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Simple Summary: This work advances colorectal cancer (CRC) metastatic prognosis by identifying
morphological metastatic markers from image processing of atomic force microscopy (AFM) images of
CRC histological sections. High orders of variograms of residuals of Gaussian-filtered images define
metastatic/non-metastatic thresholds with 97.7 nm spatial resolution. The metastatic/non-metastatic
differentiation defines irreversible hierarchical and complexity levels.

Abstract: Early ascertainment of metastatic tumour phases is crucial to improve cancer survival,
formulate an accurate prognostic report of disease advancement, and, most importantly, quantify
the metastatic progression and malignancy state of primary cancer cells with a universal numerical
indexing system. This work proposes an early improvement to metastatic cancer detection with
97.7 nm spatial resolution by indexing the metastatic cancer phases from the analysis of atomic
force microscopy images of human colorectal cancer histological sections. The procedure applies
variograms of residuals of Gaussian filtering and theta statistics of colorectal cancer tissue image
settings. This methodology elucidates the early metastatic progression at the nanoscale level by
setting metastatic indexes and critical thresholds based on relatively large histological sections and
categorising the malignancy state of a few suspicious cells not identified with optical image analysis.
In addition, we sought to detect early tiny morphological differentiations indicating potential cell
transition from epithelial cell phenotypes of low metastatic potential to those of high metastatic
potential. This metastatic differentiation, which is also identified in higher moments of variograms,
sets different hierarchical levels for metastatic progression dynamics.

Keywords: nanoscale metastatic prognosis; colorectal cancer tissue; AFM imaging; variogram hierarchy

1. Introduction

An estimated 19.3 million new cancer cases and almost 10.0 million cancer deaths
occurred in 2020 worldwide [1], and metastasis is the leading cause of mortality. Tumour
metastasis is the migration of cancer cells from the primary tumour cores to the lymph
nodes, tissues, or distant organs. Metastasis is responsible for 90% of colorectal cancer
(CRC) deaths; therefore, early diagnosis is critical for patient survival. Metastasis is a
complex process that involves morphological adjustments and the attachment of cancer
cells to other cells and the extracellular matrix (ECM). It represents a key hallmark [2]
of malignance’s progression towards a higher pathological state. Therefore, indexing
assessments of the metastatic state and its early prediction is fundamental to enlighten
cancer progression, improve early cancer prognosis, and develop therapeutic schemes [3].
Tissue microenvironmental factors, including stiffness and topography (the nuclei’s shapes,
morphology, and texture specificity), contribute to the targeting preferences of metastatic
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cancers [4–7] because biological and mechanical/topographic parameters are associated
with cancer cell proliferation, migration, and metastasis [8,9]. Cancer cells regulate their
stiffness to match the ECM local environment by adjusting their viability in different ECM
structural proteins’ complexes and topographical environments [10].

Metastasis of variable percentages may arise in all stages, indicating that common
histological and cytological findings are necessary but insufficient to identify high-risk
characteristics and predict metastatic phases. Likewise, to improve patients’ survival, it
is mandatory to ascertain the tumour’s stage accurately, formulate a universal prognostic
report about disease progression, and, most importantly, identify the metastatic phase
and heterogeneity of primary cancer cells as early as possible [11]. Even though the
latest CRC-TNM classification protocols of regional lymph nodes are considered, and
each pathological stage is further subdivided [12], early stage and novel classification
schemes are needed; therefore, this research aims to establish arithmetic biomarkers for
early and reliable tumour diagnosis and metastasis prognosis. The correlation between
metastasis and tumour histological alterations was recognised in the early mid-nineteenth
century. Since then, optical and electronic microscopy has been applied for routine cancer
diagnostics through visual interpretation of ultra-thin, two-dimensional tissue sections,
which histopathologists use to decide whether tissue regions are cancerous and to classify
the malignancy level [13].

Still, diagnosis and classification of cancer are operator-dependent, and thus, they
are imperilled to error. In addition, negative factors include the inherent limitations of
magnification, field of view, contrast, and the small focal depth of optical systems [14].
Consequently, in addition to optical imaging, state-of-the-art histological image analysis
software and texture algorithms exploiting the microscopic variations of cells’ shapes and
tissue morphologies are needed for early and reliable prediction of metastasis. Along these
lines, a novel methodology of probing the mechanics of tumours emerged as a supportive
method to find the link between the mechanical properties of single tumour cells and
their metastatic potential [15–17]. However, although several techniques exist, including
atomic force microscopy (AFM) [4,18–20], to measure the mechanical properties of single
cells, information on the mechanics of tumour cells in the ECM is missing because most
measurements are made on cultured tumour cells [21]. Moreover, each method has a
particular set of parameters that do not consider patient-to-patient variations, which is an
additional drawback in comparing different studies.

Machine vision and learning methods were also applied as complementary approaches
to microscopic histopathological examination and molecular-based approaches for cancer
prediction and prognosis [22,23]. The established digital histopathology image analysis
technique is based on tissue image classification and tiny segmented structures, including
nuclei and cells [24]. However, machine learning still experiences numerous technical and
organisational challenges and limitations because of the complexity of tissue morphology,
tumour heterogeneity, and the diversity of shapes, locations, and sizes of tumour segmen-
tation. In addition, developing accurate and efficient algorithms is still challenging [22].

