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Abstract. Aldehyde dehydrogenase 1 family member A1 
(ALDH1A1) is a member of the aldehyde dehydrogenase gene 
subfamily that encode enzymes with the ability to oxidize reti‑
naldehyde. It was recently shown that high ALDH1A1 RNA 
abundance correlates with a poor prognosis in acute myeloid 
leukemia (AML). AML is a hematopoietic malignancy associ‑
ated with high morbidity and mortality rates. Although there 
are a number of agents that inhibit ALDH activity, it would 
be crucial to develop methodologies for adjustable genetic 
interference, which would permit interventions on several 
oncogenic pathways in parallel. Intervention in multiple 
oncogenic pathways is theoretically possible with microRNAs 
(miRNAs or miRs), a class of small non‑coding RNAs that 
have emerged as key regulators of gene expression in AML. 
A number of miRNAs have shown the ability to interfere 
with ALDH1A1 gene expression directly in solid tumor cells, 
and these miRNAs can be evaluated in AML model systems. 
There are indications that a few of these miRNAs actually do 
have an association with AML disease course, rendering them 
a promising target for genetic intervention in AML cells.
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1. Introduction

Aldehyde dehydrogenases (ALDHs) comprise a family of 19 
NAD(P+)‑dependent enzymes that metabolize endogenously 
and exogenously produced aldehydes, by irreversibly cata‑
lyzing their oxidation to their respective carboxylic acids (1,2). 
ALDHs have a broad spectrum of biological activities, 
including but not limited to biosynthesis of retinoic acid and 
alcohol metabolism.

ALDHs are expressed in stem cells in general; ALDHs to 
some extent are also expressed in cancer cells that resemble 
normal stem cells in terms of cell cycle dormancy and meta‑
bolic adjustments for decreased generation of reactive oxygen 
species (3). These cancer cells with slower proliferation most 
often have tumor‑initiating properties and tend to be resistant 
to chemotherapy and cytotoxic agents. Their capacity to 
withstand oxidative stress is limited, but it is noteworthy that 
they may give rise to aggressive cancer cell clones with a high 
pace of proliferation and growth (4‑5). Some of these effects 
are often attributed to polyploid cancer cells (6), or to cancer 
cells that have been fused to macrophages or other non‑tumor 
cells  (7,8); however the cancer ‘stem‑like’ cells are not 
exclusively polyploid. Furthermore, the degree of metabolic 
dormancy and the precise phase of cell cycle arrest vary, as 
well as the readiness to re‑enter the cell cycle (9). The shared 
aspect among these cell phenotypes is that they all exhibit 
an obligatory state of arrested tumor growth, which confers 
cancer resistance to adverse conditions.

Quiescent cells are in a metabolic state that generates a 
lower level of oxidative stress, thus resulting in decreased 
expression of enzymes that protect from reactive oxygen 
species. However, the cancer stem‑like cells have alterations 
in chromatin in key genes that encode enzymes operating 
as components of essential antioxidant systems. These chro‑
matin alterations allow them to express those genes rapidly 
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and therefore adapt and survive acute exposure to oxidant 
stress (5,10). During chemotherapy or inflammation, in the 
critical phase of cytotoxic exposure that causes cell stress 
and growth suppression, ALDH enzymes may protect cancer 
stem cells (CSCs), before favorable conditions and appropriate 
stimuli permit the generation of daughter clones with different 
phenotypes. A key member of the ALDH family that possesses 
properties that are well‑suited to its central role in the initial 
cellular recovery, occurring prior to the acute expression of 
key rapid‑response genes, is aldehyde dehydrogenase 1 family 
member A1 (ALDH1A1) (11).

ALDH1A1 is a member of the aldehyde dehydrogenase 
gene subfamily that encodes enzymes with the ability to oxidize 
retinaldehyde, owing to a larger substrate entry channel (1,12). 
The protein ALDH1A1, which localizes to the cytosol and the 
nucleus, is overexpressed in a number of diverse cancer types; 
however it is not consistently associated with a negative disease 
prognosis: ALDH1A1 plays the role of a tumor suppressor 
under certain conditions that can be attributed to the mainte‑
nance of an optimal intracellular milieu. Its precise funtion in 
normal stem cells, such as hematopoietic stem cells (HSCs), 
is indicated by research findings that suggest a degree of 
redundancy between certain similar ALDH enzymes (13,14). 
Nevertheless, ALDH1A1 is an enzyme with critical functions 
in CSCs (2). In contrast to normal HSCs, in some leukemia 
cells ALDH1A1 may posses non‑redundant functions.

Acute myeloid leukemia (AML), is a hematopoietic malig‑
nancy associated with high morbidity and mortality rates (15). 
Understanding the molecular mechanisms underlying AML 
is crucial for developing effective therapies. The expression 
of ALDH1A1 specifically protects leukemia‑initiating cells 
(LSCs) from a number of antineoplastic agents; i) protec‑
tion from cyclophosphamide by ALDH1A1 gene transfer 
in cultured cells  (16), and ii)  conversely, ALDH1A1 gene 
knockout sensitizes LSCs to cyclophosphamide (17), while 
the enzymatic activity of ALDH in AML blast cells, has been 
proven to be essential for the establishment of human AML 
xenografts in mice (18‑20). ALDH(+) cells from samples of 
patients with AML with ≥1.9% ALDH(+) cells were quiescent, 
refractory to cytarabine treatment, and capable of leukemic 
engraftment in a xenogenic mouse transplantation model (21).

