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ABSTRACT: This randomized crossover study investigated the
metabolic and mRNA alterations associated with exposure to high
and low traffic-related air pollution (TRAP) in 50 participants who
were either healthy or were diagnosed with chronic pulmonary
obstructive disease (COPD) or ischemic heart disease (IHD). For the
first time, this study combined transcriptomics and serum metab-
olomics measured in the same participants over multiple time points (2
h before, and 2 and 24 h after exposure) and over two contrasted
exposure regimes to identify potential multiomic modifications linked
to TRAP exposure. With a multivariate normal model, we identified 78
metabolic features and 53 mRNA features associated with at least one
TRAP exposure. Nitrogen dioxide (NO2) emerged as the dominant
pollutant, with 67 unique associated metabolomic features. Pathway
analysis and annotation of metabolic features consistently indicated perturbations in the tryptophan metabolism associated with NO2
exposure, particularly in the gut-microbiome-associated indole pathway. Conditional multiomics networks revealed complex and
intricate mechanisms associated with TRAP exposure, with some effects persisting 24 h after exposure. Our findings indicate that
exposure to TRAP can alter important physiological mechanisms even after a short-term exposure of a 2 h walk. We describe for the
first time a potential link between NO2 exposure and perturbation of the microbiome-related pathways.
KEYWORDS: air pollution, exposome, multiomics, metabolomics, tryptophan

■ INTRODUCTION
Traffic-related air pollution (TRAP) emitted from motor
vehicle tailpipe emissions and brake and tire wear is a major
source of urban air pollution.1,2 TRAP comprises a complex
mixture of gases and particles including nitrogen oxides (NO2
and NOx), particulate matter PM10 and PM2.5, particles with
diameters less than or equal to 10 or 2.5 μm, respectively,
ultrafine particles (particles of diameters less than or equal to
100 nm), and black carbon (BC). TRAP contributes to 25−
40% of the ambient levels of major air pollutants.2,3

Epidemiological evidence has increasingly linked human
exposure to urban particulate matter (PM) with serious
adverse health effects, including increased mortality and
morbidity.4−6 PMs, especially fine PM (PM2.5), may exert

adverse health effects even at low exposures.7 Moreover,
elevated levels of PM2.5 are strongly correlated with increased
chronic obstructive pulmonary disease (COPD) and cardio-
vascular disease prevalence.8−10 Although the underlying
mechanisms are poorly understood, it appears that the
triggering of oxidative stress and inflammatory markers are
fundamental to increasing risk.11−14 Human health studies
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could reveal mechanistic processes and distinct end points
associated with short- and long-term exposure to TRAP-related
pollutants.15 Such studies have shown that a period of physical
activity has beneficial health effects,16−18 although these
benefits may be offset by the impact of TRAP exposure on
cardiopulmonary and lung function, with increases in
inflammatory blood cells observed.19−23 However, the under-
lying biological mechanisms have not been fully elucidated,
and classical epidemiological methods cannot accurately
ascertain the short-term impacts of exposures to TRAP, largely
due to the absence of robust and specific biomarkers. The
advent of omics-based high-throughput technologies allows for
molecular changes and biological pathways associated with
TRAP exposure to be identified at a cellular level, and
underlying pathomolecular mechanisms to be mapped more
precisely.24−27 Metabolomics and transcriptomics provide
powerful analytical methods to understand the molecular and
biochemical pathways triggering a systemic response that can
be observed in the peripheral blood.28,29 Metabolomics
systematically investigates metabolites, such as amino acids,
fatty acids, and lipids, and their impact on oxidative stress and
inflammation pathways, in turn affecting human health and
disease risk.30,31 Untargeted metabolomics offers a valuable
approach to identifying and quantifying the effect of TRAP
exposure on the blood metabolome.28,32,33 Transcriptomics
allows the identification of gene expressions that are differ-
entially induced and can be used as exposure biomarkers.34

