

Received 28 March 2024 Accepted 24 June 2024

Edited by C. Hua, University of Melbourne, Australia

Keywords: crystal structure; Isororidin A; Roridin A; macrocyclic trichothecenes; *Myrothesium verrucaria*; roridoid; mycotoxin.

CCDC references: 2083096; 2279458

Supporting information: this article has supporting information at journals.iucr.org/c

Published under a CC BY 4.0 licence

Crystal structure of the cytotoxic macrocyclic trichothecene Isororidin A

Mostafa A. Asmaey,^{a,b} Dimitris A. Kalofolias,^c Maria-Despoina Charavgi,^c Ismail R. Abdel-Rahim,^d Evangelia D. Chrysina^c* and Dennis Abatis^a*

^aDivision of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece, ^bDepartment of Chemistry, Faculty of Science, Al-Azhar University, Assiut branch, Assiut 71524, Egypt, ^cInstitute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece, and ^dBotany and Microbiology Department, Faculty of Science, Assiut University, Egypt. *Correspondence e-mail: echrysina@eie.gr, abatis@pharm.uoa.gr

The highly cytotoxic macrocyclic trichothecene Isororidin A ($C_{29}H_{40}O_9$) was isolated from the fungus *Myrothesium verrucaria* endophytic on the wild medicinal plant 'Datura' (*Datura stramonium* L.) and was characterized by one-(1D) and two-dimensional (2D) NMR spectroscopy. The three-dimensional structure of Isororidin A has been confirmed by X-ray crystallography at 0.81 Å resolution from crystals grown in the orthorhombic space group $P2_12_12_1$, with one molecule per asymmetric unit. Isororidin A is the epimer of previously described (by X-ray crystallography) Roridin A at position C-13' of the macrocyclic ring.

1. Introduction

Macrocyclic trichothecenes (MTs) constitute the second major group (the other being the simple trichothecenes) of a class of highly functionalized sesquiterpenoid secondary metabolites, mainly of fungal origin, which are well known for their severe toxicity to both animals and humans (Grove, 2007; Shank et al., 2011; Wu et al., 2017). Most trichothecenes are at least tetracvclic, as they contain a spiro-epoxide group in the 12-13 position of the 'trichothecane' sesquiterpene skeleton. They also usually comprise a double bond at C9-C10; thus, they are considered as 12–13 epoxy-trichothec-9-ene derivatives [see (a) in Scheme 1]. In MTs, an extra cyclic diester or triester ring is connected to the trichothecene core skeleton at C-4 and C-15, making them pentacyclic macrolides. The presence of the spiroepoxy group, the $\Delta^{9,10}$ bond and the macrocyclic ring in the molecule appear to be crucial for their biological properties, which include antifungal, antimalarial, antivirus and anticancer activity (de Carvalho et al., 2015; Jarvis & Mazzola, 1982; McCormick et al., 2011; Wu et al., 2017). The MTs are further classified into the subgroups of the Roridoids, to which Roridin A and Isororidin A belong [see (b) and (c) in Scheme 1, respectively], the Baccharinoids, the Verrucaroids and the Trichoverroids, which are considered the biosynthetic precursors of the three former subgroups of MTs (Bräse et al., 2009).

There has been a series of articles since the 1980s concerning the elucidation of the configuration of the stereogenic centres of the macrocyclic ring of the MTs, especially C-6' and C-13' in the Roridoids (Jarvis *et al.*, 1982, 1987, 1996; Jarvis & Wang, 1999). The task was based mainly on NMR spectroscopy (despite the technical limitations of the method at that time), as well as chemical manipulations when there were adequate quantities available, aided – in rare cases – by

Table 1

NMR spectroscopic data for Isorc	oridin A [400 (¹ F	H) and 100 MHz ($^{(13}C), \delta \text{ ppm}]^a$
----------------------------------	--------------------------------	------------------	-----------------------------------

Position (Scheme 1)	¹ H NMR (J in Hz)	¹³ C NMR	COSY	HMBC	NOESY
2	3.74(d, 5.1)	80.4	3b	4, 5, 12	3′, 13a
3	b: 2.14 (overlap by $H-3'$)	35.7	2, 4	2, 4	
	a: 2.47 (dd, 8.2, 15.2)			2, 5, 12	
4	5.84 (dd, 4.5, 8.2)	76.0	3	2, 3, 5, 6, 12, 11'	11
5	Cq	50.5			
6	Cq	45.0			
7	1.87 (m, 2H)	21.3	8	6, 8, 9, 11	13, 14
8	a: 1.93 (d, 8.0)	28.7	7	6,7, 9, 10	
	b: 1.98 (m)				
9	Cq	141.7			
10	5.41(d, 5.4)	119.7	11, 16	6, 8, 11, 16	
11	3.72 (br d, 5.4)	68.5	10	7, 10, 15	4
12	Ca	66.4		· ·	
13	2.86(d, 4.0)	48.5		2, 5, 12	14
	3.05(d, 4.0)) -)	
14	0.81(s)	8.0		4, 5, 6, 12	2', 3', 15, 12'
15	4.32 (d. 12.2)	64.8	15	5. 6. 7. 1'	14
	4.46 (d. 12.2)			5. 6. 7. 11. 1'	
16	1.72(s)	23.3	10	8, 9, 10	
1'	CO	175.6		-, -,	
2'	4.04(d, 4.0)	76.7	3'	1'. 4'. 12'	14. 3'. 12'
3'	2.08 (m)	37.7	2'. 12'	1'. 2'	14. 2'
4'	1.58(m)	34.9	4'. 5'	3'. 5'. 12'	
	1.73 (m)		.,.	2'. 3'. 5'	
5'	3.50 (ddd 5.2, 8.7, 9.1)	70.9	4' 5'	3' 4' 6'	
-	3.58 (ddd 5.2, 9.6, 9.8)		.,.	_ , . , _	
6'	3.82(m)	84.6	7'. 13'	5', 7', 8', 14'	8'. 14'
7'	6.17 (dd 30 154)	142.3	6' 8'	6' 8' 9'	13' 14'
8'	7.60 (ddt 11.4 15.4 1.1)	126.8	7'9'	6' 9' 10'	14 3' 10' 12'
9′	6.75(t, 11.4)	145.5	8' 10'	7' 8' 11'	7'
10′	5.76(d, 11.2)	117.9	9'	8' 9' 11'	14
11'	$CO^{(u, 11.2)}$	168.1	,	0, 7, 11	11
12′	1.09(d.6.8)	15.1	3'	2' 3' 4'	14 2' 3' 8'
13'	3.69(m)	71.0	6' 14'	6' 14'	7' 8' 14'
14'	1 16 (d 6 4)	18.4	13/	6' 13'	6' 7' 8' 13'
	1.10 (0, 0.7)	10.7	10	0,15	0,7,0,15

Note: (a) the assignments were based on $^{1}H-^{1}H$ COSY, HSQC-DEPT and HMBC experiments, and recorded in MeOD- d_4 .

stereoselective synthesis and X-ray diffraction analyses. In 1982, Jarvis and co-workers isolated Roridin A and Isororidin A from a large-scale fermentation of Myrothesium verrucaria and resolved the relative configuration of Roridin A by X-ray crystallography. The absolute configuration of Roridin A was confirmed after oxidative cleavage of its hydroxyethyl moiety, which produced Verrucarin A, an MT whose absolute configuration had already been established (Jarvis et al., 1982). The ¹H and ¹³C NMR spectra of Roridin A and Isororidin A in CDCl₃ were almost identical, except for carbon C-6', which differed in the ¹³C NMR spectra by 1.1 ppm. The epimeric relation of the two fungal metabolites at C-13' was deduced indirectly by the selective hydrogenation of Roridin A and Isororidin A to their respective tetrahydro derivatives, and then oxidation of the C-6' hydroxyethyl group of these tetrahydro derivatives to an identical (in the ¹H NMR spectrum) corresponding methyl ketone (Jarvis et al., 1982). Even though Isororidin A was re-isolated a few times in subsequent years from different fungal strains and by different research groups, verification of its structure was performed only by comparison of the NMR data in CDCl₃ with those reported in 1982, but without submitting the NMR data. Isororidin A is one of the most cytotoxic metabolites among all compounds containing C, H and O, and was on the shortlist of the National Cancer Institute (NCI) for the most promising anticancer agents in the 2000s (Amagata et al., 2003; de Carvalho et al., 2015; Sy-Cordero et al., 2010). The mechanism of action of the macrocyclic trichothecenes is still underexplored, possibly due to their severe general cytotoxicity. However, there is evidence that MTs show large variations in both activity and selectivity against different cancer cell lines induced by alterations in their molecular structure. These findings indicate that MTs may still be considered as highly promising antitumour agents, as long as more detailed structure-activity relationship (SAR) and quantitative structure-activity relationship (QSAR) studies have been performed. For these studies, knowledge of the configuration and conformation of the MTs is undoubtedly critical (Wu et al., 2017; Zhu et al., 2020). In the current article, Isororidin A was isolated from the fungus Myrothesium verrucaria endophytic on the wild medicinal plant 'Datura' (Datura stramonium L.) and was characterized by 1D and 2D NMR spectroscopy. Its crystal structure is presented for the first time at 0.81 Å resolution.

