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Simple Summary: DNA damage response (DDR) is a multi-factor network that is responsible for
the removal of DNA lesions, thus enabling cells to function normally. An imbalance between the
generation of reactive oxygen species and their removal by defense mechanisms is known as oxidative
stress. Previous studies demonstrated that deregulation of the DDR network and redox imbalance are
implicated in the onset and progression of several diseases, including cancer, as well as in the outcome
of chemotherapy. In this study, we found that DDR-associated parameters and the intracellular redox
status display significant differences among patients with lung cancer at baseline and correlate with
the clinical responses to subsequent platinum-based therapy. The exploitation of these results might
lead to the identification of new therapeutic targets, the design of effective and sensitive biomarkers,
and the development of new therapeutic regimens for the treatment of this devastating malignancy.

Abstract: Background/Objectives: DNA damage response (DDR) is a network of molecular pathways
associated with the pathogenesis and progression of several diseases, as well as the outcome of
chemotherapy. Moreover, the intracellular redox status is essential for maintaining cell viability
and controlling cellular signaling. Herein, we analyzed DDR signals and redox status in peripheral
blood mononuclear cells (PBMCs) from patients with lung cancer with different response rates
to platinum-based chemotherapy. Methods: Several DDR-associated signals and redox status,
expressed as the GSH/GSSG ratio, were measured in two lung cancer cell lines (A549, H1299),
two normal fibroblast cell lines (WS1, 1BR3hT), and PBMCs from 20 healthy controls and 32 patients
with lung cancer at baseline (17 responders and 15 non-responders to subsequent platinum-based
chemotherapy). Results: Higher levels of endogenous/baseline DNA damage, decreased GSH/GSSG
ratios, and augmented apurinic/apyrimidinic sites, as well as lower nucleotide excision repair (NER)
and increased interstrand cross-links (ICLs) repair efficiencies, were observed in lung cancer cell
lines compared with normal ones (all p < 0.05). Moreover, PBMCs from patients with lung cancer
showed reduced GSH/GSSG ratios, augmented apurinic/apyrimidinic sites, decreased NER and
ICL repair capacities, and lower apoptosis rates, compared with healthy controls (all p < 0.001).
Interestingly, PBMCs from patients who are responders are characterized by reduced GSH/GSSG
ratios, augmented apurinic/apyrimidinic sites, decreased NER and ICL repair capacities, and higher
apoptosis rates compared with patients who are non-responders (all p < 0.01). Conclusions: Together,
DDR-associated parameters and redox status measured in PBMCs from patients with lung cancer at
baseline are associated with the therapeutic benefit of platinum-based chemotherapy.

Keywords: DNA damage response (DDR); lung cancer; PBMCs; platinum-based chemotherapy;
clinical response; redox status; oxidative stress; apurinic/apyrimidinic (AP) sites; nucleotide excision
repair (NER); interstrand cross-link repair (ICL/R)
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1. Introduction

Lung cancer remains one of the most-diagnosed malignant diseases over decades,
characterized by high mortality rates, with over 2 million cases per year rising world-
wide [1]. Based on the histology of the cancer cells, lung cancer can be categorized into
two types: small cell lung cancer (SCLC), which comprises about 15% of lung cancers,
and non-small cell lung cancer (NSCLC), which accounts for 85% of all cases and can be
further subdivided into three histological types: adenocarcinoma, large cell carcinoma, and
squamous cell carcinoma [2]. Despite considerable progress in understanding, diagnosing,
and treating the disease, further advances seem obligatory. One major challenge appears to
be the identification of accurate predictive biomarkers that can be utilized in the clinic to
improve treatment design [3].

Lung cancer has early been related to cigarette smoking, and many carcinogenic
compounds have been identified in tobacco ever since [4]. These substances induce DNA
damage, contributing to genomic instability associated with the high mutational burden
of lung cancer cells. Nevertheless, a significant percentage of patients who develop lung
cancer have not ever used tobacco, implying further DNA-damaging factors, such as
environmental pollution, radiation, exposure to industrial hazardous agents, etc., pose as
risk factors, interplaying with genetic predisposition [5,6].