Combining metabolomics and transcriptomics obtained from
the same samples offers a more comprehensive approach to
better understand the biological response and the pathways
affected by exposure to TRAP, as it will extend the coverage of
the molecules assayed and include a large variety of both
endogenous and exogenous molecules. Integrating metabolo-
mics and transcriptomics data contributes to systems biology
by allowing for the construction of network models that
represent the interactions between genes and metabolites.
These network models can identify key nodes and edges that
play crucial roles in maintaining the stability of biological
systems, offering insights into how perturbations in these
networks might lead to adverse health effects. In the present
randomized crossover study, we characterize the associations
between short-term exposure to traffic-related air pollution
with metabolomic responses and genetic expression at a
multiomic level among healthy participants and more
vulnerable participants with COPD and ischemic heart disease
(IHD). Our objective was to identify exposure-related
dysregulated (multi-)OMIC patterns that may inform the
mechanistic pathways affected by traffic-related air pollution.

■ MATERIALS AND METHODS
Study Design. The experimental randomized, crossover

study design exposed human subjects at the western end of
Oxford Street, a busy Central London shopping street
restricted to diesel-powered buses and taxicab traffic, and the
nearby 142 ha (about 350 acres) traffic-free area of Hyde Park.
The study has already been described elsewhere.19 In brief, the
study population comprised a total of 120 volunteers, including
healthy volunteers (n = 40), with no evidence of airflow
obstruction, recruited through advertising placed within the
public areas of the Royal Brompton Hospital, and volunteers
with either COPD and no history of IHD (n = 40) or IHD (n
= 40), with no evidence of airflow obstruction, recruited from
the outpatient respiratory and cardiology clinics at the Royal

Brompton & Harefield NHS Foundation Trust.19 One
volunteer with IHD was excluded due to drop-out. All
participants were required to have stopped smoking for at
least 12 months. The study location for the first walk was
randomized with the participants randomly assigned to walk
for 2 h at one of the sites and 3−8 weeks later walk at the other
site, being driven to and from each site in a hybrid car from the
Royal Brompton Hospital. At each site, participants spent 2 h
walking on predefined routes at their own pace from 11 am to
1 pm covering an average distance of 5 km, before being
transported back to the hospital. The study design was highly
standardized for exposures and blood sampling, thereby
reducing the potential for technical confounding and allowing
participants to act as their own control due to blood samples
being taken before and after the experiments. Specifically, a
blood sample was collected in each participant 2 h before, and
2 and 24 h after each walk. Participant information was
collected to measure age, sex, health group, date of birth, body
mass index (BMI), and blood pressure along with data for
distance walked, diet, and medication.
Metabolomic analysis was performed on 60 volunteers. After

the subjects with missing exposure measurements were
excluded, our study population included a total of 50
volunteers (resulting in 300 metabolomic profiles). Details
on exclusion criteria are illustrated in SI Figure S1. Tran-
scriptomic analysis was based on the same blood samples,
which were subsequently filtered based on exposure data
availability and quality control checks (see below). Informed
written consent was obtained from all participants, and the
study was approved by the London City Road and Hampstead
Ethics Committee.19

Environmental Exposures. During each walk, TRAP
exposures including PM10 and PM2.5, NO2, BC, and the total
number of particles with a diameter less than 300 nm (PCNT),
were measured in real time via a backpack each participant
carried. It contained a light scattering sensor (AM510 SidePak
Personal Aerosol Monitors, TSI Ltd., MI) to measure PM10
and PM2.5, a unipolar diffusion charger (Philips Aerosense
NanoTracer; size range of 10−300 nm) to measure PCNT, a
proxy for ultrafine particle concentrations, and a microAeth
Model AE51 Black Carbon aerosol monitor (AEthlabs, CA;
flow rate of 100 mL/min) for black carbon measurements. In
Oxford Street, NO2 measurements were taken from a
stationary kerbside monitoring site (51.51392, −0.15279)
repeatedly passed during the Oxford Street walks. Due to the
unavailability of monitoring sites in Hyde Park, NO2
measurements for the Hyde Park walks were taken from the
nearest background monitoring site located in a school
playground in North Kensington (51.52104, −0.21349).
Temperature and relative humidity were electronically logged
as were noise levels (Bruel and Kjaer Type 2236 Sound level
meter, Naerum, Denmark).