2. Experimental

2.1. Isolation and crystallization

Isororidin A was isolated as a colourless solid (19.5 mg) after high-performance liquid chromatography (HPLC) using

a semipreparative C18 column eluted with a linear gradient mixture of water and methanol. The gross structure of the compound was elucidated on the basis of a detailed analysis of its 1D/2D NMR and high-resolution mass spectroscopic (HRMS) data. The full 1D and 2D NMR data recorded in CD₃OD are reported for the first time (see the Analytical data section in the supporting information and Table 1). The relative configuration of its chiral centres was deduced from a combined study of nuclear Overhauser effect (NOE) correlations and ${}^{3}J_{HH}$ coupling constants, and by comparison with the NMR data of other Roridoids having similar structures (Amagata et al., 2003; Jarvis & Wang, 1999). The absolute configuration of all its chiral centres was confirmed by the X-ray crystallographic analysis of its colourless needle-like crystals that were obtained after the slow evaporation of a solution in methanol from an NMR tube. Most of the Isororidin A crystals had morphological defects that may have led to twinned spots on the diffraction pattern and potential issues at the stage of processing and deconvolution. Therefore, a small fragment of an Isororidin A crystal, with the least morphological defects, was isolated and mounted on a litho loop to minimize the background contribution when exposed to X-rays. The loop was placed on the goniometer head and diffraction data were collected at 0.81 Å resolution.

(a) 12-13 epoxytrichothec-9-ene core

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Details of the geometry of the Isororidin A crystal structure regarding bond lengths (Å), bond angles (°), torsion angles (°) and the geometry of the hydrogen bonds [distances (Å) and angles (°)] are presented in the supporting information (Tables S1–S5).

Table 2	
---------	--

Experimental details.

Crystal data	
Chemical formula	$C_{29}H_{40}O_9$
M _r	532.61
Crystal system, space group	Orthorhombic, $P2_12_12_1$
Temperature (K)	100
a, b, c (Å)	9.2707 (4), 15.2236 (6), 20.0806 (8)
$V(Å^3)$	2834.0 (2)
Z	4
Radiation type	Cu Ka
$\mu \text{ (mm}^{-1})$	0.76
Crystal size (mm)	$0.08 \times 0.06 \times 0.04$
Data collection	
Diffractometer	Bruker APEXII
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2021)
Tmin, Tmax	0.673, 0.754
No. of measured, independent and	101717, 5548, 5338
observed $[I > 2\sigma(I)]$ reflections	, ,
R _{int}	0.055
$(\sin \theta/\lambda)_{\rm max} ({\rm \AA}^{-1})$	0.617
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.041, 0.109, 1.07
No. of reflections	5548
No. of parameters	349
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.34, -0.22
Absolute structure	Flack x determined using 2264
	quotients $[(I^+) - (I^-)]/[(I^+) +$
	(I^{-})] (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	-0.02(3)

Computer programs: APEX2 (Bruker, 2021), SAINT (Bruker, 2021), SORTAV (Blessing, 1995), SHELXT (Sheldrick, 2015a) and SHELXL2018 (Sheldrick, 2015b).

3. Results and discussion

3.1. Structural commentary

The crystal structure of Isororidin A, isolated from the ethyl acetate extract of the culture broth of the endophytic fungus M. verrucaria, after a series of chromatographic separations, is presented at 0.81 Å resolution and confirms the configuration at position C13'. Isororidin A crystallized in the orthorhombic space group $P2_12_12_1$ (No. 19). A data set was initially collected at room temperature at 0.81 Å resolution (Table S1 in the supporting information) and the calculated Flack parameter (Flack, 1983; Parsons et al., 2013) was 0.4 (4), which was not sufficient to assess the absolute configuration of Isororidin A. Therefore, a new data set was collected at 100 K. The crystal lattice and space group remained P212121, with unit-cell dimensions a = 9.2707 (4), b = 15.2236 (6), c = 20.0806 (8) Å and $\alpha = \beta = \gamma = 90^{\circ}$, and the Flack parameter calculated for this structure was -0.02 (3), confirming the absolute configuration of Isororidin A. The experimental details are summarized in Table 2 and Tables S2-S6 of the supporting information. The two experiments reveal no temperaturedependent phase change, as the unit-cell parameters are almost identical (Table 2 and Table S1). The measurement at 100 K resulted in an overall better data set with an improved R parameter and a higher precision Flack parameter. Therefore, the structure analysis that follows focuses on the structure determined at 100 K.

research papers

Table 3	
Hydrogen-bond geometry	(Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
$O7-H7\cdots O8^{i}$	0.84	1.94	2.761 (3)	167
$O8-H8\cdots O2^{ii}$	0.84	2.10	2.895 (3)	158
$C4-H4\cdots O1^{iii}$	1.00	2.55	3.467 (3)	153
$C13-H13B\cdots O9^{iv}$	0.99	2.65	3.490 (3)	143
$C7' - H7' \cdots O6^v$	0.95	2.62	3.473 (3)	150

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1$; (ii) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$; (iii) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (iv) x + 1, y, z; (v) $-x + \frac{1}{2}, -y + 1, z + \frac{1}{2}$.

The packing of the molecules is stabilized by two intermolecular hydrogen-bond interactions between atom O7, which acts as a donor to symmetry-related $O8^{i}$ and O8, which

Figure 1

(a) Schematic representation of the Isororidin A X-ray diffraction solution, drawn with 50% probability displacement ellipsoids. O atoms are shown in red, C atoms in light grey and H atoms in pale pink. The absolute configurations of C6' (R) and C13' (S) shown in Scheme 1 are indicated. (b) A view of the intermolecular hydrogen-bond interactions formed between Isororidin A (shown in red) and its symmetry-related molecules [colour code for symmetry codes: $(x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1)$ in lime, $(-x + 1, y + \frac{1}{2}, -z + \frac{3}{2})$ in lavender, $(x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1)$ in orange, (x + 1, y, z) in tan and $(-x + \frac{1}{2}, -y + 1, z + \frac{1}{2})$ in salmon], while the hydrogen bonding is indicated with blue dashed lines.

Figure 2

Superposition of the three-dimensional structures of determined Isororidin A (with an *S* configuration at C13') and its stereoisomer (epimeric at C28 with an *R* configuration) Roridin A. Isororidin A is shown in red and Roridin A in grey.

acts as a donor to symmetry-related $O2^{ii}$, as well as intermolecular C-H···O interactions between C4 and $O1^{iii}$, C13 and $O9^{iv}$, and C7' and $O6^{v}$ (see Table 3 for symmetry codes). A schematic representation of the crystal structure, showing the stereoconfiguration of Isororidin A and its packing within the unit cell, is presented in Fig. 1.

Superposition of the crystal structure of Isororidin A with the only available previously determined structure of Roridin A (CCDC deposition No. 1110357, CSD refcode BIDPIN10; Jarvis *et al.*, 1982) showed that the overall structure is the same; more pronounced differences are observed in the macrocyclic ring, more specifically, in the vicinity of the C13' atom [Figs. 1(*a*) and 2]. Both saturated pyran rings adopt distorted chair conformations, with a torsion angle C5–C6–

Figure 3

Schematic representation of the supramolecular structure of Isororidin A. The asymmetric unit is highlighted in black and the hydrogen bonds are indicated in blue. [Symmetry codes: (i) $-x + , y - \frac{1}{2}, -z + \frac{3}{2};$ (ii) $-x + \frac{3}{2}, -y + 1, z + \frac{1}{2};$ (iii) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2};$ (iv) $-x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1;$ (v) $-x + \frac{3}{2}, -y + 1, z - \frac{1}{2}$.]

C11-O1 of $-46.7 (2)^{\circ}$ in Isororidin A versus -41.5° in Roridin A. The unsaturated cyclohexene rings adopt flattened half-chair conformations, while the five-membered rings in both structures adopt envelope conformations, with the C atom at position C12 (C11 for the Roridin A structure) pointing out of the plane. The differences observed between the two structures relate to the hydroxyethyl group and neighbouring atoms that include a significant rotation of the torsion angles O4-C6'-C13'-O8 and C7'-C6'-C13'-O8by 106.7 and 104.6°, respectively. Additional differences are observed for torsion angles O7-C2'-C3'-C4' by 18.4°, O7-C2'-C3'-C12' by 17.2° , O9-C11'-C10'-C9' by 17.7°, O5-C11'-C10'-C9' by 16.2°, C7'-C6'-C13'-C14' by 10.9° , O4-C6'-C13'-C14' by 9.2° and O6-C1'-C2'-C3' by 7.3°. The rest of the differences in the torsion angles observed in the 18-membered macrocyclic ring are less profound and in the range of 5° ; for example, torsion angle O6-C1'-C2'-O7' by 4.2° (Table S7 in the supporting information). These changes may be attributed to the intermolecular interactions formed in Isororidin A compared to Roridin A [Fig. 1(b)].

3.2. Supramolecular features

A schematic representation of the structure of Isororidin A and its packing with symmetry-related molecules within the crystal is shown in Fig. 3. Isororidin A crystallized in the orthorhombic space group $P2_12_12_1$. The difference observed in the epimeric C atom seems to foster the intermolecular interactions within the unit cell. Atom O8 is hydrogen bonded to O2 of a symmetry-related molecule within the unit cell, while in the case of Roridin A, the same atom interacts with O1.

3.3. Database survey

One entry is available in the Cambridge Structural Database (CSD; Groom *et al.*, 2016) for the structure of Roridin A (CCDC deposition No. 1110357, CSD refcode BIDPIN10; Jarvis *et al.*, 1982) determined in the space group *P*2₁ with unitcell dimensions *a* = 10.197 (3), *b* = 14.079 (4), *c* = 9.606 (2) Å, $\alpha = \gamma = 90^{\circ}$ and $\beta = 94.6$ (1)°.

Acknowledgements

MAA acknowledges a joint graduate student scholarship from the Egyptian Ministry of Higher Education (Cultural Affairs and Missions Sector) and the Greek Ministry of Foreign Affairs (E1 sector). The authors also thank Assistant Professor Nikolaos Tsoureas (Department of Chemistry, National and Kapodistrian University of Athens) for his assistance with the measurement of the X-ray diffraction data at the Core Facilities of the National and Kapodistrian University of Athens, as well as Associate Professor Kostas Bethanis, Department of Science, Agricultural University of Athens, partner of the National Research Infrastructure 'INSPIRED', for critical reading of the manuscript.