The human genome is constantly exposed to multiple exogenous (genotoxic chem-
icals, UV light, ionizing radiation, etc.) and endogenous DNA-damaging factors (e.g.,
oxidation, alkylation, hydrolysis, and mismatch of DNA bases) [7–9]. Genotoxic stress may
also emerge from several cellular processes, such as replication and transcription [10,11].
Specifically, the generation and response to reactive oxygen species (ROS) remain among
the most well-studied genotoxic mechanisms, as cancer cells are frequently characterized
by impaired regulation of ROS. Several pathways are involved in ROS regulation, as
their function is critical for cell signaling and metabolism. Disrupted ROS levels lead
to pathological outcomes and disease development [12,13], while redox status has been
highlighted as critical for both cancer progression and chemotherapy response [14]. Partic-
ularly in lung cancer, evidence suggests that oxidative stress is critical for the onset and
progression of the disease, as lungs are more susceptible due to their exposure to oxygen
and blood circulation [15]. Moreover, ROS are capable of directly inducing DNA lesions,
including oxidized purines and pyrimidines, single-strand breaks (SSBs), double-strand
breaks (DSBs), and abasic (AP; apurinic/apyrimidinic) sites [16–18]. Specifically, AP-sites
are common DNA lesions that may occur both spontaneously, due to oxidative stress,
and as intermediates of DNA repair pathways, such as base excision repair (BER) [19].
Repair of AP-sites includes their cleavage and SSB formation that may result in DSBs
during DNA replication. As such, AP-sites levels have been suggested as a possible
biomarker for oxidative stress and BER capacity, while it has been proposed that it could
even predict survival in patients with resected NSCLC [19]. Moreover, a key factor of BER,
the apurinic/apyrimidinic endonuclease 1 (APE1), has been underlined as a therapeutic
target in NSCLC, as its inhibition resulted in excessive DNA damage and augmented
tumor cell death in vitro and in vivo [20].

Interestingly, genotoxic drugs like platinum-based compounds have been reported
to induce oxidative stress-related cytotoxic effects, either by directly generating ROS or
by blocking the antioxidant system [21–23]. As a result, redox status appears to be crucial
for response to chemotherapy-based treatment [14,24–26]. Glutathione, a key antioxidant
factor, has been found to react with cisplatin and regulate resistance to this drug [26–30].
GSH, the reduced form of glutathione, binds and deactivates cisplatin molecules, thus
preventing them from reaching the DNA and forming adducts [28,29]. In parallel, GSH
reacts with the cisplatin-induced ROS, interfering with ROS-mediated cytotoxicity [29]. In
particular, cisplatin cytotoxicity depends on the glutathione levels and the expression of
the nuclear factor erythroid 2-related factor 2 (NRF2), which controls the transcription of
glutathione components in lung cancer [29] and other tumor cells [31].
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To confront the above challenges and ensure genomic stability, cells have developed
a complex system of molecules and pathways, commonly known as the DNA damage
response (DDR) network, including sensors of the lesion sites, cell cycle kinases, signaling
cascades and effector proteins that maintain genomic integrity [32,33]. Disruption of the
function of DDR network contributes to genomic instability and is involved in tumorigene-
sis. Furthermore, recent data have shown that DDR strongly impacts the immune system
suggesting crucial therapeutic implications [34,35]. Specifically, defects in repair mecha-
nisms may lead to the accumulation of cytosolic DNA resulting in stimulation of innate
immune response and/or genomic mutations. These effects increase tumor mutational
burden and levels of MHC-presented neoantigens, thus potentiating anti-tumor immune
response [36–38].