Omics Data Acquisition and Preprocessing. Metab-
olomics Data. The methods for the acquisition of untargeted
metabolomics data have been described elsewhere.31 In brief,
the analysis of serum samples was performed with an Agilent
ultrahigh performance liquid chromatography coupled with a
quadrupole time-of-flight spectrometer (UHPLC-QTOF).
Separation was obtained with a reversed-phase column,
ionization with and electrospray ionization in positive-ion
mode. Feature finding was performed using Agilent Mass
Hunter and Mass Profiler Pro software, as described earlier.
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The raw metabolomic data set included n = metabolic
features, from which n = 4027 were excluded following internal
QC and due to missing measurements in 40% or more
participants. Our final data set included n = 6040 metabolic
features measured in 50 participants with full exposure data,
which represented 300 metabolomic profiles (SI Figure S1).
The data was log2 transformed and missing data were imputed
using a quantile regression approach (impute.QRILC),
implemented in the imputeLCMD R package,35 as described
in previous studies,31,36 which has been shown to outperform
other methods.37

The metabolic features identified in our analyses were
categorized by their similarity in retention time and correlation
in intensity across the samples to help identify ions potentially
originating from the same compound. The different ions
arising from the same metabolite were annotated whenever the
ion species (e.g., different adducts or fragments) could be
identified, based on their accurate mass and presence in the
full-scan reference spectra of pure reference standards. Next,
the m/z values were searched in the Human Metabolome
Database (HMDB, www.hmdb.ca) using [M + H]+, [M−H2O
+ H]+, and [M + Na]+ as adducts and mass tolerance of ±8
ppm. For the selected main features, identifications were
confirmed by comparison of retention times and tandem mass
spectrometry (MS/MS) spectra between the features and pure
reference standards when available. If standards were not
accessible, the acquired MS/MS spectra were matched against
those available in mzCloud (www.mzcloud.org). The level of
confidence for the identification was based on the recom-
mendations of the Chemical Analysis Working Group of the
Metabolomics Standards Initiative (MSI) (SI Table 5).38

Transcriptomics Data. Preparation of RNA analysis for the
Oxford Street II study was already described by Espiń-Peŕez et
al.25 Briefly, the RiboPureTM-Blood kit (Ambion) was used to
isolate total RNA from the blood samples extracted from
participants after each exposure session (400 mL of whole
blood and 1600 mL of RNA later) following the
manufacturer’s instructions. The isolated RNA was hybridized
on SurePrint G3 Human Gene Expression v2 or 3 8 × 60 K
Microarray Kit using 200 ng of material. The Agilent Feature
Extraction Software was used to extract raw data on the pixel
intensities. Probes were matched to gene names based on their
ID, using a database (accession ID GPL21185) on the NCBI
platform. The resulting gene expression data set was cleaned
for incorrectly labeled transcripts and log2 normalized resulting
in 30,923 transcripts being assayed in 42 participants (252
profiles).

Correcting for Technical Confounding. Technical con-
founding introduced by samples being handled at different
time and over multiple batches may induce additional
(nuisance) variation,39,40 which, as previously proposed, can
be corrected for by estimating a random effect for each
technical confounder.41,42 Metabolomics analysis was con-
ducted in 4 plates and 7 boxes and transcriptomics in 17 arrays
and 12 batches, which were considered as technical
confounders. This was corrected for by (i) fitting a linear
mixed model for each omic measurement (with each
metabolomic feature or transcript set as the dependent
variable) setting the corresponding technical confounders as
random intercepts (plate and box for metabolomics data, and
array and batch for transcriptomics data) and (ii) subtracting
the corresponding random effect estimates from the measured
level of each (metabolomic or transcriptomic) biomarker. The

resulting denoised data were used for subsequent statistical
modeling.