Funding information

Funding for this research was provided by: 'INSPIRED' under the Action 'Reinforcement of the Research and Innovation' (NSRF 2014–2020) (grant No. 5002550 to Evangelia Chrysina).

References

- Amagata, T., Rath, C., Rigot, J. F., Tarlov, N., Tenney, K., Valeriote, F. A. & Crews, P. (2003). J. Med. Chem. 46, 4342–4350.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Bräse, S., Encinas, A., Keck, J. & Nising, C. F. (2009). *Chem. Rev.* **109**, 3903–3990.
- Bruker (2021). APEX4, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Carvalho, M. de, Weich, H. & Abraham, W.-R. (2015). Curr. Med. Chem. 23, 23–35.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Grove, J. F. (2007). Progress in the Chemistry of Organic Natural Products, Vol. 88, pp. 63–130. Vienna: Springer Vienna.
- Jarvis, B. B., Comezoglu, S. N., Rao, M. M., Pena, N. B., Boettner, F. E., Williams, T. M., Forsyth, G. & Epling, B. (1987). J. Org. Chem. 52, 45–56.
- Jarvis, B. B. & Mazzola, E. P. (1982). Acc. Chem. Res. 15, 388-395.
- Jarvis, B. B., Midiwo, J. O., Flippen-Anderson, J. L. & Mazzola, E. P. (1982). J. Nat. Prod. 45, 440–448.
- Jarvis, B. B. & Wang, S. (1999). J. Nat. Prod. 62, 1284-1289.
- Jarvis, B. B., Wang, S. & Ammon, H. L. (1996). J. Nat. Prod. 59, 254– 261.
- McCormick, S. P., Stanley, A. M., Stover, N. A. & Alexander, N. J. (2011). *Toxins*, **3**, 802–814.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Shank, R. A., Foroud, N. A., Hazendonk, P., Eudes, F. & Blackwell, B. A. (2011). *Toxins*, 3, 1518–1553.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Sy-Cordero, A. A., Graf, T. N., Wani, M. C., Kroll, D. J., Pearce, C. J. & Oberlies, N. H. (2010). J. Antibiot. 63, 539–544.
- Wu, Q., Wang, X., Nepovimova, E., Miron, A., Liu, Q., Wang, Y., Su, D., Yang, H., Li, L. & Kuca, K. (2017). Arch. Toxicol. 91, 3737–3785.
- Zhu, M., Cen, Y., Ye, W., Li, S. & Zhang, W. (2020). *Toxins*, **12**, 417–433.

Acta Cryst. (2024). C80, 407-411 [https://doi.org/10.1107/S2053229624006144]

Crystal structure of the cytotoxic macrocyclic trichothecene Isororidin A

Mostafa A. Asmaey, Dimitris A. Kalofolias, Maria-Despoina Charavgi, Ismail R. Abdel-Rahim, Evangelia D. Chrysina and Dennis Abatis

Computing details

(I)

```
Crystal data

C_{29}H_{40}O_9

M_r = 532.61

Orthorhombic, P2_12_12_1

a = 9.2707 (4) Å

b = 15.2236 (6) Å

c = 20.0806 (8) Å

V = 2834.0 (2) Å<sup>3</sup>

Z = 4

F(000) = 1144
```

Data collection

Bruker APEXII diffractometer Radiation source: sealed x-ray tube Graphite monochromator φ or ω oscillation scans Absorption correction: multi-scan (SADABS; Bruker, 2021) $T_{\min} = 0.673, T_{\max} = 0.754$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.109$ S = 1.075548 reflections 349 parameters 0 restraints Primary atom site location: difference Fourier map $D_x = 1.248 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9959 reflections $\theta = 4.4-74.9^{\circ}$ $\mu = 0.76 \text{ mm}^{-1}$ T = 100 KIrregular, colourless $0.08 \times 0.06 \times 0.04 \text{ mm}$

101717 measured reflections 5548 independent reflections 5338 reflections with $I > 2\sigma(I)$ $R_{int} = 0.055$ $\theta_{max} = 72.1^\circ, \ \theta_{min} = 3.6^\circ$ $h = -11 \rightarrow 11$ $k = -18 \rightarrow 18$ $l = -24 \rightarrow 24$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0618P)^2 + 1.0952P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.34$ e Å⁻³ $\Delta\rho_{min} = -0.22$ e Å⁻³ Absolute structure: Flack *x* determined using 2264 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons *et al.*, 2013) Absolute structure parameter: -0.02 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.88908 (18)	0.27189 (12)	0.51273 (8)	0.0240 (4)	
O2	0.9025 (2)	0.38349 (12)	0.67471 (9)	0.0272 (4)	
O3	0.55743 (19)	0.51939 (11)	0.47181 (9)	0.0247 (4)	
O4	0.1743 (2)	0.69785 (13)	0.64506 (9)	0.0308 (4)	
05	0.55825 (19)	0.34501 (11)	0.66449 (8)	0.0220 (4)	
06	0.3838 (2)	0.49608 (15)	0.39552 (11)	0.0424 (5)	
O7	0.2988 (2)	0.66973 (14)	0.40501 (10)	0.0397 (5)	
H7	0.337967	0.671580	0.367303	0.060*	
08	-0.0389 (2)	0.80771 (13)	0.70903 (10)	0.0361 (5)	
H8	0.003475	0.841615	0.735599	0.054*	
09	0.37443 (19)	0.41830 (12)	0.61579 (9)	0.0269 (4)	
C2	0.8665 (3)	0.27417 (17)	0.58343 (12)	0.0239 (5)	
H2	0.941895	0.239374	0.607361	0.029*	
C3	0.7140 (3)	0.24545 (15)	0.60435 (12)	0.0237 (5)	
H3A	0.714192	0.222712	0.650543	0.028*	
H3B	0.677134	0.199050	0.574293	0.028*	
C4	0.6207 (3)	0.32912 (15)	0.59909 (11)	0.0198 (5)	
H4	0.543332	0.321485	0.564896	0.024*	
C5	0.7257 (2)	0.40513 (16)	0.57878 (12)	0.0189 (5)	
C6	0.7370 (3)	0.40627 (15)	0.50005 (11)	0.0194 (5)	
C7	0.8563 (3)	0.46869 (17)	0.47578 (13)	0.0255 (5)	
H7A	0.835163	0.528884	0.491673	0.031*	
H7B	0.949524	0.450303	0.495403	0.031*	
C8	0.8701 (3)	0.46984 (18)	0.39997 (13)	0.0301 (6)	
H8A	0.790742	0.505592	0.381129	0.036*	
H8B	0.962284	0.498322	0.387684	0.036*	
C9	0.8652 (3)	0.37965 (19)	0.36967 (12)	0.0280 (6)	
C10	0.8205 (3)	0.31031 (17)	0.40345 (12)	0.0250 (5)	
H10	0.818015	0.255442	0.380946	0.030*	
C11	0.7731 (3)	0.31230 (16)	0.47532 (11)	0.0209 (5)	
H11	0.684913	0.275005	0.480016	0.025*	
C12	0.8689 (3)	0.36850 (17)	0.60468 (12)	0.0226 (5)	
C13	0.9983 (3)	0.4175 (2)	0.62296 (13)	0.0289 (6)	
H13A	0.998626	0.481667	0.614993	0.035*	
H13B	1.092774	0.388245	0.616854	0.035*	
C14	0.6885 (3)	0.49472 (15)	0.60854 (13)	0.0228 (5)	
H14A	0.758586	0.538439	0.593183	0.034*	
H14B	0.691533	0.491081	0.657245	0.034*	
H14C	0.591501	0.512065	0.594273	0.034*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C15	0.5923 (3)	0.42707 (16)	0.46636 (12)	0.0221 (5)
H15A	0.597356	0.410455	0.418753	0.027*
H15B	0.515051	0.391867	0.487463	0.027*
C16	0.9125 (3)	0.3731 (2)	0.29815 (14)	0.0380 (7)
H16A	1.014581	0.389273	0.294656	0.057*
H16B	0.854565	0.413067	0.270815	0.057*
H16C	0.899321	0.312700	0.282417	0.057*
C1′	0.4428 (3)	0.54367 (19)	0.43490 (13)	0.0296 (6)
C2′	0.3983 (3)	0.63724 (18)	0.45204 (13)	0.0287 (6)
H2′	0.485817	0.675635	0.452173	0.034*
C3′	0.3294 (3)	0.63843 (18)	0.52177 (14)	0.0291 (6)
H3′	0.395944	0.606240	0.552451	0.035*
C4′	0.3149 (4)	0.7322 (2)	0.54813 (16)	0.0407 (7)
H4'A	0.399591	0.766598	0.533323	0.049*
H4′B	0.228023	0.759272	0.528101	0.049*
C5′	0.3034 (4)	0.7386 (2)	0.62343 (17)	0.0407 (7)
H5'A	0.387367	0.709419	0.644329	0.049*
H5′B	0.303563	0.801101	0.637090	0.049*
C6′	0.1495 (3)	0.69731 (18)	0.71470 (13)	0.0274 (5)
H6′	0.209471	0.744725	0.735249	0.033*
C7′	0.1896 (3)	0.61153 (17)	0.74684 (13)	0.0277 (5)
H7′	0.166965	0.605138	0.792725	0.033*
C8′	0.2536 (3)	0.54364 (17)	0.71731 (13)	0.0265 (5)
H8′	0.270664	0.545400	0.670677	0.032*
C9′	0.2979 (3)	0.46714 (17)	0.75504 (13)	0.0281 (5)
H9′	0.264277	0.463987	0.799677	0.034*
C10′	0.3807 (3)	0.40016 (17)	0.73433 (12)	0.0267 (5)
H10′	0.406954	0.356344	0.765766	0.032*
C11′	0.4333 (3)	0.39102 (15)	0.66526 (12)	0.0231 (5)
C12′	0.1877 (3)	0.5878 (2)	0.51995 (15)	0.0372 (6)
H12A	0.122060	0.615490	0.487947	0.056*
H12B	0.143561	0.588379	0.564304	0.056*
H12C	0.206171	0.526987	0.506428	0.056*
C13′	-0.0095 (3)	0.71915 (18)	0.72682 (13)	0.0298 (6)
H13′	-0.031032	0.711192	0.775237	0.036*
C14′	-0.1081 (3)	0.65997 (19)	0.68701 (15)	0.0334 (6)
H14D	-0.208572	0.677363	0.694432	0.050*
H14E	-0.094561	0.598944	0.701241	0.050*
H14F	-0.085000	0.665237	0.639549	0.050*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0212 (8)	0.0305 (9)	0.0202 (8)	0.0080 (7)	0.0008 (7)	0.0009 (7)
O2	0.0247 (9)	0.0368 (10)	0.0201 (8)	-0.0014 (8)	-0.0056 (7)	0.0005 (7)
O3	0.0238 (8)	0.0235 (8)	0.0268 (9)	0.0042 (7)	-0.0031 (7)	0.0025 (7)
O4	0.0297 (10)	0.0358 (10)	0.0268 (9)	-0.0051 (8)	0.0036 (8)	-0.0023 (8)
05	0.0215 (8)	0.0251 (8)	0.0194 (8)	0.0011 (7)	0.0014 (7)	-0.0021 (7)