Lung cancer is currently commonly treated with chemotherapy, molecular-targeted
therapy, immunotherapy, radiation therapy and surgery [1,2]. The standard of care for
most advanced NSCLC-patients includes platinum-based chemotherapy [39], thanks to its
cytotoxicity. These drugs function by inducing the formation of DNA monoadducts that
are almost exclusively repaired by nucleotide excision repair (NER), and interstrand cross-
links (ICLs), which are repaired by NER, translesion synthesis, Fanconi anemia pathway,
homologous recombination (HR), and nonhomologous end-joining (NHEJ) [18].

In this study, we tested the hypothesis that redox status and DDR-related parameters
of patients with lung cancer at baseline correlate with therapeutic benefit from subsequent
platinum-based treatment. Towards this, we evaluated GSH/GSSG ratio (a reliable estima-
tion of cellular redox status), apurinic/apyrimidinic sites, and several DDR parameters,
including the endogenous/baseline DNA damage, the efficiencies of critical DNA repair
mechanisms and the apoptosis rates in normal and lung cancer cell lines, as well as in
peripheral blood mononuclear cells (PBMCs) from healthy controls and patients with lung
cancer at baseline.

2. Materials and Methods
2.1. Patients

A total of 32 patients with lung cancer were included in this study: seventeen (n = 17)
patients with partial response to therapy (PR; 3 females/14 males; median age, 66 years;
range, 49–82), five (n = 5) with stable disease (SD; 2 females/3 males; median age, 68 years;
range, 65–76), and ten (n = 10) with progressive disease (PD; 3 females/7 males; median
age, 68.5 years; range, 62–81) (Table 1). Twenty (n = 20) healthy individuals were also
included as controls (HC; 8 females/12 males; median age 61.4 years; range, 41–82). PBMCs
were isolated from freshly drawn peripheral blood and purified using the standard Ficoll
gradient centrifugation. Briefly, 10 mL of whole blood were diluted 1:1 in RPMI-1640
medium, carefully layered over 15 mL of Ficoll reagent (Ficoll-Paque PLUS, Sigma-Aldrich,
St. Louis, MI, USA, #GE17-1440-03), and centrifuged at 400× g for 20 min at 20 ◦C,
without brake or acceleration. After centrifugation, the semi-white layer containing PBMCs
was collected using a syringe. The collected cells were transferred to 10 mL of RPMI-
1640 medium and washed twice via centrifugation at 400× g for 20 min at 20 ◦C, this
time with normal brake and acceleration. Cells were resuspended in freezing medium
(90% fetal bovine serum and 10% dimethyl sulfoxide) and stored at −80 ◦C until further
processing. The study was approved by the Institutional Review Board of Soteria Hospital
(No. 15627/11.6.2020 and No. 25950/10.10.2022), and all subjects provided informed
consent. The study was conducted according to the Declaration of Helsinki.

2.2. Cell Lines

Human 1BR3hT cells (immortalized normal skin fibroblasts) and H1299 cells (epithelial-
like non-small-cell lung carcinoma) were maintained in Dulbecco’s modified Eagle’s medium
(DMEM), 10% fetal bovine serum (FBS), and 1% penicillin/streptomycin (Pen/Strep). Hu-
man A549 cells (non-small-cell lung carcinoma) were maintained in DMEM/Ham’s F12 (1:1)
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medium, 10% FBS, and 1% Pen/Strep. Human WS1 cells (normal skin fibroblasts) were
maintained in DMEM, 1% non-essential amino acids, 10% FBS, and 1% Pen/Strep.

Table 1. Patients and disease characteristics.