Likewise, the mathematical modelling and dynamics of complex natural systems,
including tumour advancement [25,26], aim to characterise architecture and decode spatial
and temporal complexity and heterogeneity commonly appearing in nature [27]. Fractality,
complexity, and structure statistics discriminate tags suitably from Euclidean morphometric
measurements (e.g., length, volume, and density) [28], and several methods were developed
to study physical entities in many different contexts [29]. For example, the generalised
method of moments (GMM) is viewed as an extension of z-height correlation functions.
Variograms are also used extensively in geology and medicine [30] to quantify images’
spatial variability and correlation distances. A variogram expresses the expected square
difference between two data values separated by a distance-vector, e.g., grayscale values
between pixels in optical microscopy or z-height values in AFM images. Overall, one- or
two-dimensional variograms (1D or 2D) are visual expressions of the spatial correlation of
image points.
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Variograms are used in diagnosis, including spatial tissue displacement of ultrasound
elastography in areas surrounding needles, image-guided neurosurgery, non-subjective
evaluation of chromatin in cell proliferation and apoptosis, the magnetic resonance of 3D
brain structural changes, and spatial autocorrelation stiffness differences between aortic and
pulmonary valve interstitial cells. In addition, variograms, among other tools, are applied
to 2D malignant breast tissue images [31], anticancer treatments [32], and differentiation
between melanomas and normal skin tissues [33].

Although low spatial resolution optical imaging utilises variograms [34], an early
cancer prognostic tool implies tissue structural differentiation at the nanoscale level [35].
However, a reliable, label-free, non-invasive approach for identifying and quantifying
nanoscale metastatic differentiation on conventional histological sections is challenging [36].
In this direction, AFM is suitable for non-destructive 3D imaging of cells and tissues with
nanometric resolution [16,37]. Primarily, the AFM-based single-molecule method provides
unique biomolecular-level insights with sub-nm resolution in near-native conditions into
molecular properties distributions and identification of existing subpopulations [38]. So
far, few AFM studies have analysed formalin-fixed and paraffin-embedded (FFPE) cancer
histological tissues because of diagnostic and prognostic constraints [39,40]. In histopathol-
ogy image analysis, second-order effects and lacunarity (distribution, size of gaps between
cells) [41] were proposed as marking factors. The correlation between the fractal dimension
of AFM images and the z-scale factor serves as a mechanical mark of human lung carci-
noma [42]. Analysis of the AFM adhesion of cells [43] reveals that fractality differences are
evident when premalignant cells transform into cancerous cells [44].

Variogram analysis is based on the hypothesis that images’ statistical means and
variances are independent of their pixels’ locations. In addition, statistical mean and
variance commonly bear comparable values for entities in similar groups, such as the
different sets of metastatic and non-metastatic CRC AFM images of histological tissues.
Domain size Gaussian filtering (DSGF) variograms [30] differentiate similar but different
hierarchies and complexity levels, e.g., dissimilar cognitive, memory, and functionality
dynamic systems [45].

Small biological features discriminate AFM images of metastatic/non-metastatic CRC
tissues in this work. A significant sensitivity improvement in differentiating metastatic/non-
metastatic stages in CRC cells was obtained by applying moment variograms of residuals
of Gaussian filtering and theta statistics [46] in 50 µm × 50 µm AFM cancer histological
images from five different patients (three metastatic and two non-metastatic). Likewise,
AFM image theta statistics incorporate inclination histograms of tiny planar segments of
CRC histological sections. Theta distribution skewness can also differentiate the signatures
of different hierarchical groups as metastatic and non-metastatic tissues.

Furthermore, towards establishing early quantifying markers of metastatic phases,
the differentiation between metastatic and non-metastatic tissues was approached with
rescaled range, surface statistics, and phase analysis in AFM imaging. The results were
compared with those from variograms and theta statistics. Noticeably, the novelty and
state-of-the-art of the current work are grounded on improving metastatic differentiation
by higher moments of variograms.

This tactic aims to provide insight into metastatic hierarchical levels and the dynamics
of metastatic evolution by diagnosing the malignant condition of suspicious cells (typically
a few) not identified via optical microscopy when subtle signs appear. We sought to identify
early tiny morphological changes indicating potential cell transition from an epithelial
phenotype typical of cells with low metastatic potential to a mesenchymal phenotype that
marks high-mobility cell features and provides quantifying universal metastatic indexes
and critical thresholds.
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2. Materials and Methods
2.1. Histological Tissue Preparation

CRC human histological tissues were prepared at the University Hospital “Federico II”
in Naples, Italy and labelled using anonymous numerical codes. Human tissues were han-
dled and prepared following the Helsinki protocol (https://www.wma.net/wp-content/
uploads/2016/11/DoH-Oct2008.pdf, accessed on 9 July 2008). The tissue samples were
labelled (1) according to the tumour site (right colon, transverse, left colon, or rectosigmoid),
(2) the pathological classification (Cancer Control UICC, 2017, T, N, or M), (3) the vascular
hematic, vascular lymphatic, and perineural invasion, and (4) the surgical resection margin
status. Necrosis, neoplastic cellular percentage, desmoplasia, and tumour-infiltrating lym-
phocytes were assessed using optical microscopy. The mucinous acellular component was
categorised as absent (<1%) or present (≤50% or >50%).

The tumour histological sections were collected on glass slides in FFPE blocks. Before
AFM imaging, they were dewaxed at 60 ◦C. Then, they were washed for 300 s in three
steps with xylene, and xylene traces were removed in three washing steps in 100% ethanol
for 300 s each time. After that, slides were further washed in 95% ethanol for 300 s and
distilled in water once again for 300 s. Samples were stained with hematoxylin solution
according to the instructions of the manufacturer, Mayer (Sigma Aldrich Chemie GmbH,
Steinheim, Germany, 1.044 grml−1 at 20 ◦C), and dried in the air for about 600 s at 20 ◦C.