06	0.0451 (12)	0.0461 (12)	0.0359 (11)	0.0143 (10)	-0.0180 (10)	-0.0071 (9)
07	0.0404 (11)	0.0464 (12)	0.0324 (10)	0.0195 (10)	0.0088 (9)	0.0164 (9)
08	0.0454 (12)	0.0303 (9)	0.0326 (10)	0.0084 (9)	-0.0132 (9)	-0.0085 (8)
09	0.0213 (8)	0.0327 (9)	0.0268 (9)	0.0046 (7)	-0.0003 (8)	-0.0053 (8)
C2	0.0220 (12)	0.0292 (13)	0.0205 (11)	0.0070 (10)	-0.0013 (9)	0.0027 (10)
C3	0.0282 (12)	0.0215 (12)	0.0216 (11)	0.0034 (10)	0.0038 (10)	0.0021 (9)
C4	0.0208 (11)	0.0216 (11)	0.0171 (11)	0.0007 (9)	0.0011 (9)	-0.0025 (8)
C5	0.0165 (10)	0.0210 (11)	0.0192 (11)	0.0011 (9)	-0.0027 (9)	-0.0016 (9)
C6	0.0180 (11)	0.0217 (11)	0.0184 (11)	-0.0007 (9)	-0.0013 (9)	-0.0004 (9)
C7	0.0232 (12)	0.0268 (12)	0.0265 (13)	-0.0043 (10)	-0.0015 (10)	0.0020 (10)
C8	0.0286 (13)	0.0345 (14)	0.0272 (13)	-0.0061 (11)	0.0013 (11)	0.0074 (11)
C9	0.0228 (12)	0.0406 (15)	0.0206 (12)	0.0018 (11)	-0.0005 (10)	0.0004 (10)
C10	0.0237 (12)	0.0300 (12)	0.0212 (12)	0.0055 (11)	-0.0008 (10)	-0.0033 (10)
C11	0.0194 (11)	0.0237 (11)	0.0196 (11)	0.0023 (9)	0.0002 (9)	-0.0009 (9)
C12	0.0197 (11)	0.0314 (13)	0.0167 (11)	0.0022 (10)	-0.0012 (9)	0.0019 (9)
C13	0.0196 (11)	0.0413 (15)	0.0258 (12)	-0.0022 (11)	-0.0042 (10)	0.0028 (11)
C14	0.0221 (11)	0.0212 (11)	0.0252 (12)	-0.0005 (9)	-0.0014 (10)	-0.0034 (9)
C15	0.0211 (12)	0.0213 (11)	0.0240 (12)	0.0006 (9)	-0.0042 (9)	-0.0003 (9)
C16	0.0398 (17)	0.0503 (17)	0.0239 (13)	0.0020 (14)	0.0043 (12)	0.0043 (12)
C1′	0.0300 (13)	0.0345 (14)	0.0243 (13)	0.0043 (12)	0.0010 (11)	0.0051 (11)
C2′	0.0276 (13)	0.0294 (13)	0.0289 (13)	0.0047 (11)	0.0065 (10)	0.0065 (10)
C3′	0.0295 (13)	0.0306 (13)	0.0272 (13)	0.0022 (11)	0.0054 (11)	0.0037 (10)
C4′	0.0431 (17)	0.0292 (14)	0.0498 (18)	-0.0002 (14)	0.0197 (15)	0.0049 (13)
C5′	0.0394 (16)	0.0319 (15)	0.0506 (18)	-0.0101 (13)	0.0124 (14)	-0.0109 (13)
C6′	0.0306 (13)	0.0275 (12)	0.0242 (12)	-0.0018 (11)	-0.0019 (10)	-0.0061 (10)
C7′	0.0275 (13)	0.0318 (13)	0.0238 (12)	0.0003 (11)	-0.0022 (10)	-0.0052 (10)
C8′	0.0253 (12)	0.0294 (13)	0.0247 (12)	-0.0017 (10)	0.0008 (10)	-0.0056 (10)
C9′	0.0261 (12)	0.0326 (13)	0.0256 (12)	-0.0030 (11)	0.0057 (10)	-0.0040 (11)
C10′	0.0283 (12)	0.0273 (12)	0.0245 (12)	-0.0005 (11)	0.0048 (10)	-0.0003 (10)
C11′	0.0222 (12)	0.0211 (11)	0.0259 (12)	-0.0040 (10)	0.0024 (10)	-0.0039 (10)
C12′	0.0342 (15)	0.0449 (16)	0.0325 (14)	-0.0029 (14)	0.0073 (12)	0.0003 (12)
C13′	0.0366 (14)	0.0313 (14)	0.0215 (12)	0.0046 (12)	0.0012 (11)	-0.0049 (10)
C14′	0.0300 (14)	0.0328 (14)	0.0373 (15)	-0.0024 (12)	0.0009 (11)	-0.0014 (11)

Geometric parameters (Å, °)

01—C2	1.436 (3)	C12—C13	1.460 (4)	
01—C11	1.449 (3)	C13—H13A	0.9900	
O2—C12	1.458 (3)	C13—H13B	0.9900	
O2—C13	1.462 (3)	C14—H14A	0.9800	
O3—C1′	1.347 (3)	C14—H14B	0.9800	
O3—C15	1.446 (3)	C14—H14C	0.9800	
O4—C5′	1.416 (4)	C15—H15A	0.9900	
O4—C6′	1.417 (3)	C15—H15B	0.9900	
O5—C11′	1.354 (3)	C16—H16A	0.9800	
O5—C4	1.456 (3)	C16—H16B	0.9800	
O6—C1′	1.204 (4)	C16—H16C	0.9800	
O7—C2′	1.409 (3)	C1'—C2'	1.523 (4)	

O7—H7	0.8400	C2′—C3′	1.539 (4)
08-013'	1.421 (3)	C2'—H2'	1.0000
08—H8	0.8400	$C_{3'} - C_{12'}$	1 524 (4)
09-C11'	1 207 (3)	C3' - C4'	1.521(1) 1.528(4)
$C_2 = C_{12}$	1.207(3) 1.408(4)	$C_3' = H_3'$	1.0000
$C_2 = C_1 Z_2$	1.490(4)	C_{3} – C_{3}	1.0000
$C_2 = C_3$	1.0000	C4 - C3	1.319 (4)
$C_2 = C_1$	1.0000	C4 - H4 R	0.9900
$C_3 = C_4$	1.543 (3)	C4'—H4'B	0.9900
C3—H3A	0.9900		0.9900
С3—НЗВ	0.9900	C5'—H5'B	0.9900
C4—C5	1.566 (3)	C6'—C7'	1.503 (4)
C4—H4	1.0000	C6'—C13'	1.530 (4)
C5—C14	1.528 (3)	С6'—Н6'	1.0000
C5—C12	1.531 (3)	C7'—C8'	1.331 (4)
C5—C6	1.584 (3)	С7'—Н7'	0.9500
C6—C15	1.535 (3)	C8′—C9′	1.449 (4)
C6—C7	1.538 (3)	C8'—H8'	0.9500
C6—C11	1.551 (3)	C9′—C10′	1.343 (4)
C7—C8	1.528 (4)	С9'—Н9'	0.9500
С7—Н7А	0.9900	C10′—C11′	1.477 (3)
C7—H7B	0.9900	C10'—H10'	0.9500
C8—C9	1 502 (4)	C12'—H12A	0.9800
C8—H8A	0.9900	C12′—H12B	0.9800
C8—H8B	0.9900	C12′—H12C	0.9800
$C_0 = C_{10}$	1.321(4)	C12 - III2C	1.512(4)
C_{2}	1.521(4)	$C_{13} = C_{14}$	1.0000
C10 C11	1.505 (4)		1.0000
	1.509 (3)	CI4'—HI4D	0.9800
C10—H10	0.9500	CI4'—HI4E	0.9800
CII—HII	1.0000	C14'—H14F	0.9800
C2	113.23 (17)	O3—C15—C6	111.26 (19)
C12—O2—C13	59.98 (16)	O3—C15—H15A	109.4
C1'O3C15	113.7 (2)	С6—С15—Н15А	109.4
C5'—O4—C6'	116.2 (2)	O3—C15—H15B	109.4
C11′—O5—C4	115.90 (18)	C6—C15—H15B	109.4
С2′—О7—Н7	109.5	H15A—C15—H15B	108.0
С13′—О8—Н8	109.5	C9—C16—H16A	109.5
O1—C2—C12	107.62 (19)	C9—C16—H16B	109.5
01	113.4 (2)	H16A—C16—H16B	109.5
$C_{12} - C_{2} - C_{3}$	102.03(19)	C9—C16—H16C	109.5
$01 - C^2 - H^2$	111 1	H_{16A} $-C_{16}$ $-H_{16C}$	109.5
C_{12} C_{2} H_{2}	111.1	H_{16B} C_{16} H_{16C}	109.5
$C_1^2 C_2 H_2$	111.1	06 C1' O2	109.5 123.7(3)
$C_{2} = C_{2} = C_{12}$	105 16 (10)	06 - 01 - 03	123.7(3) 126.0(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	103.10 (19)	00-01-02	120.0(3)
$C_4 = C_2 = H_2 A$	110./	03 - 01 - 02	110.3(2)
$C_{4} = C_{3} = H_{3} = H_{3$	110./	0/-02 01	110.7(2)
С2—С3—НЗВ	110.7	0/	109.5 (2)
C4—C3—H3B	110.7	C1' - C2' - C3'	109.2 (2)