Patients (N = 32)

Characteristic N Years % of Total

Sex
Male 24 - 75

Female 8 - 25

Age
Median - 67.5 -
Range - 49–82 -

Histology
Squamous 10 - 31.3

Non-squamous 17 - 53.1
Small cell 5 - 15.6

Stage
I–II/LD 4 - 12.5

III 7 - 21.9
IV 21 - 65.6

Smoking
Never 3 - 9.3

Current 3 - 9.3
Former 24 - 75

PD-L1 expression
<1% 7 - 21.9

1–50% 7 - 21.9
>50% 7 - 21.9

Therapy
Chemotherapy 10 - 31.3

Chemotherapy–radiotherapy combination 8 - 25
Chemotherapy–immunotherapy combination 12 - 37.5

Chemotherapy–immunotherapy–radiotherapy combination 2 - 6.2

Cycles of platinum therapy
<4 5 - 15.6
4–5 23 - 71.9

6 4 - 12.5

Response
PR 17 - 53.1
SD 5 - 15.6
PD 10 - 31.3

2.3. Measurement of Nucleotide Excision Repair (NER)—Alkaline Comet Assay

DNA damage was assessed using the alkaline comet assay. Cells suspended in
phosphate-buffered saline (PBS; pH 7.4) were mixed with 1% low-melting-point agarose
and loaded onto glass slides. The slides were allowed to solidify at 4 ◦C for 30 min,
incubated in an alkaline lysis buffer (2.5 M NaCl, 0.1 M EDTA, 0.01 M Tris; pH 10, 1%
Triton X-100) for 2 h at 4 ◦C, and electrophoresed at 25 V, 225 mA for 30 min. The
slides were stained with SYBR™ Gold nucleic acid gel stain (Thermo Fisher Scientific,
Waltham, MA, USA, #S11494) and imaged under UV light using a 10× microscopy
lens. Olive tail moment (OTM) was analyzed using ImageJ Analysis/OpenComet v1.3.1
(https://cometbio.org/). For each sample, 2 gels were scored, and the average OTM
value of 150 cells was calculated.

https://cometbio.org/
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2.4. Measurement of Gene-Specific Repair of the Interstrand Cross-Links

Cell lines or PBMCs were treated with cisplatin (25 µg/mL and 5 µg/mL, respectively)
for 3 h at 37 ◦C in the appropriate culture medium, incubated in drug-free medium for
0–24 h at 37 ◦C, harvested, and stored in freezing medium at −80 ◦C. The gene-specific
repair of the ICLs was measured using Southern blot analysis, as described previously [40].
For the analysis of N-ras alkylation, after isolation, genomic DNA was digested using the
restriction enzyme EcoRI, and DNA samples were denatured prior to gel electrophoresis.
That is, DNA was incubated at 37 ◦C for 15 min in 50 mM NaOH, denaturation was stopped
on ice, and DNA samples were mixed with sample loading buffer (final concentration:
0.2% Ficoll, 0.1 mM EDTA, 0.01% bromocresol green). Electrophoresis was performed
for 16 h at 30 V in 0.6% agarose gel, using buffer containing 40 mM Tris-acetate and
2 mM EDTA. Hybridizations were performed as previously described [41]. The percentage
cross-linking, which is the density of the cross-linked DNA band as a fraction of both
single-stranded and cross-linked band densities, was used to calculate the frequency of
ICLs. The average number of ICLs per restriction fragment examined was calculated
using the formula of the Poisson distribution: (cross-links/fragment) = −loge(fraction of
fragment free of cross-links).

2.5. GSH/GSSG Ratio and Abasic Sites

The GSH/GSSG ratio was determined using a luminescence-based assay that measures
total glutathione (GSH+GSSG), oxidized glutathione (GSSG), and the GSH/GSSG ratio,
following the manufacturer’s instructions (GSH/GSSG-Glo Assay, Promega, Madison, WI,
USA, #V6612). Abasic sites were analyzed with the OxiSelect Oxidative DNA Damage
Quantitation Kit (Cell Biolabs, San Diego, CA, USA; #STA-324), also in accordance with the
manufacturer’s protocol.

2.6. Apoptosis Rates

PBMCs were exposed to varying doses of cisplatin (0–150 µg/mL) for 3 h at 37 ◦C
in complete RPMI-1640 medium, followed by a 24 h incubation in cisplatin-free medium.
Apoptosis rates were measured using the Cell Death Detection ELISA PLUS kit (Roche
Diagnostics Corp., #11.774.425.001, Mannheim, Germany) according to the manufacturer’s
instructions.