Statistical Analysis. Association Study. A principal
component analysis (PCA) was performed on the metab-
olomics data for all 300 samples. Five outlying samples, each
from a different individual, were removed and the remaining
295 samples were used for subsequent regression analysis (SI
Figure S2).
To accommodate repeated measurements in the study, a

flexible multivariate normal (MVN) model was fitted to
identify metabolic31 and transcriptomic25 features associated
with exposure to TRAPs, using the gls function from the nlme
package.43 Each metabolic feature/mRNA (Y) was modeled to
follow a multivariate normal distribution with a mean vector μ
and a covariance matrix ∑, using the equation:

= + + + +Y TRAP age sex BMI health group

where Y ∼ MVN(μ,∑). MVN regression explicitly models the
within-individual variability, and hence individuals act as their
own controls and implicitly correct for individual character-
istics. Nevertheless, to account for potential residual
confounding, we have included age (continuous), sex (female
or male), and health status (categorical variable with 3 levels
Healthy, IHD, or COPD) as fixed effects in our models.
Temperature and humidity were not associated with TRAP
exposure in our data and were therefore not considered as
potential confounders in our model. An unspecified variance−
covariance matrix was modeled, using the CorSymm function,
where each subject ID was used as a grouping factor, with a
constant variance for each combination of time point (2 h
before, and 2 and 24 h after each walk) and site (Oxford Street
or Hyde Park), using the varIdent function.43

In order to account for the correlation and possible (partial)
redundancies across omic features and prevent too-stringent
corrections for multiple testing, we defined our per-test
significance level using a Bonferroni correction for the effective
number of tests (ENT) performed, ensuring a family-wise
error rate below 0.05. As an alternative to permutation-based
calculation of ENT,44,45 we defined here the ENT as the
number of principal components needed to explain >99% of
variance of the full data.46 For consistency, this correction was
also performed for metabolomics data (ENT = 284 and 202
for metabolomics and transcriptomics data, respectively).
Small sample size in each of the health status groups (N =
18 Healthy, N = 18 COPD, and N = 14 IHD) prevented us
from running stratified analyses by health groups.

Pathway Analyses. The Mummichog (v2.0) algorithm was
used to perform functional analysis of metabolic features
associated with TRAP,47 using the “functional analysis” on
MetaboAna ly s t (h t tp s ://www.metaboana l y s t . c a/
MetaboAnalyst/ModuleView.xhtml).48 The p-values and t-
scores for the output of each MVN model for each TRAP were
used as the input for the Mummichog algorithm to perform an
over-representation analysis and calculate an enrichment p-
value using a Fisher exact test, allowing a mass tolerance of 8.0
ppm in positive mode. The default database provided on
Metaboanalyst was used, which combined KEGG, BiGG, and
the Edinburgh Model. We used the significant thresholds
inferred within Metaboanalyst, which was 0.05 for PM2.5 and
PM10, 0.01 for PCNT and BC, and 0.005 for NO2.

Conditional Independence Network. We adopted a
conditional independence network approach to visualize the
complex (partial) correlation structure across TRAP-associated
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metabolic features. We used a graphical LASSO (gLASSO)
model calibrated via stability as implemented in the sharp
package.49 In brief, gLASSO was applied to (n = 500) 80%
subsamples of the study population and for different values of

the penalty parameter (controlling the sparsity of the graph).
For each value of the penalty parameter, edge selection
proportion was calculated as the number of times the edge was
included across the 500 subsamples and the two hyper-

Figure 1. Upset plots indicating the number of unique metabolic features (A) and mRNA (B) significantly associated with at least one TRAP
exposure in Oxford Street. (A) Illustration of the number of metabolic features associated with each TRAP or combination of TRAPs with our
MVN and after Bonferroni correction. (B) Summary of the total number of significant mRNA associated with each TRAP with our MVN and after
Bonferroni correction using the ENT (n = 202).