2.2. AFM Image Analysis

Eighteen fixed histological tissues (eleven metastatic and seven non-metastatic) were
imaged with Innova AFM (Bruker/Veeco, Inc., Santa Barbara, CA, USA) operating in
tapping mode with a phosphorus (n)-doped silicon cantilever (RTESPA, Bruker, Madison,
WI, USA) with a nominal tip diameter of 8–10 nm and a nominal spring constant of 40 N/m
at a 300 kHz resonance frequency.

Surface image quality was optimised by lowering the scan rate to 0.2 Hz. All images
were acquired with 50 µm × 50 µm scan sizes, 512 × 512 data point resolution, and
a pixel size of 97.7 nm. In addition to height, amplitude and phase images were also
recorded. The AFM was installed on a vibration isolation table (minus k technology BM-10,
Inglewood, CA, USA) to compensate for regular environmental vibrations and placed
inside an acoustic enclosure (Ambios technologies Isochamber, Santa Cruz, CA, USA) for
thermal and building vibration isolation. The AFM imaging was performed in air at a
constant ambient temperature.

2.3. Histological Tissue Optical Analysis

Before AFM imaging, optical microscopy was used for metastatic identification. First,
the paraffin-stained CRC histological sections were placed under a transmitted light optical
microscope (Primovert microscope, Carl Zeiss Co. Ltd., Oberkochen, Germany) with
magnifications of 4×, 10×, 20×, and 40×. Then, the AFM probe was positioned in the
identified image areas.

2.4. Gaussian Filtering Residuals RMS Deviation

A 3D Gaussian filter was applied to the original image for each AFM image. The
Gaussian cubic filter size (kernel) was set to 31 pixels (px) with a standard deviation σ of 5 px
in every dimension. The residuals of the Gaussian filter (a high-pass filter that represents
the small-scale roughness of the surface) consist primarily of the spatial frequencies below
the cut-off wavelength (6σ + 1 = 31 px or ~3 µm, 1 px = 97.66 nm for 512 px × 512 px image
resolution), with some leakage of higher spatial frequencies. The statistical measure of the
height differences for all possible point pairs of an area at a particular scale, the root mean

https://www.wma.net/wp-content/uploads/2016/11/DoH-Oct2008.pdf
https://www.wma.net/wp-content/uploads/2016/11/DoH-Oct2008.pdf
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square (RMS) deviation D(h), was determined for each lag vector h = (±v,±p) and then
scaled with the lag vectors’ magnitude using the equations below:

D(h) =

√√√√ 1
N

l−v
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i=1

l−p

∑
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[z
(

xi, yi)− z
(
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)]2
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where l stands for the size of the image and N is the number of sample points separated by
|h| =

√
v2 + p2.

The RMS deviation as a function of lag vectors in all directions is depicted in 2D or 1D
plots (variograms).

One-dimensional plots describe the RMS deviation between all points spaced apart by
h =

√
v2 + p2, alternatively called empirical or experimental variograms/semivariograms.

The empirical variograms were calculated as the average of the square differences between
the values z

(
xi, yi), z

(
xi+v, yj+p

)
for all pairs of locations that fall within length intervals,

h (lags).
The sill value in variograms depicts zero correlation of lag vectors, visualised with

variograms’ flattening off. The analysis was made for three different image resolutions, 512,
256, and 128 px per axis, and three different Gaussian filtering standard deviation values:
2.5, 5.0, and 10.0 px.

2.5. Moments of Gaussian Filtering Residual Variograms

Various Gaussian filtering residual variogram moments were calculated as an exten-
sion of the previous method. For q = [0.5, 1, 2, 3, 4, 5], the generalised variogram γ(h, q)
was evaluated.

γ(h, q) =

{
1
N

l

∑
i=1

l

∑
j=1

[z
(

xi, yi)− z
(

xi+v, yj+p

)]2
}q

(5)

Then, the generalised variogram sill was calculated and compared for metastatic/non-
metastatic samples. The small order moments, 0 < q < 2, are responsible for the core of
the probability density function (PDF), whereas higher moments contribute to the tails
of the PDF. For q = 1, the generalised variogram is the empirical variogram. Comparing
generalised and simple variogram sills of metastatic/non-metastatic samples led to clear
differentiation. Theta statistics [46], rescaled range, surface, and phase and monofractal
analysis are presented in Supplementary Materials and Methods S1–S5.

3. Results
3.1. Optical and AFM Microscopy of CRC Histological Sections

Typical AFM CRC metastatic and non-metastatic histological tissue images extracted
during 2021 from five patients are shown in Figure 1.
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tracted during 2021 from five patients are shown in Figure 1. 

 
Figure 1. AFM images (12 images shown out of 18 total) of metastatic (m1.1–m3.2) and 
non-metastatic (nm1.1–nm2.3) human CRC histological sections. The first and second numbers re-
fer to the patient and sample, respectively (m and nm belong to five patients). The colour bar in the 
vertical y-axis represents the z-heights of the image area. 

The first and second indexing numbers are associated with the patient and sample 
parts. The visual differentiation between the metastatic and non-metastatic tissues in 
AFM images is unclear. On the contrary, optical images (4×, 20×, 40×) of hematoxy-
lin/eosin-stained CRC histological sections unveil metastatic/non-metastatic differentia-
tion, as shown in Figure 2. The cells of metastatic tissues, as shown in Figure 2a–b, were 
closely spaced compared to the non-metastatic ones, shown in Figure 2d–e. Nevertheless, 
optical microscope differentiation between metastatic and non-metastatic cells might be 
subjective, as can be also seen, in the similarity of the corresponding histograms Figures 
2c and Figure 2f, and, in some cases, dependent on the operator. 