2.7. Western Blot Analysis

Cell lysates were prepared using the RIPA Lysis Buffer System (Santa Cruz Biotech-
nology, Dallas, TX, USA, #sc-24948). Protein electrophoresis was carried out on 4–20%
FastGene PAGE Gels (Nippon Genetics, Tokyo, Japan, #PG-S420) with MOPS buffer (Nip-
pon Genetics, #PG-MOPS10). Proteins were transferred to nitrocellulose membranes (GE
Healthcare, Chicago, IL, USA, Amersham Protran 0.45 µm, #10600002) and incubated
overnight at 4 ◦C with primary antibodies (Cell Signaling Technology, Danvers, MA, USA;
γH2AX, #80312; β-tubulin, #15115L; β-actin, #3700). Membranes were incubated with
horseradish peroxidase (HRP)-conjugated secondary antibodies (Cell Signaling Technol-
ogy; anti-mouse IgG: HRP, #7076S; anti-rabbit IgG: HRP, #7074S), the antibody complexes
were visualized using the Pierce™ ECL Western Blotting Substrate (Thermo Scientific,
#32106) and imaged using the BioRad Gel Doc XR Imaging System.

2.8. Statistical Analysis

An unpaired t test with Welch’s correction was applied for p-value determination. The
results were of statistical significance when p < 0.05. All statistical analyses and graph
design were carried out with GraphPad Prism 8.0.1. The mean ± SD was used to present
the data.
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3. Results
3.1. DDR-Associated Parameters in Lung Cancer Cell Lines

DDR-related signals were analyzed in two lung cancer cell lines (A549, H1299) and
two normal fibroblast cell lines (WS1, 1BR3hT). For all parameters examined, similar
results were obtained for the cell lines of each group. First, the endogenous/baseline
DNA damage was evaluated using alkaline comet assay, which measures SSBs and/or
DSBs. As seen in Figure 1A, the endogenous/baseline DNA damage was found to be
significantly higher in lung cancer cell lines than in normal ones (p < 0.001), showing
accumulation of DNA lesions in malignant cells when there is no known exogenous
genotoxic attack. To further investigate the formation of the endogenous/baseline DNA
damage, we measured intracellular factors that lead to the formation of SSBs and DSBs,
such as redox dysregulation and AP-sites. Interestingly, the GSH/GSSG ratio was found to
be decreased, while AP-sites were augmented in cancer cells compared with the normal
ones (all p < 0.001; Figure 1B,C).
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Figure 1. DDR-associated parameters in cell lines at baseline. (A) Bar charts showing the endoge-
nous/baseline DNA damage in normal and lung cancer cell lines measured by comet assay. (B) Redox
status expressed by the GSH/GSSG ratio at untreated cell lines. (C) Baseline AP-site levels for all cell
lines. Error bars represent SD; *** p < 0.001. The experiments shown were based on a minimum of
three independent repeats.

Then, the efficiency of NER was evaluated. That is, all cell lines were irradiated
with 100 J/m2 UVC, which induces cyclobutane pyrimidine dimers (CPDs) and 6–4 pho-
toproducts (6-4PPs), DNA lesions that are repaired by the NER pathway [42], and the
DNA damage was measured using an alkaline comet assay (Figure 2A). Significant dif-
ferences in the efficiencies of NER were found between malignant and normal cell lines.
Indeed, lung cancer cell lines showed reduced NER efficiency compared with normal cells
(Figure 2B), resulting in higher UVC-induced DNA damage accumulation in malignant
cells, expressed as the area under the curve (AUC) for DNA damage during the whole
experiment (0–6 h) (p < 0.001; Figure 2C). Moreover, in both lung cancer and normal cell
lines, we found that UVC irradiation reduced the GSH/GSSG ratio and increased AP-sites
(p < 0.05; Figure 2D,E). Although kinetic patterns of UVC-induced AP-sites showed no
significant differences between lung cancer and normal cells (Figure 2E), augmented ac-
cumulation of AP-sites was found in the lung cancer cell lines (p < 0.001; Figure 2F), due
to increased levels of endogenous/baseline AP-sites in these cells. Together, these data
suggest that the increased endogenous/baseline levels of DNA damage found in malignant
cells may result, at least partly, from disruption of redox homeostasis and the subsequent
formation of AP-sites.