НЗА—СЗ—НЗВ	108.8	O7—C2′—H2′	109.1
O5—C4—C3	107.36 (18)	C1'—C2'—H2'	109.1
O5—C4—C5	111.07 (18)	C3'—C2'—H2'	109.1
C3—C4—C5	106.24 (19)	C12'—C3'—C4'	113.9 (2)
O5—C4—H4	110.7	C12'—C3'—C2'	109.3 (2)
C3—C4—H4	110.7	C4′—C3′—C2′	111.3 (2)
C5—C4—H4	110.7	С12'—С3'—Н3'	107.4
C14—C5—C12	112.8 (2)	C4'—C3'—H3'	107.4
C14—C5—C4	114.66 (19)	C2'—C3'—H3'	107.4
C12—C5—C4	100.44 (19)	C5'—C4'—C3'	114.3 (2)
C14—C5—C6	113.28 (19)	C5'—C4'—H4'A	108.7
C12—C5—C6	106.61 (18)	C3'—C4'—H4'A	108.7
C4—C5—C6	107.99 (18)	C5'—C4'—H4'B	108.7
C15—C6—C7	111.19 (19)	C3'—C4'—H4'B	108.7
C15—C6—C11	103.77 (18)	H4'A - C4' - H4'B	107.6
C7—C6—C11	108.23 (19)	04-C5'-C4'	109.7 (3)
$C_{15} - C_{6} - C_{5}$	112.62 (19)	04—C5'—H5'A	109.7
C7—C6—C5	111 73 (19)	C4' - C5' - H5'A	109.7
$C_{11} - C_{6} - C_{5}$	108 88 (18)	O4-C5'-H5'B	109.7
C8-C7-C6	112 5 (2)	C4' - C5' - H5'B	109.7
C8—C7—H7A	109.1	H5'A-C5'-H5'B	108.2
C6—C7—H7A	109.1	04-C6'-C7'	112.9 (2)
C8—C7—H7B	109.1	O4—C6'—C13'	108.2(2)
C6—C7—H7B	109.1	C7' - C6' - C13'	111.0(2)
H7A—C7—H7B	107.8	O4—C6'—H6'	108.2
C9—C8—C7	113.0 (2)	C7'—C6'—H6'	108.2
C9—C8—H8A	109.0	C13'—C6'—H6'	108.2
C7—C8—H8A	109.0	C8′—C7′—C6′	126.4(3)
C9—C8—H8B	109.0	C8'—C7'—H7'	116.8
C7—C8—H8B	109.0	C6'—C7'—H7'	116.8
H8A—C8—H8B	107.8	C7'—C8'—C9'	121.2 (2)
C10—C9—C8	122.1 (2)	C7'—C8'—H8'	119.4
C10—C9—C16	121.9 (3)	C9'—C8'—H8'	119.4
C8—C9—C16	116.0 (2)	C10'—C9'—C8'	127.6 (2)
C9—C10—C11	124.5 (2)	С10'—С9'—Н9'	116.2
C9—C10—H10	117.8	C8'—C9'—H9'	116.2
C11—C10—H10	117.8	C9′—C10′—C11′	123.5 (2)
01-C11-C10	105.75 (18)	C9'—C10'—H10'	118.3
01	112.71 (18)	C11′—C10′—H10′	118.3
C10—C11—C6	112.8 (2)	09—C11′—O5	123.7(2)
01-C11-H11	108 5	09-C11'-C10'	126.3(2)
C10—C11—H11	108.5	05-C11'-C10'	120.0(2) 110.0(2)
C6-C11-H11	108.5	$C_{3'}$ $C_{12'}$ H_{12A}	109.5
02-C12-C13	60 13 (16)	C3'-C12'-H12B	109.5
02-C12-C2	115.3 (2)	H12A—C12′—H12B	109.5
C13-C12-C2	125.0 (2)	C3'-C12'-H12C	109.5
02-012-05	117.1 (2)	H12A - C12' - H12C	109.5
C_{13} C_{12} C_{5}	1277(2)	H12B-C12'-H12C	109.5
015 012 05	12/1/(2)	11120 012 11120	107.5

C2—C12—C5	103.9 (2)	O8—C13′—C14′	108.4 (2)
C12—C13—O2	59.90 (15)	O8—C13′—C6′	110.6 (2)
C12—C13—H13A	117.8	C14′—C13′—C6′	111.6 (2)
O2—C13—H13A	117.8	O8—C13'—H13'	108.7
С12—С13—Н13В	117.8	C14'—C13'—H13'	108.7
O2—C13—H13B	117.8	C6'—C13'—H13'	108.7
H13A—C13—H13B	114.9	C13'—C14'—H14D	109.5
C5—C14—H14A	109.5	C13'—C14'—H14E	109.5
C5—C14—H14B	109.5	H14D—C14′—H14E	109.5
H14A—C14—H14B	109.5	C13'—C14'—H14F	109.5
C5-C14-H14C	109.5	H14D-C14'-H14F	109.5
H_{14A} $-C_{14}$ $-H_{14C}$	109.5	H14E— $C14'$ — $H14F$	109.5
H_{14B} C_{14} H_{14C}	109.5		109.0
	109.0		
C11—O1—C2—C12	-65.2 (2)	O1—C2—C12—C5	72.8 (2)
C11—O1—C2—C3	46.9 (3)	C3—C2—C12—C5	-46.8 (2)
O1—C2—C3—C4	-85.5 (2)	C14—C5—C12—O2	38.1 (3)
C12—C2—C3—C4	30.0 (2)	C4—C5—C12—O2	-84.4 (2)
C11′—O5—C4—C3	-154.6 (2)	C6—C5—C12—O2	163.10 (19)
C11′—O5—C4—C5	89.7 (2)	C14—C5—C12—C13	-33.7 (3)
C2—C3—C4—O5	-121.9 (2)	C4—C5—C12—C13	-156.3 (2)
C2—C3—C4—C5	-3.0(2)	C6—C5—C12—C13	91.2 (3)
O5—C4—C5—C14	-29.1 (3)	C14—C5—C12—C2	166.5 (2)
C3-C4-C5-C14	-145.6 (2)	C4—C5—C12—C2	44.0 (2)
O5—C4—C5—C12	92.1 (2)	C6—C5—C12—C2	-68.5 (2)
C3—C4—C5—C12	-24.3 (2)	C2—C12—C13—O2	-101.5 (3)
O5—C4—C5—C6	-156.44 (18)	C5—C12—C13—O2	102.7 (3)
C3—C4—C5—C6	87.1 (2)	C1′—O3—C15—C6	170.8 (2)
C14—C5—C6—C15	-64.8 (3)	C7—C6—C15—O3	-51.0 (3)
C12—C5—C6—C15	170.5 (2)	C11—C6—C15—O3	-167.16 (18)
C4—C5—C6—C15	63.3 (2)	C5—C6—C15—O3	75.3 (2)
C14—C5—C6—C7	61.2 (3)	C15—O3—C1′—O6	-7.6 (4)
C12—C5—C6—C7	-63.5 (2)	C15—O3—C1′—C2′	170.7 (2)
C4—C5—C6—C7	-170.71 (19)	O6—C1′—C2′—O7	-13.8 (4)
C14—C5—C6—C11	-179.32 (19)	O3—C1′—C2′—O7	168.0 (2)
C12—C5—C6—C11	56.0 (2)	O6—C1′—C2′—C3′	106.9 (3)
C4—C5—C6—C11	-51.2 (2)	O3—C1′—C2′—C3′	-71.3 (3)
C15—C6—C7—C8	-53.9 (3)	O7—C2′—C3′—C12′	54.8 (3)
C11—C6—C7—C8	59.4 (3)	C1′—C2′—C3′—C12′	-66.6 (3)
C5—C6—C7—C8	179.3 (2)	O7—C2′—C3′—C4′	-71.8(3)
C6—C7—C8—C9	-44.4 (3)	C1′—C2′—C3′—C4′	166.8 (3)
C7—C8—C9—C10	14.6 (4)	C12'—C3'—C4'—C5'	78.2 (4)
C7—C8—C9—C16	-166.1 (2)	C2'—C3'—C4'—C5'	-157.8 (3)
C8—C9—C10—C11	-1.4 (4)	C6'—O4—C5'—C4'	179.0 (2)
C16—C9—C10—C11	179.3 (2)	C3'—C4'—C5'—O4	-64.7 (4)
C2-01-C11-C10	175.6 (2)	C5'—O4—C6'—C7'	-99.2 (3)
C2-01-C11-C6	51.9 (3)	C5'—O4—C6'—C13'	137.6 (2)
C9—C10—C11—O1	-106.0 (3)	O4—C6'—C7'—C8'	5.8 (4)