Figure 2. Manhattan plot illustrating the association between annotated metabolites and exposure to NO2 in our univariate analysis. The −log10
transformed p-values, multiplied by their direction of association (sign of the β coefficients) for each metabolite, were plotted against their retention
times in minutes. The 14 metabolites shown were annotated at MSI levels 1 and 2 and were significantly associated with NO2 exposure after
Bonferroni correction for n = 6040 tests. For compounds where associated metabolic features were also significant, only the main metabolic features
were shown here (see SI Table S5 for more details on annotation).
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parameters: the penalty and the threshold in selection
proportion (controlling the stability of the model) were
calibrated jointly so they maximized a likelihood-based stability
score.49

In order to aid visualization of the network, the metabolic
features found associated with TRAP were summarized using
stability-calibrated consensus clusterin.50 The optimal number
of clusters was calibrated using (n = 500) 80% subsamples,
maximizing comembership counts across subsamples. Each of
the resulting clusters was represented by its medoid.
This analysis was extended to also include TRAP-associated

mRNA. The resulting multiomic network was also calibrated
via stability, but block-specific hyper-parameters were consid-
ered.49 For clarity, we only included TRAP-associated mRNA
that were mapped to a known gene.
Metabolomic and multiomic networks were estimated

separately at three time points: 2 h before, and 2 and 24 h
after each walk.

■ RESULTS AND DISCUSSION
Data Overview. Our study population included 18 healthy

volunteers, 18 volunteers with COPD, and 14 volunteers with
IHD. Their characteristics are reported in Supporting Table 1.
There were overall more male (n = 32) than female (n = 18)
participants, especially in the IHD group. The mean age of
participants was 65.5 years and was similar across the three
groups. BMI, diastolic, and systolic blood pressures were also
similar in the three groups.
All five TRAP exposures were significantly higher in Oxford

Street than in Hyde Park (SI Table S2). Although PM10, PM2.5,
and NO2 concentrations in Oxford Street and Hyde Park
showed some overlaps in their interquartile ranges, BC and
PCNT had the most significant differences with no overlap (SI
Figure S3 and Table S2).

Omics Markers of TRAP Exposures. In our univariate
analysis, each metabolic feature was regressed against each
TRAP exposure, adjusting for age, sex, BMI, and health group.
Under a Bonferroni correction for ENT = 284 tests, we
identified 230 unique metabolic features significantly asso-
ciated with at least one TRAP exposure. Of these, 168 were
associated with NO2, 43 with BC, 18 with PCNT, 14 with
PM10, and 8 with PM2.5 (SI Figure S4). As a more conservative
alternative, we corrected for multiple testing using a Bonferroni
correction for n = 6040 tests (i.e., ignoring the correlation
across metabolic features), the total number of assayed features
after QC filtering. This identified a unique set of 78 metabolic
features associated with at least one TRAP exposure (Figure
1A and SI Figure S4).
The dominant pollutant exposure was NO2 accounting for

67 unique metabolite associations (Figures 1A and 2).
PCNT, BC, and PM10 exposure showed 3, 3, and 1 exclusive

associations, respectively. There was no significant feature
exclusively linked to exposure to PM2.5. Two additional
features showed common associations with PM10 and PM2.5,
and two additional features with common associations with
NO2 and BC, and BC and PCNT, respectively (Figure 1A).
Consensus clustering on these 78 features identified 63 clusters
(SI Figure S5), 52 of which included a single feature, 8
included 2 features, 2 included 3 features, and 1 included four
features (SI Figure S6). All TRAP-associated features, except
one feature from cluster 56, had retention times similar to
those of the other features belonging to the same cluster
(irrespective of their association with TRAP exposure),
potentially indicating their structural proximity.
Our analysis of mRNA after Bonferroni correction for ENT

= 202 tests identified 53 unique mRNAs associated with at
least one TRAP exposure (Figure 1B and SI Figure S7). Of
these, 29 were associated exclusively with exposure to NO2