To study the efficiency of the ICL repair, cell lines were treated with 25 µg/mL cisplatin
for 3 h, and the kinetics of ICL repair was followed for up to 24 h after treatment. Significant
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differences in the cisplatin-induced ICL burden were found between malignant and normal
cell lines, with lung cancer cells showing slightly higher ICL repair capacity (p < 0.05;
Figure 3A). In addition, in both lung cancer and normal cell lines, cisplatin treatment
resulted in a reduction of the GSH/GSSG ratio (Figure 3B) and higher levels of AP-sites
(Figure 3C); maximal effect on both factors analyzed was observed at the end of the 3 h
cisplatin treatment (time point, T0). Importantly, significant differences were observed in
the GSH/GSSG ratio and AP-sites kinetic patterns after cisplatin treatment between lung
cancer and normal cells, with the malignant cells returning to baseline levels much faster
than normal cells. Moreover, robustly higher total amounts of AP-sites expressed as AUC
were found in malignant than in normal cell lines (Figure 3D). Next, the cisplatin-induced
phosphorylation of H2AX at the serine residue 139, as a marker of DSBs, was also evaluated.
In all cell lines analyzed, maximal levels of γH2AX were observed at the 24 h time point
(Figure 3E).
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Figure 2. DNA damage response signals in cell lines after UVC irradiation. (A) Alkaline comet assay
images of A549 lung cancer cell line at baseline and at different time points after UVC irradiation.
(B) The kinetics of UVC—induced NER—repaired adducts using alkaline comet assay and (C) total
amounts of DNA damage expressed as AUC for DNA damage during the whole experiment (0–6 h).
(D) Redox status and (E) AP-sites at different time points after UVC irradiation. (F) Total amounts
of AP-sites expressed as AUC. Error bars represent SD; * p < 0.05, ** p < 0.01, and *** p < 0.001. The
experiments shown were based on a minimum of three independent repeats.
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Figure 3. DDR-associated parameters in cell lines following cisplatin treatment. (A) The total amounts
of cisplatin-induced ICLs expressed as AUC for DNA damage. (B) Redox status and (C) AP-sites
at different time points after cisplatin treatment. (D) Total amounts of AP-sites expressed as AUC.
(E) Western blots showing the amounts of γH2AX at different time point after cisplatin treatment.
β-tubulin and β-actin were used as loading controls. Error bars represent SD; * p < 0.05, ** p < 0.01,
and *** p < 0.001. The experiments shown were based on a minimum of three independent repeats.

3.2. DDR Signals in PBMCs from Patients with Lung Cancer

To test the hypothesis that DDR-associated signals and redox status are implicated in
the response to platinum-based chemotherapy, changes in the DDR parameters and the
GSH/GSSG ratios were evaluated in PBMCs from 20 healthy controls and 32 patients with
lung cancer at baseline (17 responders and 15 non-responders to subsequent platinum-
based chemotherapy).