 
Figure 2. Optical and AFM images and z-height distribution of human CRC histological metastat-
ic/non-metastatic sections. (a) Optical image (40×) of a metastatic section (0.17 mm × 1.73 mm). (b) 

Figure 1. AFM images (12 images shown out of 18 total) of metastatic (m1.1–m3.2) and non-metastatic
(nm1.1–nm2.3) human CRC histological sections. The first and second numbers refer to the patient
and sample, respectively (m and nm belong to five patients). The colour bar in the vertical y-axis
represents the z-heights of the image area.

The first and second indexing numbers are associated with the patient and sample
parts. The visual differentiation between the metastatic and non-metastatic tissues in AFM
images is unclear. On the contrary, optical images (4×, 20×, 40×) of hematoxylin/eosin-
stained CRC histological sections unveil metastatic/non-metastatic differentiation, as
shown in Figure 2. The cells of metastatic tissues, as shown in Figure 2a–b, were closely
spaced compared to the non-metastatic ones, shown in Figure 2d–e. Nevertheless, optical
microscope differentiation between metastatic and non-metastatic cells might be subjective,
as can be also seen, in the similarity of the corresponding histograms Figure 2c,f, and, in
some cases, dependent on the operator.
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Figure 2. Optical and AFM images and z-height distribution of human CRC histolog-
ical metastatic/non-metastatic sections. (a) Optical image (40×) of a metastatic section
(0.17 mm × 1.73 mm). (b) AFM image of metastatic tissue at the specified point of the image in
(a) (arrow). (c) The z-height distribution from the AFM image shown in (b). (d) Optical image (20×)
of non-metastatic histological section. (e) AFM image of non-metastatic tissue at the specified point
of the image in (d) (arrow). (f) The z-height distribution from the AFM image shown in (e).
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3.2. Variograms of Gaussian Filtering Residuals

The two-dimensional (2D) variograms of the residuals of the Gaussian-filtered AFM
images in Figure 1 of metastatic and non-metastatic histological tissues, along with all
directions and sustained closed elliptic and open contours, are shown in Figure 3.
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Figure 3. 2D RMS deviation spectra of metastatic/non-metastatic CRC histological sections of the
AFM images (12 images shown out of 18 total), Figure 2. The spectra were taken with a 3D Gaussian
high-pass filter. The RMS deviation images represent a statistical measure of the deviation of heights
within an area at a particular scale. The plot shows ellipse-like contours for small scales (100 nm–1 µm,
1–10.0 px) of equal-value RMS deviations for a given colour. Different RMS deviations from the
colour index are noticeable for metastatic/non-metastatic sections. Non-metastatic CRC sections
are characterized by higher values of RMS deviation within the closed and open areas compared to
non-metastatic ones.

The closed areas of the same colour characterise equal RMS deviations of small-size
spatial scale differences (small lag vectors). Spatial correlations with dimensions below
0.5 µm originate from small biological and structural tissue topologies. For a Gaussian
filter applied with standard deviation σ (px), the kernel box size along each axis is (6σ + 1)
(px), and the lag vectors’ zero limits (nugget) is 1 px, Figure 4a. For the standard deviation
σ of values between 2.5, 5.0, and 10.0 px, the magnitude of RMS deviation of closed
contour areas diverges for metastatic and non-metastatic phases, as shown in Figure 3 and
Supplementary Figure S1. Close to the centre of the 2D variograms, a relatively large RMS
deviation is the typical signature of non-metastatic tissues. Colour indexing reveals that the
mean RMS deviations of the metastatic and non-metastatic tissues are ~0.17 and ~0.27 µm,
respectively (arctic blue and lemon yellow, respectively, in Figure 3). Therefore, the RMS
deviation of the non-metastatic phase is noticeably more prominent than the metastatic
one. The differentiation between metastatic and non-metastatic tissues was also retained
for lower resolutions images of equal size (50 µm × 50 µm), e.g., for 256 px × 256 px and
128 px × 128 px image sizes and for values of σ between 2.5 and 10.0 px, as detailed in
Supplementary Figure S1.

The 2D metastatic and non-metastatic variograms were comprehensively interpreted
and quantified with 1D variograms, as seen in Figure 4a–f. The amplitude of lag vectors for
all directions is along the x-axis. Along the y-axis, the non-overlapping sill values γ(h) of
metastatic (red curves) and non-metastatic (blue curves) histological tissues represent lag
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vectors of zero correlation, with a relatively wide gap between the sill values of the two
histological groups.
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In addition, the sill values of non-metastatic tissues are constantly placed above the
sill values of metastatic ones, as seen in Figure 4d–f. Most importantly, for different
image resolutions (pixels per line) and the same σ (µm), the sill indexes were invariant
for the metastatic and non-metastatic groups, as seen in Figure 4d–f and Supplementary
Figure S2. The mean sill value of each metastatic and non-metastatic group (red and blue
lines parallel to the y-axis) was extracted from the average sill values of the associated
histological tissues, as shown in Figure 4d–f. The median value of the mean sill values of
metastatic and non-metastatic tissues defines the threshold lines (black line), above which
tissues are non-metastatic, and they are metastatic below the line. For different image
resolutions and identical σ values equal to 1 µm, the set of three different pixels and σ pairs,
(128 px × 128 px, 2.5 px (1 µm)), (256 px × 256 px, 5.0 px (1 µm)), and (512 px × 512 px,
10.0 px (1 µm)), retained almost constant threshold sill values equal to 0.571, 0.566 and
0.563 µm, respectively, as shown in Figure 4d–f.