Conversely, AML cells null for ALDH1A1 RNA expres‑
sion were obtained from patients with a favorable prognosis, 
and were sensitive to chemotherapeutic agents (22).

It is important to emphasize that even after genera‑
tion of a multi‑omic profile of samples of patients with 
AML, the integrated classification continues to categorize 
ALDH1A1‑overexpressing samples to the worst AML prog‑
nosis group: This analysis indicates the significant impact of 
ALDH1A1‑expressing AML cells in an unfavorable disease 
course (23).

2. Biological links between AML, miRNAs and ALDH1A1

It was recently shown that ALDH1A1 RNA abundance is corre‑
lated with the outcome of AML; especially when compared 
to the other members of the ALDH family, ALDH1A1 had 
the greatest statistical capacity to differentiate between 
patients with AML with a favorable and an unfavorable 
prognosis (24,25). A number of agents are known to inhibit 

ALDH activity, with at least one, DIMATE, demonstrating 
the ability to selectively kill LSCs while leaving normal HSCs 
intact (26). However, there is always room for improvement, 
especially in respect to the development of methodologies for 
genetic interference.

The need to develop alternatives arises from the plasticity 
of leukemia cell populations, that allows the emergence of 
altered phenotypes. This is due to the capacity of leukemia 
stem‑like cells to undergo phenotype changes in response to 
the metabolite content of their microenvironment, and most 
notably, in response to changes in the oxidative state (4,27).

Over a decade ago, miRNAs, a class of noncoding RNAs, 
emerged as key regulators of gene expression in AML, making 
them one of several potential avenues for genetic intervention 
in AML cells (28). Especially relevant in AML biology, are 
the mutual interactions between miRNAs, including miR‑146 
for example, with NF‑κB, a transcription factor that regulates 
a substantial proportion of inflammatory genes and miRNAs 
involved in malignant progression (29‑31). In addition, recent 
data suggest a strong association of miRNA expression with 
macrophage polarization, which regulates immune responses 
against AML  (32). The list of miRNAs and their mRNA 
targets that are relevant in AML disease progression continues 
to grow, rendering therapeutic manipulation of miRNAs an 
increasingly relevant aim, especially in light of interesting 
preclinical data that emerge from a recent study (33).

As examined in the present review, the interactions 
between miRNAs and ALDH1A1 can be complex and not 
ubiquitous between different cell phenotypes. In other words, 
the mutual effects between a given miRNA and ALDH1A1 
can be enhancing or suppressing, but in different cells this may 
change. Furthermore, it cannot be excluded that ALDH1A1 
induces the expression of a given miRNA, which then acts as a 
negative feedback trigger and leads to repression of ALDH1A1. 
For this reason, in the present review, the miRNAs that have 
exhibited potential to act directly on ALDH1A1 expression are 
focused on, since this type of interaction can be expected to 
have the least variability.

3. miRNAs that may be included in the list of miRNAs with 
the potential to target ALDH1A1

There is a substantial number of miRNAs that may target the 
gene ALDH1A1. A few of them have already been recognized 
as tumor suppressors in AML, making their preclinical assay 
the next step forward in elucidating their application potential. 
As is reviewed next, experiments on cultured cells provide 
direct evidence, while bioinformatic analysis also suggests that 
there are numerous miRNAs that interfere with ALDH1A1 
expression.

A number of the prospective ALDH1A1‑interacting 
miRNAs have been identified via high‑throughput sequencing 
of RNA isolated by cross‑linking immunoprecipitation 
(HITS‑CLIP), by photoactivatable ribonucleoside‑enhanced 
CLIP [PAR‑CLIP], and similar methods, aimed to determine 
the Argonaut: miRNA binding sites in the transcriptome, as a 
means for localizing the RNA bound by each relevant species, 
since Argonaute proteins use small RNA guides to identify 
complementary sites in transcripts targeted for silencing or 
repression (34).



INTERNATIONAL JOURNAL OF ONCOLOGY  65:  115,  2024 3

As will be discussed further, both activating as well as 
repressing miRNAs have been identified. For some miRNAs, 
experimental evidence has directly demonstrated their 
capacity to interfere with ALDH1A1 expression negatively, 
making them thereby strong candidates for further research.

In  vitro assays of miRNAs interfering with ALDH1A1 
expression. In leukemia study models, there are no published 
studies that examine direct interference of miRNAs with 
ALDH1A1 gene expression. However, there are a few studies 
on solid tumor model systems that describe ALDH1A1 
RNA‑interacting miRNAs.