Firstly, factors implicated in the formation of DNA damage were evaluated. In line
with our previous data [43] and the cell lines’ results, compared with PBMCs from healthy
individuals, patients’ cells exhibited significantly lower GSH/GSSG ratios (Figure 4A) and
higher burdens of AP-sites (Figure 4B) at baseline (all p < 0.001). Interestingly, responders to
subsequent chemotherapy were characterized by a significantly lower baseline GSH/GSSG
ratio and higher baseline levels of AP-sites compared to non-responders (all p < 0.001;
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Figure 4A,B). In addition, the lowest doses of cisplatin required for the induction of
apoptosis at 24 h were significantly higher in PBMCs from patients at baseline compared
with healthy controls (all p < 0.001), indicating that patients’ PBMCs exhibited significantly
decreased apoptosis rates (Figure 4C). In particular, non-responders at baseline exhibited
significantly lower apoptotic rates than responders, as their samples required the highest
cisplatin dose for apoptosis induction (all p < 0.001; Figure 4C).
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nous/baseline redox status expressed by the GSH/GSSG ratio at PBMCs from healthy controls
(HCs) and patients, responders (Rs), and non-responders (NRs) to subsequent chemotherapy-based
treatment. (B) Baseline AP-sites levels for PBMCs. (C) Apoptosis rates at baseline for PBMCs. Er-
ror bars represent SD; *** p < 0.001. The experiments shown were based on a minimum of three
independent repeats.

Subsequently, NER efficiency was analyzed in PBMCs following irradiation with
5 J/m2 UVC. In line with our previous data [43] and the cell lines’ results, significantly lower
NER capacity was observed in patients with lung cancer compared with healthy controls,
resulting in higher accumulation of NER-repaired lesions in patients’ PBMCs (p < 0.01).
Intriguingly, patients who responded to subsequent platinum chemotherapy showed
significantly lower rates of NER compared with both non-responders and healthy controls,
resulting in a significantly higher DNA damage burden in responders’ cells (all p < 0.001;
Figure 5A,B). Non-responders exhibit similar DNA damage levels to healthy controls,
suggesting that impaired NER efficiency might be crucial to chemotherapy response.

In addition, we found that, in a 6 h time frame after UVC irradiation, patients’ samples
were characterized by a lower GSH/GSSG ratio and higher UVC-induced AP-sites than
healthy controls, with responders showing the lowest GSH/GSSG ratio and the highest
levels of AP-sites (all p < 0.01; Figure 5C–E).

Next, to investigate the ICL repair efficiency, PBMCs were treated ex vivo with
5 µg/mL cisplatin for 3 h, and the ICL levels were analyzed up to 24 h after treatment.
We found that patients with lung cancer showed significantly lower ICL repair capacity
than healthy controls, as depicted by higher DNA damage burden after cisplatin treatment
(p < 0.001). In line with the NER capacity, responders’ cells showed much lower ICL repair
capacity than non-responders, resulting in significantly higher accumulation of ICLs in re-
sponders’ PBMCs (p < 0.001, Figure 6A,B). Once again, non-responders show DNA damage
levels equivalent to the ones of healthy controls. In accordance with previous data showing
that there is a correlation between the cytotoxicity of bifunctional drugs and the ICL burden
(expressed as AUC) [44], we found that the individual levels of cisplatin-induced ICLs
(expressed as AUC) correlate with the corresponding apoptosis rates (Figure S1). The
GSH/GSSG ratio and AP-sites within 24 h after cisplatin treatment were also evaluated.
Significantly lower GSH/GSSG ratio and higher levels of AP-sites were obtained in patients’
samples compared with healthy controls, with responders presenting significantly dimin-
ished the GSH/GSSG ratio and augmented levels of AP-sites compared to non-responders
(all p < 0.001; Figure 6C–E).
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Figure 5. DDR signals in PBMCs after UVC irradiation. (A) The kinetics of UVC-induced DNA
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from healthy controls and patients with lung cancer. (C) Redox status and (D) AP-sites at different
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bars represent SD; ** p < 0.01, and *** p < 0.001. The experiments shown were based on a minimum of
three independent repeats.
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Figure 6. DNA damage response parameters in PBMCs after the ex vivo cisplatin treatment. (A) The
kinetics of cisplatin-induced ICLs and (B) total amounts of ICLs expressed as AUC for DNA damage
in PBMCs from healthy controls and patients with lung cancer. (C) Redox status and (D) AP-sites at
baseline and after cisplatin treatment. (E) Total amounts of AP-sites expressed as AUC in PBMCs.
Error bars represent SD; *** p < 0.001. The experiments shown were based on a minimum of three
independent repeats.
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4. Discussion