Similarly, two sets of pixels and identical σ (µm) values, ((128 px × 128 px, 5 px (2 µm)
and (256 px × 256 px, 10.0 px (2 µm)) as well as ((256 px × 256 px, 2.5 px (0.5 µm) and
(512 px × 512 px, 5.0 px (0.5 µm)), retained almost the same threshold sill values equal to
0.899 and 0.896 as well as 0.318 and 0.314 µm, respectively; this is also shown in Supplemen-
tary Figure S2. Variograms of low-resolution images and large σ values bore wider gaps and
high uncertainty between the mean sill values of metastatic and non-metastatic variogram
groups (bands), as shown in Supplementary Figure S2. Relatively large σ values amplified
the uncertainty of information. The optimum metastatic differentiation for the current
experimental configuration was obtained at a resolution of 512 px × 512 px and σ = 5.0 px.
The threshold criteria for differentiating metastatic and non-metastatic tissues were success-
ful in 17 out of 18 samples, the exception being sample nm2.4, which was non-metastatic
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but appeared to have metastatic behaviour. However, by applying higher moments than
two (vide infra), the nm2.4 sample showed the correct non-metastatic behaviour.

3.3. Moments of Gaussian Filtering Residual Variograms

Gaussian filtering residual variograms of higher moments upsurge the differentiation
between metastatic and non-metastatic AFM images. For large scaling exponents q, the
difference between metastatic and non-metastatic tissues widens further than the lower
q values, as seen in Figure 5a–d. For example, the variogram sill value (512 px × 512 px,
σ = 5.0 px) for q > 3 is always higher than q < 3 in all non-metastatic samples compared to
the metastatic ones, as seen in Figure 5a–d and Supplementary Figure S3. Furthermore, the
nm2.4 tissue sample, the unsuccessful exception in the 1D variograms’ threshold criterion
that behaves as a metastatic one, now adopts the correct non-metastatic behaviour for
higher moments (q > 2), agreeing with the pathologist’s examination. However, for different
image resolutions and Gaussian filtering σ values, the moments that give the corrected
result for the nm2.4 tissue deviate, as shown in Supplementary Figure S4. Therefore,
the threshold criterion of metastasis varies between different moments. Consequently,
metastatic differentiation improved at higher moments.
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Figure 5. Gaussian filtering residual variograms of different moments q. (a) Gaussian filtering residual
variograms of q moments from 0.5 to 5.0 for the metastatic tissue m2.1. (b) The same as (a) for the non-
metastatic tissue nm2.3. (c) The same as (b) for the non-metastatic tissue nm2.4. Threshold criteria for
differentiating metastatic and non-metastatic tissues, Figure 4, do not function for the sample nm2.4.
(d) Gaussian filtering residual variograms of higher moments upsurge the differentiation between
metastatic (red) and non-metastatic (blue) groups of lines. For higher moments than two, the nm2.4
tissue sample shows the correct non-metastatic state.

3.4. Theta Statistics

Differences in theta distribution profiling [46] may be critically associated with bi-
ological interactions between metastatic tumour cells and the ECM, leading to tissue
differentiation. Other surface roughness characteristics in metastatic tissues (11 tissue
samples) led to notably broader inclination angle distributions than the non-metastatic ones
(seven tissue samples). Sharp peaks in the theta distribution diagram characterise the last.
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It appears that non-metastatic tissues are typified by structural surface regularity, which
is highlighted by the sharp peaks at higher theta values in Figure 6a. In contrast, random
patterns and de-oriented structures define the metastatic phase. Skewness and kurtosis
are differentiating measures in theta distribution. The skewness of theta distribution of
all metastatic sample AFM images, seen in Figure 6b, was positive, thereby agreeing with
Figure 6a.
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Figure 6. Theta statistics of eighteen metastatic/non-metastatic CRC histological sections. (a) Theta
spectra of metastatic (red)/non-metastatic (black) sections. The metastatic sections have one max-
imum value at 15◦. The non-metastatic sections have two maxima, the first at small angles (2◦)
and the second at high angles (>60◦). (b) Theta distribution skewness of metastatic/non-metastatic
CRC histological sections with negative and positive skewness values. One metastatic and non-
metastatic point almost coincide. (c) Theta distribution kurtosis of metastatic/non-metastatic CRC
histological sections.

In contrast, the skewness of non-metastatic tissues was negative (except for one sample),
owing to the sharp peaks on the right side of the graph. In addition, the kurtosis of theta
distribution deviated from zero in all AFM images for metastatic and non-metastatic samples,
leading to non-normal distributions as expected, as shown in Figure 6c. Although not in all
cases, the skewness and kurtosis of metastatic tissues tended to have relatively large values.

3.5. Surface Analysis

The standard statistical parameters of stained CRC histological sections of AFM
images were calculated; the details are shown in Supplementary Figure S5a–b. The z-height
distribution values of the AFM images of metastatic CRC histological tissues appear to
have a wider dispersion around a mean value and obtain far more extreme values than the
non-metastatic ones; the details are shown in Supplementary Figure S5a. In addition, the
RMS roughness values of metastatic tissues, represented by red squares, are smaller than
the circular black values for non-metastatic ones; the details are shown in Supplementary
Figure S5b. Contrary to 1D and 2D variograms and theta distribution, surface analysis did
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not clearly distinguish between metastatic and non-metastatic phases. However, there was
an underlying tendency towards lower roughness values for metastatic tissues compared
to non-metastatic ones, which is in agreement with the results from variograms and theta
analysis shown in Figures 3 and 4.