$C9-C10-C11-C6\\C15-C6-C11-O1\\C7-C6-C11-O1\\C5-C6-C11-O1\\C15-C6-C11-C10\\C7-C6-C11-C10\\C5-C6-C11-C10\\C13-O2-C12-C2\\C13-O2-C12-C2\\C13-O2-C12-C5\\O1-C2-C12-O2\\C3-C2-C12-O2\\O1-C2-C12-C13$	$17.6 (3) \\ -166.89 (18) \\ 74.9 (2) \\ -46.7 (2) \\ 73.4 (2) \\ -44.8 (3) \\ -166.4 (2) \\ 117.4 (3) \\ -119.9 (3) \\ -157.67 (19) \\ 82.7 (2) \\ -87.6 (3)$	$\begin{array}{c} C13'-C6'-C7'-C8'\\ C6'-C7'-C8'-C9'\\ C7'-C8'-C9'-C10'\\ C8'-C9'-C10'-C11'\\ C4-O5-C11'-O9\\ C4-O5-C11'-O9\\ C4-O5-C11'-C10'\\ C9'-C10'-C11'-O9\\ C9'-C10'-C11'-O5\\ O4-C6'-C13'-O8\\ C7'-C6'-C13'-O8\\ O4-C6'-C13'-C14'\\ C7'-C6'-C13'-C14'\\ \end{array}$	127.4 (3) $174.7 (2)$ $-169.7 (3)$ $-4.7 (4)$ $-0.1 (3)$ $178.57 (19)$ $-28.5 (4)$ $152.8 (2)$ $-68.1 (3)$ $167.6 (2)$ $52.7 (3)$ $-71.6 (3)$
O1—C2—C12—C13 C3—C2—C12—C13	-87.6 (3) 152.8 (2)	C7'—C6'—C13'—C14'	-71.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	$H \cdots A$	$D \cdots A$	D—H··· A	
07—H7···O8 ⁱ	0.84	1.94	2.761 (3)	167	
O8—H8···O2 ⁱⁱ	0.84	2.10	2.895 (3)	158	
C4—H4···O1 ⁱⁱⁱ	1.00	2.55	3.467 (3)	153	
C13—H13 <i>B</i> ····O9 ^{iv}	0.99	2.65	3.490 (3)	143	
C7'—H7'····O6 ^v	0.95	2.62	3.473 (3)	150	

Symmetry codes: (i) x+1/2, -y+3/2, -z+1; (ii) -x+1, y+1/2, -z+3/2; (iii) x-1/2, -y+1/2, -z+1; (iv) x+1, y, z; (v) -x+1/2, -y+1, z+1/2.

Isororidin A (II)

Crystal data

 $C_{29}H_{40}O_9$ $M_r = 532.61$ Orthorhombic, $P2_12_12_1$ a = 9.302 (3) Å b = 15.412 (6) Å c = 20.191 (8) Å V = 2894.6 (19) Å³ Z = 4F(000) = 1144

Data collection

SuperNova (Cu) X-ray Source diffractometer Radiation source: micro-focus sealed X-ray tube Absorption correction: analytical CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. $T_{min} = 0.775, T_{max} = 0.878$ 6984 measured reflections $D_x = 1.222 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.54180 \text{ Å}$ Cell parameters from 3458 reflections $\theta = 4.3-72.7^{\circ}$ $\mu = 0.74 \text{ mm}^{-1}$ T = 293 KBlock, colourless $0.47 \times 0.47 \times 0.24 \text{ mm}$

5037 independent reflections 4285 reflections with $I > 2\sigma(I)$ $R_{int} = 0.073$ $\theta_{max} = 72.9^{\circ}, \ \theta_{min} = 3.6^{\circ}$ $h = -6 \rightarrow 11$ $k = -16 \rightarrow 18$ $l = -24 \rightarrow 24$ Refinement

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.2P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.086$	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.265$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 1.05	$\Delta ho_{ m max} = 0.34 \ m e \ m \AA^{-3}$
5037 reflections	$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$
349 parameters	Absolute structure: Classical Flack method
0 restraints	preferred over Parsons because s.u. lower.
Hydrogen site location: inferred from neighbouring sites	Absolute structure parameter: 0.4 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.1160 (4)	0.2734 (3)	0.4876 (2)	0.0489 (9)	
05	0.4444 (4)	0.3442 (2)	0.33576 (19)	0.0459 (8)	
O9	0.6291 (4)	0.4150 (3)	0.3838 (2)	0.0552 (10)	
08	1.0280 (6)	0.8042 (3)	0.2920 (3)	0.0711 (13)	
H40	0.996908	0.836900	0.263394	0.107*	
O4	0.8192 (5)	0.6918 (3)	0.3550 (2)	0.0588 (11)	
O6	0.6101 (7)	0.4992 (4)	0.6056 (3)	0.0914 (19)	
O3	0.4451 (4)	0.5178 (2)	0.5267 (2)	0.0470 (8)	
O7	0.6931 (6)	0.6700 (4)	0.5946 (3)	0.0780 (16)	
H39	0.654210	0.670235	0.631038	0.117*	
O2	0.1010 (4)	0.3816 (3)	0.3259 (2)	0.0552 (10)	
C5	0.2667 (5)	0.4062 (3)	0.4991 (2)	0.0374 (10)	
C10	0.2299 (5)	0.3139 (3)	0.5240 (3)	0.0410 (10)	
H10	0.316100	0.277728	0.519881	0.049*	
C9	0.1829 (6)	0.3130 (4)	0.5960 (3)	0.0489 (12)	
H9	0.185959	0.260368	0.618428	0.059*	
C8	0.1381 (6)	0.3814 (5)	0.6287 (3)	0.0545 (14)	
C7	0.1345 (7)	0.4703 (5)	0.5984 (3)	0.0614 (16)	
H7	0.212397	0.504623	0.616696	0.074*	
H8	0.044767	0.498355	0.610164	0.074*	
C6	0.1486 (6)	0.4680 (4)	0.5230 (3)	0.0510(13)	
H6	0.169475	0.526086	0.507177	0.061*	
Н5	0.057494	0.450213	0.504050	0.061*	
C15	0.0923 (9)	0.3768 (6)	0.7001 (4)	0.078 (2)	
H18	0.106251	0.318860	0.716334	0.117*	
H19	-0.007506	0.392031	0.703596	0.117*	
H20	0.148797	0.416494	0.725830	0.117*	
C4	0.2781 (5)	0.4043 (3)	0.4206 (3)	0.0370 (9)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C3	0.3811 (5)	0.3291 (3)	0.4010 (3)	0.0410 (10)
H4	0.456412	0.321639	0.434432	0.049*
C2	0.2894 (6)	0.2480 (3)	0.3958 (3)	0.0495 (12)
H3	0.325979	0.203022	0.424943	0.059*
H2	0.289369	0.226140	0.350788	0.059*
C1	0.1377 (5)	0.2748 (4)	0.4166 (3)	0.0464 (12)
H1	0.064181	0.241008	0.393355	0.056*
C11	0.1364 (5)	0.3678 (4)	0.3957 (3)	0.0440 (11)
C12	0.0054 (6)	0.4163 (5)	0.3763 (3)	0.0589 (15)
H12	-0.086756	0.387974	0.382581	0.071*
H11	0.004807	0.478567	0.383133	0.071*
C13	0.3143 (6)	0.4929 (3)	0.3906 (3)	0.0467 (11)
H13	0.410265	0 509081	0 402971	0.070*
H14	0.247744	0.535526	0.406821	0.070*
H15	0.307528	0 489630	0 343241	0.070*
C26	0.5702 (6)	0.3883(3)	0.3352(3)	0.070 0.0471(12)
C25	0.6222(7)	0.3981(4)	0.2658(3)	0.0539(13)
H31	0.598031	0 355482	0.235147	0.065*
C24	0.7018 (6)	0.4650 (4)	0.235117 0.2455(3)	0.005 (13)
H30	0.734023	0.462248	0.201998	0.067*
C23	0.7443 (6)	0.5408 (4)	0.2820(3)	0.0512(12)
H29	0 727688	0 542171	0 327450	0.061*
C22	0.8056 (6)	0.6081(4)	0.2540 (3)	0.0523(12)
H28	0.828538	0.602330	0 209401	0.063*
C21	0.8430(7)	0.6929(4)	0.2853(3)	0.002 0.0523 (13)
H27	0.782251	0.738141	0.265737	0.063*
C28	1,0009(7)	0.7169 (4)	0.203737	0.0571 (14)
H35	1.022230	0.710209	0.226072	0.068*
C29	1.1011 (7)	0.6590 (5)	0.3124(4)	0.0708 (19)
H36	1.197581	0.680668	0.308900	0.106*
H38	1.096988	0.601105	0.295030	0.106*
H37	1.072340	0.658622	0.358053	0.106*
C20	0.6981 (9)	0.7363(5)	0.3781 (4)	0.077(2)
H26	0.612231	0.712286	0.357938	0.092*
H25	0.704638	0.796976	0.365662	0.092*
C19	0.6872 (9)	0.7289 (4)	0.4530 (4)	0.073(2)
H24	0.773092	0.753899	0.472527	0.088*
H23	0.605803	0.763021	0.467929	0.088*
C18	0.6703 (6)	0.6377 (4)	0.4784 (3)	0.0517 (13)
H22	0.606637	0.606921	0.447720	0.062*
C17	0.5983 (6)	0.6359 (4)	0.5475 (3)	0.0520 (13)
H21	0.511966	0.672257	0.546192	0.062*
C16	0.5547 (7)	0.5449 (4)	0.5645 (3)	0.0527 (13)
C14	0.4109 (5)	0.4275 (3)	0.5324 (3)	0.0414 (10)
H16	0.406303	0.411712	0.578824	0.050*
H17	0.486538	0.393422	0.511897	0.050*
C27	0.8125 (8)	0.5867 (6)	0.4818 (4)	0.078 (2)
H34	0.873613	0.611882	0.514942	0.117*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
01	0.0333 (16)	0.073 (2)	0.040 (2)	-0.0189 (16)	0.0039 (17)	-0.0017 (17)
05	0.0357 (16)	0.0644 (17)	0.0375 (19)	-0.0007 (16)	0.0033 (16)	0.0029 (16)
09	0.0357 (17)	0.081 (2)	0.049 (2)	-0.0155 (18)	-0.0011 (19)	0.0094 (19)
08	0.080 (3)	0.070 (2)	0.063 (3)	-0.017 (2)	-0.023 (3)	0.018 (2)
O4	0.052 (2)	0.084 (2)	0.041 (2)	0.014 (2)	0.0078 (19)	0.0072 (19)
06	0.094 (4)	0.101 (4)	0.079 (4)	-0.041 (3)	-0.053 (4)	0.024 (3)
O3	0.0348 (15)	0.0587 (17)	0.048 (2)	-0.0084 (15)	-0.0088 (18)	-0.0012 (16)
07	0.070 (3)	0.106 (3)	0.058 (3)	-0.044 (3)	0.018 (3)	-0.033 (3)
O2	0.0410 (19)	0.087 (2)	0.038 (2)	-0.0024 (18)	-0.0140 (18)	0.0003 (19)
C5	0.0241 (18)	0.055 (2)	0.033 (2)	0.0005 (18)	-0.005 (2)	-0.0008 (18)
C10	0.030 (2)	0.057 (2)	0.036 (3)	-0.0048 (19)	0.003 (2)	0.002 (2)
C9	0.036 (2)	0.075 (3)	0.036 (3)	-0.011 (2)	0.000 (2)	0.007 (2)
C8	0.033 (2)	0.089 (4)	0.041 (3)	-0.003 (3)	0.005 (2)	0.000 (3)
C7	0.049 (3)	0.084 (4)	0.050 (3)	0.015 (3)	0.004 (3)	-0.016 (3)
C6	0.036 (2)	0.073 (3)	0.044 (3)	0.007 (2)	-0.002 (3)	-0.006 (2)
C15	0.073 (4)	0.119 (6)	0.042 (3)	-0.005 (4)	0.012 (4)	-0.005 (4)
C4	0.0248 (18)	0.053 (2)	0.033 (2)	-0.0032 (17)	-0.005 (2)	0.0018 (19)
C3	0.030 (2)	0.060 (2)	0.033 (2)	-0.0010 (19)	0.004 (2)	0.0060 (19)
C2	0.046 (3)	0.056 (2)	0.047 (3)	-0.005 (2)	0.010 (3)	-0.002 (2)
C1	0.031 (2)	0.069 (3)	0.040 (3)	-0.018 (2)	0.002 (2)	-0.004 (2)
C11	0.028 (2)	0.071 (3)	0.033 (2)	-0.005 (2)	-0.007 (2)	-0.003 (2)
C12	0.031 (2)	0.093 (4)	0.052 (3)	0.012 (3)	-0.014 (3)	-0.004 (3)
C13	0.039 (2)	0.056 (2)	0.046 (3)	0.000 (2)	-0.007(2)	0.006 (2)
C26	0.035 (2)	0.057 (2)	0.049 (3)	0.001 (2)	0.009 (3)	0.003 (2)
C25	0.052 (3)	0.066 (2)	0.044 (3)	-0.005 (2)	0.014 (3)	0.000 (2)
C24	0.051 (3)	0.073 (3)	0.042 (3)	0.000 (3)	0.010 (3)	0.005 (3)
C23	0.041 (3)	0.069 (3)	0.043 (3)	-0.002 (2)	0.004 (3)	0.009 (2)
C22	0.046 (3)	0.071 (3)	0.040 (3)	-0.004 (2)	0.000 (3)	0.010 (2)
C21	0.050 (3)	0.068 (3)	0.039 (3)	0.002 (3)	0.002 (3)	0.010 (2)
C28	0.060 (3)	0.068 (3)	0.044 (3)	-0.014 (3)	0.007 (3)	0.010 (2)
C29	0.051 (3)	0.080 (4)	0.081 (5)	0.004 (3)	0.005 (4)	0.008 (4)
C20	0.073 (5)	0.080 (4)	0.078 (5)	0.015 (4)	0.025 (4)	0.017 (4)
C19	0.074 (4)	0.067 (3)	0.078 (5)	-0.003 (3)	0.038 (4)	-0.009 (3)
C18	0.041 (3)	0.065 (3)	0.049 (3)	-0.002 (2)	0.010 (3)	-0.006 (2)
C17	0.043 (3)	0.064 (3)	0.049 (3)	-0.013 (2)	0.009 (3)	-0.012 (2)
C16	0.047 (3)	0.072 (3)	0.039 (3)	-0.016 (3)	-0.006 (3)	-0.004 (2)
C14	0.028 (2)	0.056 (2)	0.040 (3)	0.0003 (18)	-0.008 (2)	0.002 (2)
C27	0.060 (4)	0.113 (5)	0.060 (4)	0.028 (4)	0.016 (4)	0.009 (4)