Figure 3. Functional analysis indicating the pathways associated with each TRAP exposure. Colors indicate the strength of the association (orange
for p-value <0.05 and blue for p-value <0.1). We report the number of features identified by the mummichog in our data set for each pathway
(column 3) and the number of features included in the pathway as part of the mummichog database (column 2).
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(Figure 1B). A further 14 and 8 mRNAs were associated with
PM10 or PM2.5, respectively, and 3 mRNAs were uniquely
associated with exposure to PCNT and one to BC. Two
mRNAs were associated with exposure to both PM10 and
PM2.5. Of these 53 TRAP-related mRNAs, 38 were mapped to
a known gene (SI Table 3).
Our results partially differed from the original work carried

out on this data.25 We previously identified 29 metabolic
features significantly associated with TRAP exposure, including
26 related to NO2 exposure. Of these 18 NO2-associated
features overlapped with our current findings. Both studies
identified a small number of associations with PM10 and BC
and no unique associations with PM2.5: in both studies,
associations to PM2.5 were only found in conjunction with
PM10. Minimal overlap of significant metabolic features was

observed between TRAP exposures, suggesting that each
pollutant could potentially exert its own effect, affecting
specific molecular pathways.
Significantly fewer mRNAs were identified as associated with

TRAPs here with respect to Espin-Perez et al.44,50 These
differences can be explained by our refined data preprocessing,
which is a key step to obtaining sound and solid results.44,51

Additionally, for both omics, the data quality was strongly
improved by identifying and removing five outlying observa-
tions (SI Figure S2). The differing approaches to data
cleansing and exposure data have led to a greater number of
metabolite features associated with TRAP exposure in this
study and a lower number of mRNAs. However, in both
approaches, NO2 was found to be the dominant pollutant and
there was minimal overlap between metabolomic markers of

Figure 4. Conditional independence network on clusters of metabolic features significantly associated with TRAP exposure, at 2 h before visits, and
2 and 24 h after visits. Each node represents a feature or cluster of features and each edge represents a correlation between two features conditional
on all other features. Clusters that contain the main feature for the corresponding compound are labeled with asterisks. (A) Nodes are colored by
association with each TRAP exposure. (B) Nodes are colored by association with one or multiple pathways enriched with the mummichog tool
(see SI Table S5 for more details on annotation).
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TRAP exposure, possibly suggesting exposure-specific meta-
bolic pathways.

Pathway Enrichment and Annotations. We applied the
Mummichog algorithm,47 using the full list of (n = 6040) p-
values and t-scores from the MVN models for each TRAP
exposure as the input. We identified 7 unique enriched
pathways with a significance level of p < 0.05 (Figure 3).
All pathways included at least 4 putative compound matches.

One pathway was identified as associated with both PM2.5 and
PM10 exposure (prostaglandin formation) and one to PM2.5,
PM10, and BC (de novo fatty acid biosynthesis). Four
pathways were exclusively associated with NO2 exposure
(tryptophan metabolism, chondroitin sulfate degradation,
heparan sulfate degradation, and caffeine metabolism).
Biopterin metabolism was associated with BC exposure, but
not other pollutants.
We performed detailed annotations on our selected features

to further verify these enriched pathways. Out of the 78
features associated with TRAP, 21 could be annotated (MSI
level 1 or 2) (Figure 2 and SI Table 4), corresponding to a
total of 14 unique metabolites.31 All of the annotated features
were associated with NO2 exposure. Of these 14 compounds, 4
compounds (caffeine, phenylalanine, 2 acyl-carnitines), were
also found in our previous work.33 Our new analysis revealed
higher levels of cortisol and cortisone, indoleactic acid (IAA),
and indole-3-propionic acid (IPA) associated with TRAP
exposure, as well as lower levels of isoleucine (SI Table 4).
These annotations confirmed 3 pathways identified by
Mummichog: that of the Biopterin metabolism (phenyl-
alanine), of the caffeine metabolism (Caffeine, Paraxanthine),
and of the tryptophan metabolism (IAA, IPA). Our pathway
analysis points to metabolic alterations, more specifically to
oxidative stress perturbations, which were previously associated
with exposures to TRAP.51