3.6. Rescaled Range Analysis (Hurst Exponent)

Rescaled range analysis/surface statistics were also applied along the same direction
for 512 lines of each tissue image; the details are shown in Supplementary Figure S5c–e.
First, each of the 2D AFM images was transformed into a 1D array by putting every line of
512 px one after another, and the Hurst exponent of each 512 px × 512 px array string was
calculated, as shown in Supplementary Figure S5c. The same analysis was also performed
for every line of each AFM image. Then, the mean value of the Hurst exponent of each
AFM image was calculated for all lines, and the histogram was plotted; this is shown in
Supplementary Figure S5d.

The Hurst exponents and their trends as extracted from the two algorithms were
dissimilar; this is shown in Supplementary Figure S5c–d. The differentiation is expected
because the two methods bear different correlations and connectivity between lines. The
distribution histogram of the Hurst exponent distributed between the 512 lines is shown in
Supplementary Figure S5e. There was considerable variation of the Hurst exponent when
changing the number of lines. The differentiation between metastatic and non-metastatic
tissues is unclear, despite shifting the distribution function to the right relative to the
maximum mean value for the metastatic tissues. The Hurst exponent does not differentiate
between metastatic and non-metastatic tissues. Rescaled range analysis as second-order
statistics usually provides insights for monofractal systems. However, metastasis is a
dynamic process that drives cancer to higher non-reversible hierarchical levels.

3.7. Phase Analysis

Because the phase images correlate with the topographical ones, the signal’s driving
frequency is associated with a phase shift owing to adhesion, stiffness, or friction. Therefore,
the standard statistical phase parameters of the stained CRC histological sections’ AFM
images were calculated. As for the AFM amplitude imaging, the z-height distribution of
non-metastatic tissues had a broader dispersion around the mean value; this is shown in
Supplementary Figure S6a. In addition, the RMS roughness values of metastatic tissues
were lesser than for non-metastatic ones; this is shown in Supplementary Figure S6b. Again,
there is no clear distinction between metastatic and non-metastatic tissues. Rescaled range
analysis was also applied for phase images; the Hurst exponent, shown in Supplementary
Figure S6c–d, and the Hurst exponent distribution were extracted between the phase lines,
which are shown in Supplementary Figure S6e.

As for the amplitude images of the Hurst exponent, the differentiation between
metastatic and non-metastatic tissues is unclear. However, surface and rescaled analysis
bear noticeable similarities despite limiting metastatic information.

3.8. Monofractal Image Analysis

Monofractal dimensionality (Df) of metastatic and non-metastatic tissues [28] was
calculated by using cube counting, triangulation, power spectrum, and partition algorithms,
as shown in Supplementary Figure S7. The cube counting and the triangulation meth-
ods, which are detailed in Supplementary Figure S7a,d, provided lower Df numbers for
metastatic tissues than the other two methods, which are shown in Supplementary Figure
S7b–c, where the fractal dimensionality of non-metastatic tissues is relatively more minor
than that of metastatic ones. Overall, the four algorithms have no clear differentiation
between metastatic and non-metastatic tissues.
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4. Discussion
4.1. The Intricacy of the Cancer Problem

Cancer is a multivariate and complex disease, and despite intense research start-
ing as early as the last century, it still represents a challenging issue. There are many
reasons for this. Over the years, clinical methods applied favourable average practices.
Nevertheless, cancer is highly heterogeneous even within the same cell and in similar
classes. Consequently, an overall positive average outcome does not translate to individual
positive results.

Moreover, despite the significant effort and the enormous resources devoted to cancer
research, it is still unknown why some drugs are more effective for some individuals than
others. Besides other critical issues, deciphering cancer growth, metastatic progression,
and migration at the nanoscale is vital for survival [47]. Likewise, metastasis shapes one
of the six crucial hallmarks of cancer [2]; the others include sustaining proliferating sig-
nalling, evading growth, suppression, and activating invasion. The intricacy is further
increasing because almost 12 years after the seminal paper of Hanahan and Weinberg [2],
four additional cancer hallmarks highlight the disease’s complexity, signalling that tradi-
tional approaches need new strings in their bows [48]. First, it is now well understood
that a novel interdisciplinary approach to the cancer menace is required, one where biol-
ogy, physics, and mathematics, in an integrated step, could illuminate the dark pathways
of cancer progression or even discover hidden physical laws of the phase transition be-
tween healthy and carcinogenic cells. Second, even if critical sporadic and uncorrelated
contributions to cancer research were made from different physics and cell biophysics
fields, their integration is still intermittent in cancer research. Third, the metastatic phase
is usually clinically validated with biomarkers. So thought, even when the diagnosed
metastatic phase is discovered with an optical histological examination of spatial resolution
less than 500 µm, it represents a late stage. Fourth, the multistep process of invasion and
metastasis mimics, under certain circumstances, a developmental process referred to as
the Epithelial–Mesenchymal Transition (EMT) [49,50]. EMT is a functional process that
allows a polarised epithelial cell, which normally interacts with basement membrane and
other epithelial cells, to undergo multiple biochemical and genetic changes that enable
it to assume a mesenchymal cell phenotype, which includes a thin and elongated shape,
enhanced migratory capacity, invasiveness, elevated resistance to apoptosis, and signif-
icantly increased production of ECM components [49]. The occurrence of a regulated
reverse process, the Mesenchymal–Epithelial Transition (MET) [49], which involves the
conversion of mesenchymal cells to epithelial derivatives, indicates a significant difference
with the phenomenon presented by carcinoma cells during invasion and metastasis. Indeed,
upon genetic deregulation of the structural and regulatory factors linked to the epithelial
phenotype during pathological EMT, carcinoma cells can concomitantly acquire multiple
attributes that enable invasion and metastasis because MET rarely happens in a controlled
way in the primary tumour tissue. Nevertheless, once seeded in distant tissues, metastatic
cells may partially or entirely activate MET pathways, enabling a few or even a single
metastatic cell to grow into a metastatic mass [51].