The human papillomavirus HPV16 caused an increase 
both in ALDH1A1 mRNA as well as ALDH1 enzymatic 
activity in oropharyngeal squamous cell carcinoma cells, 
which was mediated by repressing miR‑181a/d, two miRNAs, 
that otherwise suppressed anchorage independent growth and 
CSC phenotype (35). However, in AML research, miR‑181a 
has shown both favorable as well as unfavorable prognostic 
associations and molecular mechanistic effects, rendering this 
miRNA a challenging candidate for developing ALDH1A1 
inhibitors for AML (36‑40). One potential use for miR‑181a, 
based on both favorable and unfavorable associations, is the 
trigger of cell proliferation to render AML cells sensitive to 
both pharmacological, as well as immunological intervention. 
Preclinical studies have shown encouraging results, making 
miR‑181a, a candidate for context‑dependent development of 
interventions (40).

In gastric cancer cells, miR‑625 reversed multidrug resis‑
tance by repressing ALDH1A1; miR‑625 silencing increased 
the IC50 values of four chemotherapeutic agents (ADR, VCR, 
5FU and CDDP). Depletion of ALDH1A1 by siRNA reversed 
those effects (41). In AML, miR‑625 has shown the potential 
to suppress metastatic and proliferative functions (42), cell 
viability (43,44) and invasiveness (45). miR‑625 is therefore 
a noteworthy candidate for repression of ALDH1A1 in AML.

In breast cancer, it was revealed that miR‑140 was signifi‑
cantly downregulated in stem‑like cells from ductal carcinoma 
in situ tumor cells in comparison to normal mammary stem 
cells. miR‑140 directly targeted the 3' untranslated region of 
ALDH1A1, to inhibit protein expression (46). miR‑140 has 
shown the ability to function as a tumor suppressor in AML 
study models (47,48), and a previous study demonstrated the 
same effect specifically for miR‑140‑3p (49). miR‑140 is there‑
fore a plausible candidate for inhibition of ALDH1A1 in AML 
model systems, where it can be examined to verify whether 
it functions via the same mechanism as that in breast cancer 
cells. To underscore the importance of the evidence provided 
for miR‑140 regulation of ALDH1A1, the widely recognized 
curated miRNA platform, miRTarBase, only selected miR‑140 
as a candidate regulator for ALDH1A1 (50,51). In addition, 
the database, mirtargetlink 2.0, confirmed this assessment 
(miR‑140‑5p, as supported by the experimental evidence), with 
the additional listing of miR‑181a‑5p as weakly supported, due 
to the lack of experimental evidence (52) (Fig. 1).

In cervical CSCs derived from tumorspheres of the cell 
lines, Hela and CaSki, miR‑23b reduced ALDH1A1 protein 
levels, by specifically binding to the 3'UTR of ALDH1A1 
mRNA. Overexpression of miR‑23b substantially reduced the 
size and number of tumorspheres, and rendered cells sensitive 

to cisplatin (53). miR‑23b appears to decreased in AML (54). 
Re‑expression in leukemia cells can increase oxidative stress, 
by repressing peroxiredoxin III (55). However, miR‑23b has 
been correlated with the Warburg effect and with a poor prog‑
nosis, making its utility in AML uncertain (56).

It can therefore be concluded that from the miRNAs that 
regulate ALDH1A1 in solid tumor study systems, miR‑181, 
miR‑625, miR‑140, and even miR‑23b can be further investi‑
gated to determine their effects on ALDH1A1 in AML. These 
investigations however, must employ a rigorous approach in 
respect to the precise time course, dose response, and dynamic 
distribution in model systems that resemble human tissue as 
close as possible, to address the key issue of context‑dependent 
effects that is pervasive in miRNA biology, and which is also 
evident especially in the case of miR‑23b as aforementioned.

miRNAs predicted to regulate ALDH1A1 expression by bioin‑
fomatic analysis platforms. There are a number of miRNAs 
predicted to target ALDH1A1 as revealed using the miRNA 
database, TarBase  (57), accessed through miRNet2.0  (58). 
These are summarized in Table I. A similar result was obtained 
by directly using the database Tarbase (Table II).

miR‑16 has been revealed to be typically downregulated 
in leukemia, an event which contributes to the uncontrolled 
growth and survival of leukemic cells (59,60). It has been shown 
to be increased in patients with AML in remission (61). In 
murine myeloid cells expressing internal tandem duplications 
of the juxtamembrane region of the gene FLT3 (FLT3/ITD) 
that constitutes a marker for poor prognosis for AML, miR‑16 
was significantly down‑regulated; and conversely, it was 
upregulated upon FLT3 inhibition (62). Its reduced expression 
was revealed to be associated with the dysregulation of several 
target genes involved in cell cycle control and apoptosis (63). 
miR‑16 was demonstrated to target multiple oncogenes and 
regulators of apoptosis, such as BCL2 (an anti‑apoptotic 
protein) and cyclins (involved in cell cycle progression) (60). 

