-particle cryoEM data can
simultaneously be obtained on multiple proteins and
complexes that are likely to be present in close-to-native
states (Figure 3). This approach promises to bridge
in vitro and in cellulo structural biology, accelerating the
Current Opinion in Structural Biology 2024, 87:102843
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accumulation of reference data for the interpretation of
in cellulo structural data [25]. For example, the cryoEM
and integrative structural analysis of keto-acid dehy-
drogenase complex family members (i.e., the oxogluta-
rate [26] and pyruvate dehydrogenase [27,28]
complexes) revealed the presence and locations of
several previously unseen subunits. Notably, these
studies revealed differences in stoichiometry and sym-

metry for several subunits, compared to a recent high-
resolution structure of a related subcomplex [29]. This
observation demonstrates how data from ‘raw’ cell ly-
sates can add value beyond what can be obtained from
purified recombinant complexes and brings us closer to
the interpretation of in cellulo images.

Extracts can thus be used as a resource to derive
structures of biomolecular complexes in a parallel
manner without purification [30e35]. Considering that
thousands of proteins are retrieved in such extracts [28],

a possibility exists to resolve hundreds of complexes
within the extracts. It is also likely that the addition of a
modest level of fractionation would simplify image
analysis, particularly if combined with the use of mass
spectrometry to identify the composition of each frac-
tion. This approach may prove particularly valuable for
rarer or substoichiometric complexes, which will provide
significant challenges for structural biology in cellulo.

Along similar lines, Jijumon et al. combined light mi-
croscopy, cryoEM, and functional analysis of microtu-

bules in lysates to systematically characterize 45
microtubule associated proteins (MAPs), some of which
had not been observed previously [36]. This study
developed a novel approach to analyze microtubule-
associated proteins using lysates of mammalian cells,
uncovering activities of MAPs that lead to unique
microtubule behaviors such as coiling, hook formation,
and liquideliquid phase separation (which initiates
microtubule branching). Such methodological break-
throughs underscore the value of working with lysates,
and the potential for higher resolution cryoEM models
derived from such samples to be placed into the context

of the intact parent cells is clear.

Overall, lysates strike a balance between throughput,
achievable resolution and sample complexity that make
them a valuable staging post between the highest res-
olution cryoEM of purified proteins and the fully native
state represented in cryoET.
Progress in the identification of structural
signatures
In all the approaches discussed above, the molecular
identities of the captured structural signatures are un-
known. Unfortunately, there is currently no mass spec-
trometry method to combine with cryo-ET or cellular

data so that each protein or complex in an image can be
Current Opinion in Structural Biology 2024, 87:102843
identified. Indeed, it is even a considerable image
processing challenge to group distinct views of chemi-
cally similar particles when only a small number of such
particles exist in a sample. In cell extracts, cross-
correlation of mass spectrometry data with structural
signatures can be performed [28], but again, unambig-
uously identifying the observed structural signatures is
not trivial and has been covered elsewhere [37].

To begin to address these challenges, new algorithms
that integrate artificial intelligence for the analysis of
cryoEM maps have been reported. Software such as
DeepTracer [38,39], ModelAngelo [40] and findMySe-
quence [41] allow tracing of a protein backbone onto
high-resolution density maps with impressive results.
For example, ModelAngelo was able to build >100,000
residues (of the total of 158,000 deposited in the PDB
for the monomeric form) into the 3.3 Å map of the algal
phycobilisome structure described above. Currently,

however, these methods typically require high-
resolution data, which are challenging to obtain from in
situ studies or studies of cell extracts. Related methods
that are better suited to lower resolution data are also
being reported, such as the systematic fitting and
scoring of AlphaFold models from the organism’s pro-
teome [42,43], or the tracing of backbones combined
with the varying of amino acid identities, as described
for findMySequence [41] with cryo-EM maps derived
from native cell extracts [30]. Overall, a range of new
experimental and computational tools are being actively

developed to allow the community to interpret density
maps across different resolutions.

However, with advances in spatially resolved mass
spectrometry, it is conceivable that this hurdle might
be addressed.

Integration of crosslinking for structural
analysis of in-cell complexes
Of all of the other experimental methods that could be
brought to bear on the field of structural cell biology,
crosslinking combined with mass spectrometry (XLMS)
is perhaps one of the most likely to provide data that are
complementary to that contributed by electron micro-
scopy or X-ray crystallography in a closer-to-
native environment.