Therefore, the analysis of cell and tissue architectures may represent a method for
assessing the metastatic potential of cancer cells. Furthermore, the detection of EMT or
mesenchymal cells in primary CRC tissues, which may improve their metastatic prognostic
value, is possible because several marks associated with both mesenchymal and epithelial
phenotypes are known [52]. However, these analyses involve complex molecular biology ex-
ams, such as tissue microarrays, RNA and protein expression, immunohistochemistry, and
others, targeting multiple factors. Therefore, these exams’ complexity and high cost impair
their evaluation in standard clinical laboratories. Contrary to optical imaging of colorectal
cancer tissues with an image resolution of ~1.4 µm, as detailed in Supplementary Figure S8,
the basic idea of the work is to identify carcinoma cells in the primary tumour sites with
early morphological changes, which can indicate the activation of the EMT process. Indeed,
during EMT, the carcinoma cells lose their cell–cell junctions and move apart, generating
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tiny but significant histological and cytological changes detected only at the nanoscale level
with AFM with 97.7 nm image resolution, as shown in Supplementary Figure S9.

4.2. Variograms and Theta Statistics: Diagnostic Tools for Early Cancer Metastasis

The sill variogram values of metastatic CRC histological tissues from AFM image
processing for the three patients in this study were below 0.566, the threshold line for
image resolutions 512 px × 512 px and σ = 10.0 px (1 µm). For different configurations of
image resolutions and σ values, the metastatic threshold line could be adjusted accordingly.
The metastatic threshold line from variograms between the metastatic and non-metastatic
phases defines the borderline between patients’ death and extended survival. Importantly,
in the case of ambiguity, regarding the nm2.4 tissue, higher moments than 2nd-order
variograms remove any possible mixing between metastatic and non-metastatic tissues,
as shown in Figure 5 and Supplementary Figures S3 and S4. Contrary to the variograms
and theta-statistics, the p-value statistics verify that the rescaled range, surface, phase, and
monofractal analysis do not distinguish between metastatic and non-metastatic tissues, and
the correlation between metastasis and tissue mono-fractality is vague, as shown in Sup-
plementary Analysis S6’s two-sample t-test analysis and in Supplementary Tables S1–S3.
Indeed, during the transformation of single premalignant cells into cancerous ones [53], the
fractal dimensionalities do not necessarily imply the existence of fractal geometrical fea-
tures. However, the rational interpretation of variograms, theta statistics, and multifractal
analysis [54] revealed unforeseen but significant outcomes.

The sill values of primary tumour tissues that did not result in metastasis are higher
than those of cells triggering metastases, indicating a high dispersion of residuals within the
Gaussian filtering of z-heights along the x–y cell surface that is the signature of a complex
biological structure. It is expected that tissues with metastatic cells should bear lower sill
values due to high cell mobility and plasticity, ensuing small cell adhesion values. Indeed,
based on the EMT model, in primary tumour tissue, carcinoma non-metastatic cells still
present a degree of interactions through desmosomes, hemidesmosomes, and tight and
adherent junctions (epithelial phenotype) that make cell and, consequently, tissue structure
complex, as both have large sill values. On the contrary, metastatic cells, having lost the
majority, or even all, connections with other cells and the ECM, have comparably lower
sill values. Translating these observations into biological terms, we can affirm that in the
primary tumour tissue, non-metastatic cells still present an epithelial phenotype along with
an array of membrane proteins such as cadherins and integrins specialised in establishing
connections with the ECM; their sill values are higher.

Conversely, based on the EMT model, the primary tumour tissue’s metastatic cells
lost almost all ECM connections along with the corresponding membrane proteins (e-
cadherin, integrins, etc.). As a result, they shifted their phenotype towards mesenchymal
cells, presenting a smoother surface that lowered their sill score. Theta statistics also
confirm this conclusion. Interpreting these results into biological terms, we can assume
that the presence of epithelial cells, their adhesion receptors, and cell-cell and cell-ECM
interactions increase the theta distribution’s skewness. On the contrary, mesenchymal cells
deprived of several membrane proteins, relatively free to move and able to digest the ECM,
present surfaces with reduced amounts of roughness, which translates into a lower theta
distribution skewness.

By applying p-value statistics in second-moment variograms and the null hypothesis
that the mean sill values of metastatic and non-metastatic tissues are the same, the differenti-
ation between metastatic and non-metastatic tissues (p-value) is statistically significant with
a probability of 99.99999%. The differentiating confidence for higher-than-2nd-order vari-
ogram moments for metastatic and non-metastatic tissues is further improved. High-order
variograms of Gaussian residual filtering distinguish metastatic and non-metastatic tissues
by categorising a well-defined threshold. The reason is that Gaussian filtering differenti-
ates z-height features with sizes less than 97.5, 194.0, and 388.0 nm (for image resolutions
512 px × 512 px, 256 px × 256 px, and 128 px × 128 px, respectively). This result agrees
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with previous work [53], where microvilli, microridges, and the glycocalyx are responsible
for the pericellular brush surface geometry structure. AFM imaging includes information
from the cell’s surface, random cell volume cross-sections, CRC histological tissue encloses
and ECM. Therefore, Gaussian filtering differentiates small biological features between
metastatic and non-metastatic phases in the CRC–ECM system.