Figure 1. Prospective gene target network for miR‑140‑5p and miR‑181a‑5p 
in human bone marrow with data obtained from miRTarBase v.9 
(https://dianalab.e‑ce.uth.gr/tarbasev9), constructed using miRNet 2.0 
(https://www.mirnet.ca/).
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By targeting these genes, miR‑16 inhibited cell proliferation 
and promoted programmed cell death. Thus, miR‑16 may be 
a prospective candidate for ALDH1A1 inhibition in AML 
model systems, due to the established anti‑leukemic effects of 
this miRNA.

Another miRNA, miR‑34a has been revealed to be associ‑
ated with prognosis in AML (64), and experiments on epithelial 
cancer cells indicate that miR‑34a has the potential to repress 
ALDH1A1, without findings revealing whether repression is 
direct or indirect (65‑67). Research is required to elucidate 
the mechanism of miR‑34a interference with ALDH1A1 
gene expression, and specifically whether or not miR‑34a 
can directly target the 3' untranslated region of ALDH1A1 in 
AML cells.

For the miR‑30 family, members 30a, 30b and 30c, were 
repressed in AML bone marrow samples, while miR‑30d 
was found underexpressed in serum samples of patients with 
chronic lymphocytic leukemia, but an association with AML 
has yet to be shown (68,69). However, in oral squamous cell 
carcinoma specimens, miR‑30a was shown to promote expres‑
sion of ALDH1 member ALDH1A2 (70), making miR‑30a an 
unlikely candidate for development as an ALDH1A1 inhibitor.

Lastly, miR‑200c has exhibited the potential to regulate 
ALDH1A1 expression (71,72) even if this effect can be indi‑
rectly linked to miR‑200c. This miRNA, has shown relevance 
in blocking oncogenic signaling in AML; in particular, 
miR‑200c repression was identified as a key molecular mecha‑
nism of oncogene MUC1 induction of PD‑L1 expression, 
which has a critical function in the progression of AML (73). 
miR‑200c, therefore is a noteworthy candidate to assess its 
potential as an ALDH1A1 inhibitor in AML model systems.

miRNAs with a potential to regulate ALDH1A1 expression. 
Integrating miRNA and mRNA expression profiling in AML 
revealed that miR‑155 has a critical association with immu‑
nity (74). miR‑155 was revealed to suppress ALDH1A1 in a 
solid tumor model. In a metastatic cell line model that allows 
investigation of extravasation and colonization of circulating 
cancer cells to lungs of mice, miR‑155 overexpression in 
tumors suppressed ALDH1A1, PIR and PDCD4 (75). However, 
in AML, miR‑155 has an association with poor disease 
outcome; in cytogenetically normal patients, overexpression of 
miR‑155 was associated with a shorter disease‑free and overall 
survival  (76). miR‑155 was also revealed to be associated 

Table I. List of microRNAs predicted to interfere with ALDH1A1 gene expression.

miRNet	 miR_id	 miR_acc	 Experiment	 PMID or database

mirnet‑hsa‑29920	 hsa‑mir‑181a‑5p	 MIMAT0000256	 qRT‑PCR	 26693182
mirnet‑hsa‑44218	 hsa‑mir‑140‑5p	 MIMAT0000431	 Luc/Wblot	 23752191
mirnet‑hsa‑647281	 hsa‑mir‑185‑5p	 MIMAT0000455	 HITS‑CLIP	 TarBase
mirnet‑hsa‑647282	 hsa‑mir‑200c‑3p	 MIMAT0000617	 PAR‑CLIP	 TarBase
mirnet‑hsa‑647283	 hsa‑mir‑21‑5p	 MIMAT0000076	 PAR‑CLIP	 TarBase
mirnet‑hsa‑647284	 hsa‑mir‑221‑3p	 MIMAT0000278	 HITS‑CLIP	 TarBase
mirnet‑hsa‑647285	 hsa‑mir‑221‑5p	 MIMAT0004568	 HITS‑CLIP	 TarBase
mirnet‑hsa‑647286	 hsa‑mir‑222‑3p	 MIMAT0000279	 HITS‑CLIP	 TarBase
mirnet‑hsa‑647287	 hsa‑mir‑222‑5p	 MIMAT0004569	 HITS‑CLIP	 TarBase
mirnet‑hsa‑647288	 hsa‑mir‑22‑5p	 MIMAT0004495	 HITS‑CLIP	 TarBase
mirnet‑hsa‑647289	 hsa‑mir‑362‑3p	 MIMAT0004683	 HITS‑CLIP	 TarBase
mirnet‑hsa‑647290	 hsa‑mir‑374a‑3p	 MIMAT0004688	 HITS‑CLIP	 TarBase
mirnet‑hsa‑647291	 hsa‑mir‑4517	 MIMAT0019054	 PAR‑CLIP	 TarBase
mirnet‑hsa‑647292	 hsa‑let‑7b‑5p	 MIMAT0000063	 Microarrays	 TarBase
mirnet‑hsa‑647293	 hsa‑mir‑103a‑3p	 MIMAT0000101	 Microarrays	 TarBase
mirnet‑hsa‑647294	 hsa‑mir‑107	 MIMAT0000104	 Microarrays	 TarBase
mirnet‑hsa‑647295	 hsa‑mir‑16‑5p	 MIMAT0000069	 Microarrays	 TarBase
mirnet‑hsa‑647296	 hsa‑mir‑191‑5p	 MIMAT0000440	 Microarrays	 TarBase
mirnet‑hsa‑647297	 hsa‑mir‑195‑5p	 MIMAT0000461	 Microarrays	 TarBase
mirnet‑hsa‑647298	 hsa‑mir‑21‑3p	 MIMAT0004494	 Microarrays	 TarBase
mirnet‑hsa‑647299	 hsa‑mir‑210‑3p	 MIMAT0000267	 Microarrays	 TarBase
mirnet‑hsa‑647300	 hsa‑mir‑26a‑5p	 MIMAT0000082	 Microarrays	 TarBase
mirnet‑hsa‑647301	 hsa‑mir‑27a‑5p	 MIMAT0004501	 Microarrays	 TarBase
mirnet‑hsa‑647302	 hsa‑mir‑30d‑5p	 MIMAT0000245	 Microarrays	 TarBase
mirnet‑hsa‑647303	 hsa‑mir‑34b‑5p	 MIMAT0000685	 Microarrays	 TarBase
mirnet‑hsa‑647304	 hsa‑mir‑34c‑5p	 MIMAT0000686	 Microarrays	 TarBase
mirnet‑hsa‑647305	 hsa‑mir‑941	 MIMAT0004984	 Microarrays	 TarBase