XLMS has come to prominence for its ability to provide
residue-specific proximity information for individual
proteins or purified protein complexes. Such informa-

tion is particularly valuable for complexes that have not
proven amenable to traditional structural approaches
[44], such as the nucleosome remodelling and deace-
tylase complex [45], but XLMS has also been used to
assist in the placement of complex subunits or domains
into moderate-resolution cryoEM maps [46e48] or to
inform on complex stoichiometry and protein confor-
mation and dynamics [49,50]. The modest sample
www.sciencedirect.com
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requirements and high-throughput nature of the
method has inevitably led to applications with an eye to
system-wide discovery and again the advent of Alpha-
Fold has opened new horizons in the field. One study
described XLMS analysis of a set of four organellar ly-
sates, which yielded w28,000 crosslinks across 4,000
proteins, identifying>2,000 unique protein interactions
[51]. Concurrent AlphaFold analysis demonstrated the

power of XLMS to discover new interactions and to
corroborate AlphaFold predictions [51], a strategy that
should have a significant impact in the interpretation of
the complex structural datasets described above. It was
also suggested that data of this type could also be
directly integrated into AlphaFold predictions: an idea
that was quickly realized with the development of
AlphaLink [52]. Modelling with restraints can be
performed with traditional methods, such as
HADDOCK [53], but, recent, AI-only algorithms open a
new avenue for proteome-wide predictions [54,55].

Whereas the study from Bartolec et al. closely aligns
with the cell extract cryoEM approach, other groups
have pushed XLMS closer to the cryoET realm by car-
rying out the initial chemical crosslinking step in living
cells [56,57]. For example, the Rappsilber and Stülke
laboratories integrated experiments and AlphaFold to
gain insight into bacterial proteineprotein interactions
(PPIs) [58], directly accessing the proteome in its
native context. Recently, XLMS identified transcription
elongation factors NusG and NusA which are at the

interface of the ribosome and the RNA polymerase in
the in situ characterized expressome complex [59].
These XLMS data were visualized within the in situ
cryoET structure of the expressome from the human
pathogen Mycoplasma pneumoniae.

The differential abundance of proteins and complexes
in the cell represents a significant challenge for XLMS.
For example, w60% of the w14,000 XLs observed in
Wheat et al. mapped to 3 protein interaction networks,
including the histone, chaperonin and ubiquitin-
proteasomal networks [57]. In the future, depletion of

such complexes (e.g., by the use of antibodies or the
introduction of endogenous epitope tags) could increase
the depth of coverage achievable in proteome
wide studies.

A question that hovers over every high-throughput
analysis is that of false positives and XLMS is likely no
exception to this concern. Howmany XLs identified in a
proteome-wide XLMS experiment report on ‘true’ in-
teractions? It is difficult to precisely estimate this
number, given that the experiment has been set up

explicitly to identify novel interactions. Nevertheless,
>90% of the XLs observed in our recent XLMS analysis
of organelle lysates connected proteins already known to
interact, meaning that a maximum of 10% (likely much
less) might be false positives. Additional confidence
www.sciencedirect.com
could be obtained through the creation of a searchable
database that houses all XLMS data; such a database
could also harvest the ever-increasing range of experi-
mental (e.g., high-throughput gene knockout and IPMS
datasets) and computational data (e.g., gene ontology
analysis, AlphaFold) to provide probability estimates for
a newly identified interaction. Resources such as Bio-
GRID already organize much of this information and are

accessible through an API.

The more complex a sample becomes, the more chal-
lenging the data analysis, and XLMS is no exception.
Coverage in the studies above was typically only one or a
handful of XLs per interaction, enough to corroborate an
AlphaFold prediction or experimental data, but not to
provide deep interrogation of the interactome (for
example, the Human Reference Interactome map con-
tains w53,000 interactions) [60]. However, the relent-
less improvements in MS hardware combined with

combinations of more sophisticated crosslinkers, e.g.,
photocrosslinkers, and data analysis packages will
continue to expand the boundaries of what can be
achieved with this approach.
Beyond understanding proteins and protein
complexes
Although the primary focus of this article has been pro-
teins and protein complexes, it is of course the case that
every cell contains a plethora of molecules ranging from
individual ions to chromosomes with molecular weights
of 100 billion Daltons. These molecules are significantly
underrepresented in the known landscape of structural
cell biology e in many cases because their conformations
are not as well-defined as those of globular proteins. Even
within the protein realm, membrane proteins still pose a
challenge (despite advances in cryo-EM), and advances
in solubilizing agents would accelerate structural cell

biology of membrane proteins. For example, native lipid-
bilayer nanodiscs are critical for retrieving endogenous
protein complexes [61] but improvements are still
needede e.g., co-polymer nanodiscs of specific diameters
that may span 10e500 nmeas is expansion of their uti-
lization, e.g., in capturing membrane-associated proteins
as well. As noted above, another difficult issue is that of
intrinsically disordered proteins, which will likely
continue to be largely recalcitrant to crystallographic and
EM analysis. Although NMR spectroscopy is perhaps the
best suited method to probe such polypeptides, the

method is limited in the complexity of the system that is
amenable to detailed analysis. This is perhaps an area
where computational approaches such as coarse-grained
molecular dynamics can make a significant contribution
in combination with experimental (such as XLMS) and
bioinformatic restraints.