4.3. Cancer as a Dynamical Hierarchical Issue and Problem

In addition to the practical utility of variograms in cancer prognosis, grouping the
well-defined threshold sill lines for metastatic and non-metastatic CRC tissues has broader
implications in cancer research. Undeniably, the differentiation between the metastatic and
non-metastatic phases defines two hierarchies in the CRC cell–ECM system. Generally,
dynamical systems, such as cancerous ones, have structural (hardware) and functional (soft-
ware) connotations that form ensembles of successfully interacting nested sets and subunits
of variables and parameters. In addition, as the complexity of structural and functional
systems depends on the number of their components and interconnections, complexity
is inversely proportional to stability and degrees of freedom. Thus, it defines a particu-
lar hierarchical state (level). Furthermore, the systems afford a specific state–space–time
description with certain collective properties (e.g., statistical moments, convolutions, distri-
bution functions, and memory). From that state, during the evolution process across the
dynamical paths, the systems within “limited-time series” are commonly driven to lower
complexities with fewer degrees of freedom and, thus, to more stable states (high viability).

The dynamical systems evolve from lower hierarchical levels with many degrees of
freedom and high complexities to higher hierarchical levels with fewer degrees of freedom
and lower complexities. Besides structural hierarchies, the systems are characterised by
the formation dynamic. The higher levels receive selective information from the lower
levels through the cognition (memory) [55] of collective properties. In turn, they exercise
negative feedback control commands on the dynamics of the lower levels in their effort to
occupy successfully higher hierarchical levels. Therefore, interactive systems are charac-
terised by mutual “simulation”. One dynamic system, say, a non-metastatic one, tries to
simulate another with fewer degrees of freedom and higher stability (metastatic system).
Thus, a non-metastatic system will eventually occupy higher hierarchical levels of lower
complexity with higher stability. The opposite route, the evolution from higher hierarchical
levels to lower ones, requires the expenditure of additional information energy (entropy).
Therefore, in most cases, the reverse process is energetically unfavoured. Along these
lines, the selective differentiation between metastatic and non-metastatic groups evinces
the dynamic evolution of hierarchical carcinogenic states during disease progression [56].
This advancement ranges from lower carcinogenic hierarchical levels of higher complexity
and low stability (premalignant conditions) to higher ones that are less complex and stable
(metastatic forms). The heterogeneous chemotherapy results might explain the one-way
evolution dynamic and the non-reversibility and interchangeability of hierarchies. If the
hierarchical dynamic is deciphered, then cancer’s therapeutic protocols and their road
maps might change, as the two hierarchies should require different therapeutic protocols.
Within the above framework, perhaps, the unknown efficacy of next-generation non-polar
magnetic nanoparticles [57], functionalised with biodegradable and biocompatible poly-
mers [58], might have a positive effect on external cellular membrane functionality of
human CRC metastatic cells and histological sections [59].

5. Conclusions

The work presents a novel methodology for early nanosized (97.7 nm) identification
of metastasis from primary colorectal cancer histological tissues by processing AFM cancer
tissue images using second-order or higher variograms and theta statistics. Moreover, the
image processing algorithm includes rescaled range analysis, average z-height, RMS rough-
ness, phase spectra, and monofractal image analysis. Five patients, three metastatic and two
non-metastatic, and eighteen AFM images of histological cancer samples, eleven metastatic
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and seven non-metastatic, were used in the study. The sill values of variograms and theta
distribution skewness identify metastasis with 99.99999% and 99.99% confidence (p-value),
respectively. Variogram and theta statistics as well as metastatic differentiation, set different
irreversible hierarchical and complexity levels for the metastatic progression dynamic.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers15041220/s1, Analysis S1: Theta Statistics [46,60]; Analysis S2:
Rescaled Range Analysis [61,62]; Analysis S3: Surface Statistics; Analysis S4: Phase Spectra; Analysis S5:
Monofractal Image Analysis; Analysis S6: Two-Sample t-test Analysis; Figure S1: 2D variograms of the
residuals of the Gaussian filtered AFM images of 16 out of 18 metastatic and non-metastatic histological
tissues; Figure S2: Non-metastatic (blue lines) and metastatic (red lines) 1D variograms Variograms of
low-resolution images and large σ’s bear wider gaps and high uncertainty between the mean sill values
of metastatic and non-metastatic variogram bands; Figure S3: Gaussian filtering residuals variograms of
different moments (q); Figure S4: Variogram sill values for different image resolutions and Gaussian
filtering σ vs. scaling exponents q for metastatic (red) and non-metastatic (blue) tissues; Figure S5:
Standard surface statistical parameters and rescale range analysis/surface statistics of AFM images of
CRC histological sections; Figure S6: Surface statistical phase spectra of CRC metastatic (red squares)
and non-metastatic (black circles) tissue AFM images; Figure S7: Fractal dimension Df of images of CRC
metastatic (red squares) and non-metastatic (black circles) tissue AFM images were calculated with four
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Typical zoomed scanned areas 10 µm x 10 µm of AFM images of Fig.1 of metastatic (m1.2&m2.1) and
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filter sigma σ values (px). Mean sill values, standard deviation (StDev), standard error of mean (SE
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