Accessed using miRNET (https://www.mirnet.ca/) April 6, 2024. Luc, luciferase; Wblot, western blotting; 3p, 3 prime; 5p, 5 prime.
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with a ‘core enriched’ stem cell gene expression score; other 
miRNAs that were associated with this score were miRNAs 
known to be highly expressed and functionally relevant in 
embryonic (miR‑20a) (77) or HSCs (miR‑99, miR‑125a/b and 
miR‑126) (78). For some miRs in that signature (the ‘core 
enriched’ stem cell gene expression score), there are functional 
studies showing that their overexpression causes leukemia in 
model systems [miR‑92a (79) and miR‑125b (80)]. Furthermore, 
primary AML blast cells harboring the FLT3‑ITD mutation 
had high expression of miR‑155; 8‑chloro‑adenosine killed 
LSCs and supressed miR‑155 without killing normal stem 
cells (81). Other miRNAs that regulate the maintenance of 
stemness of primitive hematopoietic progenitor cells, include 
miR‑22 and miR‑29 (82).

A notable observation was made with another miRNA, 
namely miR‑143; overexpression of a miR‑143‑3p mimic 
repressed viability and proliferation of AML cells and over‑
expression of lysine acetyltransferase 6A (KAT6A) partially 
reversed the inhibitory effects of the miR‑143‑3p mimic on 
viability and proliferation of AML cells. A miR‑143‑3p mimic 
decreased the expression levels of IL‑1β, TNF‑α and IL‑6, and 
increased the expression levels of TGF‑β and IL‑10 (83). The 
induction of TGF‑β and IL‑10 may be potentially detrimental 
in AML, if these two cytokines are secreted by AML cells in 
the microenviroment, since they can have a negative effect on 

the antitumor immune response by inhibiting the function of T 
cells (84). Nevertheless their effects require extensive charac‑
terization in more clinically‑relevant research models (85,86).

It is extremely important to emphasize that the role of indi‑
vidual miRNAs is highly context‑dependent; overexpression 
of miR‑125b in osteoblasts, for example, leads to increased 
bone mass and strength, while preserving bone formation and 
quality (87). Thus, it is crucial to determine the characteris‑
tics of any given miRNA before selecting it for intervention. 
Furthermore, any such intervention can be expected to have 
complex pathological consequences, which necessitates a 
precise understanding of the effects of any given miRNA.

Impact of the ALDH1A1‑targeting miRNAs on the cellular 
phenotype. As aforementioned, the interaction between 
miRNAs and ALDH1A1 may not have ubiquitous effects for all 
cell types, due to the complexity of their interacting pathways. 
In this context, it is not yet known whether the interactions 
between the aforementioned miRNAs and ALDH1A1 occur in 
all cell types, and especially in AML cells. However, there are 
also indications that miRNA‑mediated control of ALDH1A1 
levels in cells may function as part of a general adaptation 
mechanism and should be further investigated. For example, 
the expression of most of the miRNAs aforementioned has 
been revealed to be regulated by TGF‑β, and it was shown that 

Table II. List of microRNA species that interfere with ALDH1A1 expression.