Available implementations of AI structure prediction
programs have also largely focused on proteins,
Current Opinion in Structural Biology 2024, 87:102843

www.sciencedirect.com/science/journal/0959440X


Figure 4

(a) Integration of multi-scale structural data – from (A) in vitro to (C) in cellulo. (b) Cell extracts from the native source can act as a bridge to connect
observations across scales. Note, that even if these methods are seamlessly integrated, cellular dynamics, protein complex dynamics, non-polypeptide
chemical species, and disorder, are still out of reach to experimentally probe and integrate.
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although a first implementation for the prediction
protein-DNA interactions has recently been described
in RoseTTAFoldNA [62]. Otherwise, co-factors and

hydration layers have so far proven extremely chal-
lenging to define or predict at large scale, even though
AlphaFill can effectively model co-factors by homology
[63]. To date, AI algorithms that strive to predict
structures beyond individual polypeptide chains have
not performed at the same high level, but this is clearly
an area of intense interest given the success of the
protein-only programs. The training of AIs for the
prediction of protein-small molecule complexes is
hampered by the much smaller training set available in
the PDB and the vast chemical space of small mole-

cules; in this regard, it would be enormously valuable
for the entire community to have access to the (most
likely) hundreds of thousands of structures of protein-
small molecule complexes that sit quietly behind the
walls of commercial organizations. Therefore, defining
protein complexes and their higher order assemblies
Current Opinion in Structural Biology 2024, 87:102843
with other “molecules of life” currently remains a
somewhat distant goal even if Alphafold 3 [64] is re-
ported to predict those with relative success.
Conclusions
What are the prospects for a structural description of a

cell? If we consider this question from the perspective of
the first people who stared down a microscope and saw
individual cells, one could argue that we are there
already. Through the combination of the dazzling array
of cellular, molecular and computational techniques that
have been developed in the past 80 or so years, only
some of which we have touched on here, we have
developed an incredible wealth of knowledge regarding
the compositions, locations, quantities and structures
that together make a cell what it is.

As our understanding has become more sophisticated,
however, the goalposts have shifted. There is clearly a
www.sciencedirect.com
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long way to go if we seek what could be thought of as a
PDB entry with the title “HEK293 cell”. Nevertheless,
the pace of development has increased rather than
slowed in the last 10e20 years e perhaps most promi-
nently the convergence of cryo-electron microscopy e
and artificial intelligence has dramatically expanded our
access to structures of enormous complexity. Combina-
tion of deep learning approaches to identify structural

patterns in cellular tomograms, cellular micrographs or
images from cell extracts, and macromolecular identifi-
cation methods that can cover different resolution re-
gimes (augmented by AlphaFold and its predicted
complexes, e.g., with AlphaPulldown [65]) are expected
to transform structural cell biology (Figure 4). This is
because the integration of various methods across reso-
lution scales will harvest both spatial information but
also the local environment of macromolecular complexes
within the cell. Cryo-EM and AI are also benefiting from
hardware advances in GPU-based computing, which are

greatly expediting the analysis and management of vast
amounts of data.

Moreover, integrative structural modeling, a technique
that seeks to amalgamate diverse data sources into
cohesive models, has substantial promise for bridging
the gap between individual structures and cellular as-
semblies, though there is a need to establish standard-
ized accuracy and quality criteria to gain a firmer
foothold. This type of approach is likely to be crucial for
developing a systematic approach to visualizing cryo-

electron tomograms beyond merely pinpointing well-
known and abundant biomolecules. Along the same
lines, the future demands a greater availability of stan-
dardized formatting and extensive data not only for cryo-
electron tomography and related techniques but also for
various other types of biomolecules. In this context,
open-access databases like PDB, EMDB, PRIDE,
Uniprot, EMPIAR, AlphaFold-DB, NAKB, STRING,
and similar repositories will play a behind-the-scenes yet
pivotal role in eventually enabling the comprehensive
visualization of biomacromolecules in their natu-
ral context.

And beyond a static snapshot of the cell, any structural
representation of the cell must ultimately incorporate
motion: protein conformational dynamics from intrinsi-
cally disordered regions and corresponding motions from
all other molecules in the cell, not to mention diffusion
and directed motions (e.g., of motor proteins). Here
perhaps more than anywhere, we await gains in
processing power e perhaps when quantum computing
becomes a reality. There is thus no concern that struc-
tural biologists, computer scientists and hardware in-

novators in this space will be out of business any
time soon.
www.sciencedirect.com
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