Tryptophan is an essential amino acid for protein synthesis
that processes such as gastrointestinal functions, immunity,
metabolism, and the nervous system. It can be degraded
through three main pathways: kynurenine, serotonin, and
indole pathway. The last one involves the gut microbiome
which, through enzymatic reactions, can degrade tryptophan

into downstream metabolites such as IAA and IPA. Our data
indicate that short-term air pollution exposure to NO2 in
TRAP significantly affects the indole pathway with increasing
levels of IAA and IPA.
To explore this hypothesis further, we mined our

metabolomic data for tryptophan and kynurenine, which are
key to tryptophan metabolism. An imbalance of the
kynurenine/tryptophan ratio has appeared in a study to be
associated with other diseases.52 Both compounds were
identified in our data when searching for their accurate mass
and known retention times. Tryptophan was found positively
associated with NO2 exposure (p = 0.0000305, β = 0.0312)
and kynurenine negatively associated (p = 0.00417, β =
−0.0024), indicating an imbalance between tryptophan and
kynurenine associated with NO2 exposure. Emerging evidence
indicates that air pollutants could potentially influence the
human microbiome (gut, lung, and skin), as recently reviewed
by Mousavi et al.53 Alterations in gut microbiome composition
associated with TRAP exposure have been observed in normal
and overweight adolescents54,55 and asthmatic children,56

although specific mechanisms have not been well characterized
in humans. Here, we also observe increased levels of cortisone
and cortisol with NO2 exposure. Interestingly, elevated levels
of glucocorticoids have been observed in TRAP-exposed
populations in China in two recent studies.57,58 Associations
were described here for exposure to PM although NO2
exposure was not measured. Several studies suggest a potential
link between exposure to TRAP and the activation of the
hypothalamic−pituitary−adrenal axis (HPA) realizing gluco-
corticoids and inducing gut microbiome dysbiosis57,59,60 which
is in accordance with our observations.

Network Analysis. Metabolomics Network Analysis.
Conditional independence network models were applied to
the 63 metabolic clusters significantly associated with at least
one TRAP at each time point (Figure 4) and were calibrated
via stability (SI Figure S8).
Metabolic clusters were colored by their association with a

TRAP (Figure 4A) or according to their implication in a
Mummichog pathway (Figure 4B). The network inferred on
data measured 2 h before each walk may be interpreted as the

Figure 5. Conditional independence network on 63 clusters of metabolic features and 38 mRNA significantly associated with TRAP exposure, at 2
h before visits, 2 and 24 h after visits. Each node represents a feature or cluster of features and each edge represents a correlation between two
features conditional on all other features. Clusters that contain the main feature for the corresponding compound are labeled with asterisks (see SI
Table S5 for more details on annotation).
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individual metabolomic status (restricted to TRAP-related
features) before (differential) exposures. Topological compar-
ison of networks inferred before and 2 or 24 h after the walks
could inform on acute and lagged exposure-related changes in
the metabolic profiles after exposure. Overall, the baseline
network shows that metabolic clusters associated with each
TRAP are not necessarily linked (Figure 4A) and that some
pathways may be shared between TRAP-related metabolic
features (Figure 4B). The topology of the network inferred 2 h
after exposure is overall similar to that of the baseline network,
suggesting modest or local modifications in the correlation
structure across metabolic features. However, several changes,
in particular, in modules including LysoPE were observed.
These changes may indicate pathway modifications and
alterations associated with the exposure. In the network
inferred 24 h after exposure, some rewiring is observed and
some of the correlation patterns revert to those estimated
before the experiment. Some partial correlations (e.g., those
involving the Lyso PE module) remain altered 24 h after the
exposure, which may suggest persistent effects of TRAP
exposures on the metabolome. Some edges appeared in the
network estimated 24 h after exposures (e.g., edges involving
cluster 38), which may be indicating some lagging effects of
TRAP exposures.
Unlike previous studies, where molecular data were analyzed