miRNA_name	 miRNA_id	 Experiments	 Publications	 Cell_lines	 micro_tscore

hsa‑miR‑103a‑3p	 MIMAT0000101	 2	 2	 2	 ‑0.27
hsa‑miR‑15a‑5p	 MIMAT0000068	 2	 2	 1	 0.37
hsa‑miR‑16‑5p	 MIMAT0000069	 2	 2	 2	 0.46
hsa‑miR‑210‑3p	 MIMAT0000267	 2	 1	 2	 0.42
hsa‑miR‑26b‑5p	 MIMAT0000083	 2	 2	 2	 0.62
hsa‑miR‑34a‑5p	 MIMAT0000255	 2	 2	 2	 ‑1
hsa‑let‑7g‑3p	 MIMAT0004584	 1	 1	 1	 ‑1
hsa‑miR‑101‑3p	 MIMAT0000099	 1	 1	 1	 ‑1
hsa‑miR‑107	 MIMAT0000104	 1	 1	 1	 ‑1
hsa‑miR‑1271‑3p	 MIMAT0022712	 1	 1	 1	 ‑1
hsa‑miR‑130a‑3p	 MIMAT0000425	 1	 1	 1	 ‑1
hsa‑miR‑130b‑3p	 MIMAT0000691	 1	 1	 1	 ‑1
hsa‑miR‑195‑5p	 MIMAT0000461	 1	 1	 1	 ‑1
hsa‑miR‑199a‑3p	 MIMAT0000232	 1	 1	 1	 ‑1
hsa‑miR‑199b‑3p	 MIMAT0004563	 1	 1	 1	 ‑1
hsa‑miR‑21‑5p	 MIMAT0000076	 1	 1	 1	 0.74
hsa‑miR‑221‑5p	 MIMAT0004568	 1	 1	 1	 0.41
hsa‑miR‑29b‑3p	 MIMAT0000100	 1	 1	 1	 ‑1
hsa‑miR‑301a‑3p	 MIMAT0000688	 1	 1	 1	 ‑1
hsa‑miR‑301b‑3p	 MIMAT0004958	 1	 1	 1	 ‑1
hsa‑miR‑30d‑5p	 MIMAT0000245	 1	 1	 1	 ‑1
hsa‑miR‑454‑3p	 MIMAT0003885	 1	 1	 1	 ‑1
hsa‑miR‑542‑5p	 MIMAT0003340	 1	 1	 1	 0.38
hsa‑miR‑941	 MIMAT0004984	 1	 1	 1	 ‑1

Data obtained from platform TarBase v.9 (https://dianalab.e‑ce.uth.gr/tarbasev9) (accessed April 6, 2024).
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they are involved in the process of epithelial‑mesenchymal 
transition (EMT); in particular, miR‑140 suppressed the TGF‑β 
pathway in mouse embryonic fibroblasts and conversely, 
TGF‑β suppressed the accumulation of miR‑140 forming 
a double negative feedback loop (88). EMT is a phenotype 
adaptation that is triggered in cells to adjust to new conditions, 
which is not limited for epithelial cells as the name suggests, 
but it is also used by various types of acute leukemia cells (89). 
In this sense, after being stimulated by various factors in the 
local microenvironment, including TGF‑β, transcriptional 
reprogramming is activated to transform cells into a mesen‑
chymal phenotype (90). As regards CSCs, numerous studies 
have reported that cells undergoing EMT exhibit CSC or 
CSC‑like properties (91,92) under the influence of TGF‑β (93). 
On the other hand, core pathways operating in CSCs may also 
induce EMT. For example, ALDH1A1 and ALDH1A3 may 
induce TGF‑β expression by activating retinoic acid receptor, 
RARA, and androgen receptor in prostate cancer  (94). In 
concordance, retinoic acid was shown to increase TGF‑β2 
expression and secretion of active and latent forms of TGF‑β2 
in pancreatic cancer cells (95).

Prospects of targeting miRNAs that regulate ALDH1A1 
expression. Although the field of RNA therapeutics has made 
substantial progress over the last decade, there are currently 
only a few miRNAs that are clinically targeted in intervention 
studies (96), due to the observation of off‑target effects and 
toxicity (97). This is to be expected given the complex manner 
of miRNA function.

Of the miRNAs reviewed herein, only two are currently 
targets of intervention in clinical trials, namely miR‑29 and 
miR‑155.

Cobomarsen (MRG‑106) is a miR‑155 inhibitor developed 
by Viridian Therapeutics, and has demonstrated efficacy in the 
treatment of cutaneous T‑cell lymphoma (98).

In addition, Remlarsen and MRG‑229 also developed 
by the same manufacturer, are miR‑29 mimics. Remlarsen 
repressed collagen expression and the development of fibro‑
plasia in incisional skin wounds (99). MRG‑229, developed for 
idiopathic pulmonary fibrosis, reduces experimentally induced 
fibrotic activity in both in vitro and ex vivo (lung slices derived 
from donors without a history of lung disease) human disease 
models in non‑human primates, and was reportedly well 
tolerated at clinically relevant doses with no adverse findings 
observed (100).

By contrast, numerous studies focus on developing 
miRNA‑based biomarker applications, such as the study 
NCT05809050, ‘Study of miRNA‑155 in Acute Leukemia’.