Geometric parameters (Å, °)

O1—C10	1.433 (6)	С2—Н2	0.9700	
01—C1	1.447 (7)	C1—C11	1.494 (8)	
O5—C26	1.354 (7)	C1—H1	0.9800	
O5—C3	1.461 (6)	C11—C12	1.482 (7)	
O9—C26	1.196 (7)	C12—H12	0.9700	
O8—C28	1.420 (7)	C12—H11	0.9700	
O8—H40	0.8200	C13—H13	0.9600	
O4—C20	1.400 (9)	C13—H14	0.9600	
O4—C21	1.424 (7)	C13—H15	0.9600	
O6—C16	1.205 (8)	C26—C25	1.490 (8)	
O3—C16	1.341 (7)	C25—C24	1.334 (9)	
O3—C14	1.432 (6)	C25—H31	0.9300	
07—C17	1.399 (8)	C24—C23	1.436 (9)	
07—Н39	0.8200	C24—H30	0.9300	
O2—C12	1.454 (8)	C23—C22	1.313 (8)	
O2—C11	1.463 (6)	C23—H29	0.9300	
C5—C6	1.533 (7)	C22—C21	1.493 (9)	
C5-C14	1.536 (6)	C22—H28	0.9300	
C5—C10	1.549 (7)	C21—C28	1.534 (9)	
C5—C4	1.587 (7)	C21—H27	0.9800	
C10—C9	1.517 (7)	C28—C29	1.511 (10)	
C10—H10	0.9800	C28—H35	0.9800	
C9—C8	1.312 (9)	С29—Н36	0.9600	
С9—Н9	0.9300	С29—Н38	0.9600	
C8—C7	1.500 (10)	С29—Н37	0.9600	
C8—C15	1.504 (9)	C20—C19	1.520 (11)	
C7—C6	1.528 (9)	C20—H26	0.9700	
С7—Н7	0.9700	C20—H25	0.9700	
С7—Н8	0.9700	C19—C18	1.504 (9)	
С6—Н6	0.9700	C19—H24	0.9700	
С6—Н5	0.9700	C19—H23	0.9700	
C15—H18	0.9600	C18—C27	1.540 (9)	
C15—H19	0.9600	C18—C17	1.547 (9)	
C15—H20	0.9600	C18—H22	0.9800	
C4—C11	1.519 (6)	C17—C16	1.499 (8)	
C4—C13	1.531 (6)	C17—H21	0.9800	
C4—C3	1.556 (7)	C14—H16	0.9700	
C3—C2	1.517 (7)	C14—H17	0.9700	
С3—Н4	0.9800	С27—Н34	0.9600	
C2—C1	1.529 (7)	С27—Н33	0.9600	
С2—Н3	0.9700	С27—Н32	0.9600	
C10—O1—C1	113.5 (3)	C4—C13—H13	109.5	
С26—О5—С3	115.8 (4)	C4—C13—H14	109.5	
C28—O8—H40	109.5	H13—C13—H14	109.5	
C20—O4—C21	116.7 (5)	C4—C13—H15	109.5	