in isolation, we were able here to integrate both transcriptomic
and metabolomic data to investigate the correlation structures
driving the variance−covariance between all TRAP-related
features we identified. Specifically, we estimated multiomic
conditional independence networks combining the 63
metabolic clusters and the 38 mRNA with gene symbols (of
the 53 TRAP-related mRNA). As before, the network was
estimated 2 h before and 2 and 24 h after each walk and
calibrated via stability (see calibration plots in SI Figure S9). In
the baseline network, we identified four cross-omic edges,
between cluster 8 and SDR42E1, cluster 20 and TMEM38A,
cluster 19 and RNU11, and Octanoylcarnitine (cluster 38) and
SR3PXD2A (Figure 5).
Two hours after exposure, the topology of the network has

been substantially modified and, in particular, these cross-
omics edges disappear. However, some new cross-omic links
between clusters 17 and 57 and GOS2, between cluster 6 and
GOS2 and TMEM38A, and between Octanoylcarnitine and
DMRTC1 were estimated. Two additional interomics edges
appear 24 h after exposure, IPA and cluster 6 and 57 with
GOS2 edge Undecanoylcarnitine with MPRIP. No specific
function was found associated with these mRNAs, except for
GOS2 which is involved in multiple pathways of metabolism
regulation, including lipid metabolism.61 Its association with
IPA and carnitines in our network could potentially point to a
perturbation in lipid metabolism associated with gut
permeability and microbiome activity.
With our conditional networks, we could visualize that the

same metabolites were involved in multiple pathways,
indicating complex and intricate mechanisms associated with
TRAP exposures. We also observed differential topologies 2 h
following exposure for the leukotriene and linoleate pathway,
which did not revert to their initial state 24 h after exposure,
potentially suggesting an acute and longer-term effect of TRAP
exposure.
Exposure to particulate matter shared no common pathways

with other exposures, potentially indicating different effects for
these types of TRAP. Overall, most of the described pathways

associated with TRAP in our study were related to increased
oxidative stress and inflammation, in accordance with what is
observed in the literature for air pollution.
We identified NO2 as the predominant TRAP species with

the most associations with both metabolic features and mRNA.
Notably, our investigation strongly supports the hypothesis of
a connection between NO2 exposure and the equilibrium of
tryptophan and kynurenine, underscoring the influence of air
pollutants on the human microbiome.
Through adapting novel statistical approaches, this work

integrates transcriptomics and metabolomics on the same
participants across multiple time points and sheds new light on
potential multiomic alterations associated with TRAP ex-
posure. This analytical approach can also be readily extended
to similar exposomic studies.
There are several limitations to this study. First, NO2 was

not directly measured but was obtained from the nearest
monitoring station. While this may result in a lower granularity
in the exposure data, which may not fully reflect the individual-
level NO2 exposure during the walk, we expect that this may
not have an impact on our data as walks in both locations were
standardized. In addition, it is expected that data from these
monitoring stations are more accurate and reliable than those
from smaller sensors measuring NO2. In terms of general-
izability, a major source of TRAP exposures was diesel vehicles.
As such, different effects could have been found in a study
where there were more petrol vehicles. The population
examined had an average age of 65, and consequently, the
conclusions may be less applicable to a younger population. In
addition, we could not make inference on the effects of TRAP
on the metabolome/transcriptome in specific health groups
(healthy, COPD, and IHD), as the small sample sizes were
within each health group, limiting the power to perform
stratified analyses. Finally, the relatively small sample size of 50
participants and variations in data processing and exposure
concentrations compared to prior research can introduce
variability in the identified metabolites and pathways
associated with TRAP exposure. Standardizing data processing
and cleansing methods across studies could enhance
comparability and robustness.
Despite the limitations, in this comprehensive crossover

study conducted at two distinct sites, encompassing healthy
individuals and those with COPD and IHD, we have revealed
many metabolic and mRNA modifications as well as their
interactions, linked to high and low TRAP exposure. Our
findings offer compelling evidence of a potential impact on gut
microbiome dysbiosis due to short-term NO2 exposure.
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