4. miRNAs that can be studied further in model systems 
for AML preclinical drug development, based on database 
output

In conclusion, in AML research, ALDH1A1 repression by 
miRNAs is a rather under‑studied topic. From the miRNAs 
identified through bioinformatic analysis, it is suggested 
that miR‑16 and possibly also miR‑200, are potential candi‑
dates for further analyses. To underscore this assessment, 
miR‑16‑5p was implicated by miRNet in ALDH1A1 regula‑
tion in chronic myeloid leukemia  (101). Another potential 

incentive for considering miR‑16 development, is the rather 
acceptable safety profile observed in a phase 1 clinical trial 
for patients with recurrent malignant pleural mesothelioma. 
The approach undertaken was to use ‘bacterial minicells’, 
which were anucleate nanoparticles produced by inactivating 
the genes that control normal bacterial cell division, allowing 
efficient packaging of cytotoxic drugs and internalization into 
cancer cells (102). In acute lymphoblastic leukemia (ALL), a 
distinct type of leukemia from AML, miR‑16‑5p was proposed 
to enhance sensitivity to the p53‑Mdm2 inhibitor, RG7388, 
which was evaluated in a clinical trial (NCT04029688) (103), 
making an application of miR‑16‑5p in ALL at least theo‑
retically conceivable. To support this additional prospective 
application research, when examining RNA samples from 
pediatric patients with either AML or ALL using the 
program ‘Therapeutically Applicable Research to Generate 
Effective Treatments (TARGET)’ (https://www.cancer.
gov/ccg/research/genome‑sequencing/target/about) (104,105), 
it becomes apparent that high ALDH1A1 RNA expression is 
associated with a decreased patient survival in both types of 
acute leukemia (Fig. 2). In general however, caution should 
be exercised when translating the data for the miR‑16‑5p 
regulation of ALDH1A1, for the development of prospective 
preclinical treatment schemes, either for AML or for ALL.

Nevertheless, the miRNAs identified as direct regulators 
of ALDH1A1 in solid tumor cell studies, namely miR‑181a/b, 
miR‑625, miR‑140 and miR‑23b, can be studied in preclinical 
AML model systems with an anticipated beneficial outcome. 
This assumption is based on the implication of their repres‑
sion in mechanisms of leukemia progression, which suggests 
that their exogenous re‑introduction could inhibit at least 
a portion of the leukemic clones, prompting the question of 
whether these clones comprise cells expressing high levels of 
ALDH1A1 RNA.

The available miRNA database information and the 
existing experimental evidence render it possible to imple‑
ment a strategy for the development of candidate inhibitors of 
ALDH1A1 expression (Fig. 3), taking into account the impact 
of the miRNA candidates on the metabolic status of the cells, 
where the inhibition is aimed to take place.

Although several miRNAs, especially miR‑181, have been 
identified as prospective candidates for the development of 
AML therapy, in clinical trials, miRNAs are mostly evaluated 
as prospective biomarkers (40).

Prospective delivery methods and study systems for targeting 
miRNAs that regulate ALDH1A1 expression. miRNAs 
can be delivered to the bone marrow through a number 
of methodological developments that include exosomal 
delivery, activated hydrogel, cell‑specific ligand‑decorated 
nanocarriers, and encapsulating co‑polymers (60,106‑109). 
The advances that have been made during the last 10 years 
in RNA therapeutic applications, and in particular in small 
interfering RNAs, can help accelerate progress of research 
in miRNA delivery  (96). Strategies explored in miRNA 
delivery research include lipid‑based nanoparticles, polymeric 
vectors, dendrimer‑based vectors, cell‑derived membrane 
vesicles, three‑dimensional scaffolds, as well as biodegrad‑
able and biocompatible nanoparticles derived from polymers 
and metals (110). Antagonists of miRNAs may be clinically 
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evaluated using antisence oligonucleotides, an approach that 
currently appears most feasible (111,112).

Recently, a novel approach that was based on program‑
mable editing of primary miRNA, switched stem cell 
differentiation and improved tissue regeneration, promoting 
in  vitro cartilage formation and calvarial bone healing 
in rats  (113). The bone, and especially the bone marrow, 
are targets for potential anti‑osteoporosis treatments in 
experimental research  (114). Furthermore, treatments for 
bone metastasis for solid tumors may affect not only tumor 
cells but also the balance between osteoclasts and osteo‑
blasts, and thereby modulate the properties of the bone as 
a niche (115‑117). While the development of such applica‑
tions is not directly related to AML, it is a field that may 
provide effective methods for delivery of miRNAs into the 
bone marrow for treatment of AML, also including ex vivo 
manipulation of selected marrow cell types that can be used 
as vehicles with anti‑leukemia activity. Another significant 

development to anticipate are bone marrow organoids, which 
can help bridge in vitro research and clinical applications, 
while limiting the use of animal models (118). The organoids 
can help with the accurate selection of the cell types that 
are targeted with the experimental miRNA‑based interven‑
tion, enabling improved assessment of the outcomes in a 
cell‑specific manner.