C16—O3—C14	115.2 (4)	H13—C13—H15	109.5
С17—О7—Н39	109.5	H14—C13—H15	109.5
C12—O2—C11	61.1 (3)	O9—C26—O5	124.2 (5)
C6—C5—C14	110.8 (4)	O9—C26—C25	126.0 (5)
C6—C5—C10	108.0 (4)	O5—C26—C25	109.8 (5)
C14—C5—C10	104.3 (4)	C24—C25—C26	123.1 (6)
C6—C5—C4	112.0 (4)	С24—С25—Н31	118.4
C14—C5—C4	112.5 (4)	С26—С25—Н31	118.4
C10—C5—C4	108.8 (4)	C25—C24—C23	128.6 (6)
O1—C10—C9	106.0 (4)	С25—С24—Н30	115.7
01	113.4 (4)	C23—C24—H30	115.7
C9—C10—C5	112.6 (4)	C22—C23—C24	122.8 (6)
O1-C10-H10	108.3	С22—С23—Н29	118.6
С9—С10—Н10	108.3	С24—С23—Н29	118.6
С5—С10—Н10	108.3	C23—C22—C21	127.7 (6)
C8—C9—C10	124.5 (5)	C23—C22—H28	116.2
С8—С9—Н9	117.7	C21—C22—H28	116.2
C10—C9—H9	117.7	$04-C_{21}-C_{22}$	111.8 (5)
C9—C8—C7	122.4 (5)	04-C21-C28	107.9 (5)
C9—C8—C15	122.3 (7)	C_{22} C_{21} C_{28}	111.5 (5)
C7—C8—C15	115.3 (6)	04—C21—H27	108.5
C8—C7—C6	112.6 (5)	C22—C21—H27	108.5
C8—C7—H7	109.1	C28—C21—H27	108.5
С6—С7—Н7	109.1	O8—C28—C29	108.1 (6)
С8—С7—Н8	109.1	O8—C28—C21	110.8 (6)
С6—С7—Н8	109.1	C29—C28—C21	111.5 (5)
Н7—С7—Н8	107.8	O8—C28—H35	108.8
C7—C6—C5	113.0 (5)	С29—С28—Н35	108.8
С7—С6—Н6	109.0	С21—С28—Н35	108.8
С5—С6—Н6	109.0	С28—С29—Н36	109.5
С7—С6—Н5	109.0	С28—С29—Н38	109.5
С5—С6—Н5	109.0	Н36—С29—Н38	109.5
H6—C6—H5	107.8	С28—С29—Н37	109.5
С8—С15—Н18	109.5	Н36—С29—Н37	109.5
С8—С15—Н19	109.5	Н38—С29—Н37	109.5
H18—C15—H19	109.5	O4—C20—C19	110.4 (7)
С8—С15—Н20	109.5	O4—C20—H26	109.6
H18—C15—H20	109.5	С19—С20—Н26	109.6
H19—C15—H20	109.5	O4—C20—H25	109.6
C11—C4—C13	112.9 (4)	С19—С20—Н25	109.6
C11—C4—C3	100.0 (4)	H26—C20—H25	108.1
C13—C4—C3	115.3 (4)	C18—C19—C20	114.6 (6)
C11—C4—C5	106.3 (4)	C18—C19—H24	108.6
C13—C4—C5	113.2 (4)	С20—С19—Н24	108.6
C3—C4—C5	108.0 (4)	C18—C19—H23	108.6
O5—C3—C2	107.2 (4)	C20—C19—H23	108.6
O5—C3—C4	111.1 (4)	H24—C19—H23	107.6
C2—C3—C4	106.6 (4)	C19—C18—C27	113.7 (6)
	× /		× /

O5 C3 H4	110.6	C10 C18 C17	1117(5)
$C_2 C_3 H_4$	110.0	$C_{19} = C_{18} = C_{17}$	111.7(3)
$C_2 = C_3 = H_4$	110.0	$C_2/-C_{10}$ C_{10} C_{10	108.8 (3)
C4 - C3 - H4	110.0	C19 - C10 - H22	107.5
$C_3 = C_2 = C_1$	106.1 (4)	$C_2/-C_{18}-H_{22}$	107.5
C3-C2-H3	110.5	C1/C18H22	107.5
C1—C2—H3	110.5	0/	111.5 (6)
C3—C2—H2	110.5	0/	109.4 (5)
C1—C2—H2	110.5	C16—C17—C18	109.9 (5)
H3—C2—H2	108.7	O7—C17—H21	108.7
01—C1—C11	107.1 (4)	C16—C17—H21	108.7
O1—C1—C2	113.3 (5)	C18—C17—H21	108.7
C11—C1—C2	100.9 (4)	O6—C16—O3	122.4 (6)
O1-C1-H1	111.6	O6—C16—C17	126.1 (5)
C11—C1—H1	111.6	O3—C16—C17	111.5 (5)
C2—C1—H1	111.6	O3—C14—C5	111.5 (4)
O2—C11—C12	59.2 (4)	O3—C14—H16	109.3
O2—C11—C1	114.5 (4)	C5—C14—H16	109.3
C12—C11—C1	124.4 (5)	O3—C14—H17	109.3
O2—C11—C4	117.5 (4)	C5—C14—H17	109.3
C12-C11-C4	127.9 (5)	H16-C14-H17	108.0
C1-C11-C4	104.7(4)	$C_{18} - C_{27} - H_{34}$	109.5
02-C12-C11	59 8 (3)	C_{18} C_{27} H_{33}	109.5
02 - C12 - H12	117.8	H_{34} C_{27} H_{33}	109.5
$C_{11} = C_{12} = H_{12}$	117.8	$1134 - C_27 - 1133$	109.5
C12 - C12 - H12	117.0	124 - 627 - 1122	109.5
	117.0	$H_{34} - C_{27} - H_{32}$	109.5
	117.8	H33-C27-H32	109.5
H12-C12-H11	114.9		
	175.2 (4)		
CIOICI0C9	1/5.3 (4)	01-01-01-04	72.6 (5)
CI_0I_CI0_CS	51.3 (6)	C2_C1_C11_C4	-46.2 (5)
C6—C5—C10—O1	75.4 (5)	C13—C4—C11—O2	38.3 (6)
C14—C5—C10—O1	-166.6 (4)	C3—C4—C11—O2	-84.8 (5)
C4—C5—C10—O1	-46.4 (5)	C5—C4—C11—O2	162.9 (4)
C6—C5—C10—C9	-44.8 (5)	C13—C4—C11—C12	-32.7 (8)
C14—C5—C10—C9	73.1 (5)	C3—C4—C11—C12	-155.8 (6)
C4—C5—C10—C9	-166.6 (4)	C5-C4-C11-C12	92.0 (6)
O1—C10—C9—C8	-106.0 (6)	C13—C4—C11—C1	166.6 (4)
C5—C10—C9—C8	18.4 (7)	C3—C4—C11—C1	43.5 (5)
C10—C9—C8—C7	-2.6 (9)	C5-C4-C11-C1	-68.8 (5)
C10—C9—C8—C15	179.8 (6)	C1—C11—C12—O2	-100.1 (6)
C9—C8—C7—C6	15.4 (8)	C4—C11—C12—O2	102.5 (6)
C15—C8—C7—C6	-166.9(5)	C3—O5—C26—O9	-0.5 (7)
C8—C7—C6—C5	-44.7 (7)	C3—O5—C26—C25	179.5 (4)
C14—C5—C6—C7	-54.1 (6)	O9—C26—C25—C24	-29.4(9)
C10-C5-C6-C7	59 5 (6)	05-C26-C25-C24	150.5(6)
C4-C5-C6-C7	179 4 (5)	$C_{26} = C_{25} = C_{24} = C_{23}$	-45(10)
C_{6} C_{5} C_{4} C_{11}	-639(5)	$C_{25} = C_{24} = C_{23} = C_{23}$	-1700(7)
C14 C5 C4 C11	1705(4)	$C_{23} = C_{23} = C_{23} = C_{24} = C_{23} = C$	17/3(6)
U14-UJ-U4-UII	1/0.2 (4)	U2 H U2JUU22UU21	1/4.3(0)

C10—C5—C4—C11	55.5 (5)	C20—O4—C21—C22	-105.1 (6)
C6-C5-C4-C13	60.6 (5)	C20—O4—C21—C28	131.9 (6)
C14—C5—C4—C13	-65.0 (5)	C23—C22—C21—O4	6.8 (9)
C10-C5-C4-C13	180.0 (4)	C23—C22—C21—C28	127.7 (6)
C6—C5—C4—C3	-170.5 (4)	O4—C21—C28—O8	-68.0 (6)
C14—C5—C4—C3	64.0 (5)	C22—C21—C28—O8	168.8 (5)
C10—C5—C4—C3	-51.1 (5)	O4—C21—C28—C29	52.4 (7)
C26—O5—C3—C2	-153.7 (4)	C22—C21—C28—C29	-70.7 (7)
C26—O5—C3—C4	90.3 (5)	C21—O4—C20—C19	179.8 (6)
C11—C4—C3—O5	92.9 (5)	O4—C20—C19—C18	-61.6 (9)
C13—C4—C3—O5	-28.5 (6)	C20-C19-C18-C27	80.2 (9)
C5—C4—C3—O5	-156.2 (4)	C20-C19-C18-C17	-156.2 (6)
C11—C4—C3—C2	-23.6 (5)	C19—C18—C17—O7	-69.4 (8)
C13—C4—C3—C2	-145.0 (5)	C27—C18—C17—O7	57.0 (7)
C5—C4—C3—C2	87.3 (5)	C19—C18—C17—C16	167.9 (6)
O5—C3—C2—C1	-122.6 (5)	C27—C18—C17—C16	-65.8 (7)
C4—C3—C2—C1	-3.5 (6)	C14—O3—C16—O6	-7.9 (9)
C10-01-C1-C11	-64.0 (5)	C14—O3—C16—C17	170.8 (5)
C10-01-C1-C2	46.4 (6)	O7—C17—C16—O6	-12.6 (9)
C3—C2—C1—O1	-84.4 (5)	C18—C17—C16—O6	109.0 (8)
C3—C2—C1—C11	29.8 (6)	O7—C17—C16—O3	168.7 (5)
C12—O2—C11—C1	116.8 (6)	C18—C17—C16—O3	-69.7 (6)
C12—O2—C11—C4	-119.7 (6)	C16—O3—C14—C5	168.2 (4)
O1—C1—C11—O2	-157.3 (4)	C6—C5—C14—O3	-50.8 (6)
C2-C1-C11-O2	83.9 (5)	C10—C5—C14—O3	-166.8 (4)
O1—C1—C11—C12	-89.1 (6)	C4—C5—C14—O3	75.4 (5)
C2-C1-C11-C12	152.1 (6)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
O8—H40···O2 ⁱ	0.82	2.13	2.921 (6)	161
O7—H39…O8 ⁱⁱ	0.82	1.99	2.785 (7)	164

Symmetry codes: (i) -x+1, y+1/2, -z+1/2; (ii) x-1/2, -y+3/2, -z+1.