Although miRNAs are intensively studied, the complexity 
of their regulation has limited their clinical application mostly 
to a biomarker‑oriented field. However, there are a few studies 
that continue to explore interventions based on direct regula‑
tion of miRNA function (96‑99). In this sense, it is urgent to 
overcome two fundamental problems that may be encountered 
in miRNA‑based therapy. The first is the development of a 
treatment strategy that targets only specific types of cells and 
tissues. Since miRNA target all cells in a systemic applica‑
tion using miRNA mimics without a specific tropism, side 
effects are inevitable. Therefore, the design of target‑selective 
constructs (such as a modified viral vector) that will express a 
specific miRNA based on genetic engineering appears to be a 
more relevant approach (119). In such a case, using a promoter 
of a gene that has limited expression only in target cells (or 
tissues) and placing the miRNA in the construct under the 
control of this promoter may provide possible success in terms 
of ensuring expression only in the intended target cells. The 
second issue that may be encountered in miRNA therapy is the 
off‑target effects caused by miRNAs generally targeting more 
than one mRNA. In fact, overcoming the off‑target effects is 
challenging in the native miRNA‑involving applications when 
compared with the synthetic modified versions of miRNAs. 
Although there have been attempts to increase the selectivity 
and specificity of experimental interventions, significant 

Figure 2. Analysis of the association of RNA expression from the gene ALDH1A1 with overall survival of pediatric patients with either acute myeloid leukemia 
(left panel, P=0.00014; log‑rank test=17.68) or acute lymphoblastic leukemia (right panel, P=0.005; log‑rank test=10.25), performed using the online software 
platform UCSC Xena (https://xenabrowser.net/, accessed on March 10, 2024) (123). The x‑axis corresponds to the time passed in days, and the y‑axis corre‑
sponds to patient overall survival. Units used are log2 (normalized counts +1). The red line corresponds to samples with the highest expression (>8.12, n=65 
for AML; and >8.7, n=60 for ALL). The white line shows samples with intermediate ALDH1A1 mRNA expression (>4.61 and <8.12, n=63 for AML; >6.0 and 
<8.7, n=57 for ALL). Shown by the blue line are samples with the lowest ALDH1A1 RNA expression (<4.61, n=68 for AML; and <6.0, n=62 for ALL). The 
results published in this figure are in whole based upon data generated by the study ‘Therapeutically Applicable Research to Generate Effective Treatments’ 
(https://www.cancer.gov/ccg/research/genome‑sequencing/target) initiative, phs000218. The data used for this analysis are available at the Genomic Data 
Commons (https://portal.gdc.cancer.gov).

Figure 3. Flow diagram of the strategy for developing applications based 
on miRNAs that have been identified as potential regulators of ALDH1A1 
expression.

https://www.spandidos-publications.com/10.3892/ijo.2024.5703
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progress is still required in order to develop approaches that 
permit a rigorous selection of target genes for the artificial 
miRNA constructs (120‑122).

5. Conclusions

Despite extensive research on miRNAs, the intricacy 
of their regulation has limited their clinical application 
mostly to a biomarker‑focused field. However, there are a 
few studies that continue to explore interventions based 
on miRNA regulation. Due to the certainty of off‑target 
effects, it is imperative to accurately ascertain the clusters 
of candidate target genes in relevant model systems. In 
the case of ALDH1A1, while there are miRNAs, such as 
miR‑155 with varying effects in different systems, there are 
other miRNAs that may qualify for preclinical development 
of interventions, such as miR‑181.

It is enticing to consider including miRNA‑targeted 
interventions in standard or experimental AML treatments. 
To combine two novel approaches is extremely risky from 
the point of view of drug development, but may be fruitful 
as an experimental approach for the aim of enriching our 
understanding of AML biology. The next more immediate 
step in drug development would be to consider combining 
miRNA‑targeted interventions with standard AML treat‑
ments. Although combination of miRNA‑based approaches 
with approved anti‑neoplastic agents is an appealing aim, at 
this stage the main challenge that needs to be overcome before 
moving forward, is to determine the methodological approach 
that will permit a greater investment of resources in the field of 
preclinical development of miRNA‑based interventions. The 
reason for recommending this caution is due to the inherent 
complexity of miRNA‑interacting pathways, which inevitably 
exert numerous effects. The primary concern is therefore to 
determine and manage the substantial biomedical impact of 
a given miRNA, before the drugs that are pharmacologically 
compatible with that miRNA can be included into a testing 
protocol.

ALDH1A1 has critical roles in LSC biology and thereby 
in therapy resistance. miRNAs are directly involved in the 
regulation of ALDH1A1 in cells. Although miRNAs directly 
targeting ALDH1A1 have been mostly demonstrated in 
solid tissues, there is a strong possibility that they also target 
ALDH1A1 in LSCs. Given this perspective, it is understand‑
able that these studies are somewhat overlooked, despite the 
critical roles of ALDH1A1 in LSCs and its impact on therapy 
resistance. It is crucial to comprehensively identify miRNAs 
that target ALDH1A1 in both HSCs and LSCs. Once the 
miRNA networks targeting ALDH1A1 in HSCs and LSCs are 
revealed, any differences between the two should be identified 
and the molecular mechanisms that cause these differences 
can then be rigorously investigated.
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