The development of drug resistance poses a significant challenge to platinum-based
chemotherapy, a crucial treatment regimen employed in the therapeutic management of
several malignancies, including lung cancer [45]. Cisplatin’s mechanism of action involves
its binding to DNA and the creation of monoadducts, mostly through covalent interac-
tions with guanine’s N7 position. Through a second covalent binding, this monoadduct
transforms into a DNA cross-link, which can occur either on the opposite strand (ICL;
inter-strand; the most cytotoxic) or on the same DNA strand (intra-strand). Notably, cis-
platin does not directly produce double-strand breaks [46]. However, it may still induce
double-strand damage when replication forks encounter obstacles to their progression.
Indeed, in dividing cells, during the ICL repair, ERCC1-XPF endonuclease makes two
incisions on either side of the crosslink in order to release the covalent bond between the
two DNA strands. This unhooking event then creates a resection gap, which serves as
an appropriate substrate for homologous recombination [47–49]. Interestingly, ICL can
block the progression of the DNA replication fork, which may lead to the creation of a
DNA DSB. In contrast to the direct DSBs that are caused by ionizing radiation, which are
typically repaired by non-homologous end joining, these ICL-induced DSBs are repaired
by homologous recombination repair [48,49].

Phosphorylation of histone H2AX at position Ser139 (γH2AX) has become a tool to
monitor double-strand breaks [50]. Phosphorylation usually happens immediately after
the formation of DSBs. However, Olive et al. [51] reported that after exposure to cisplatin,
phosphorylation was delayed, reaching maximal levels 6–18 h after drug treatment. They
also observed that the time of peak γH2AX levels was cisplatin-dose dependent. This
situation was further complicated by the necessity for drug-damaged cells to progress
into the S phase. Notably, they found that measurement of γH2AX foci at 24 h post-
treatment could serve as a valuable marker of cellular response to cisplatin-induced death.
In line with these data, herein, we found that γH2AX protein levels appear shortly after
treatment and increase over time, reaching maximal levels within 24 h. Oxidative stress
and ROS generation are also linked to cisplatin’s cytotoxic effects [21,24–27]. Therefore, in
this study we tested the hypothesis that redox status and DDR-related signals measured
in PBMCs from patients with lung cancer might correlate with therapeutic response to
platinum-based therapy.

Firstly, the redox status, expressed as the GSH/GSSG ratio, was assessed. In line
with previous studies showing that in cancer cells a number of variables, such as hypoxia,
aerobic glycolysis, and oncogene activation, disrupt the redox balance and lead to ROS
accumulation, we found that PBMCs from patients with lung cancer showed lower a
GSH/GSSG ratio than healthy controls. Prior research has demonstrated a robust associa-
tion between lung cancer and redox imbalance [52]. In fact, patients with lung cancer had
higher levels of oxidative stress biomarkers, including 8-oxodG and malondialdehyde, as
well as reduced levels of antioxidative biomarkers, such as red cell superoxide dismutase
and glutathione peroxidase activities [53]. Of note, chronic inflammation of the lung tissue
is known to be associated with lung cancer [54]. Interestingly, cigarette smoke is known to
increase inflammation by raising the number of inflammatory immune cells in the airways
and causing the release of proinflammatory cytokines including GMCSF, TNF-α, IL-1,
IL-6, and IL-8 [55]. Furthermore, DNA damage can also result in elevated ROS, which
can further exacerbate oxidative damage, creating a vicious cycle and raising the burden
of DNA damage. Given that the oxidative damage caused by ROS within cells leads to
modifications of DNA bases, the greater numbers of AP-sites observed in the patients with
lung cancer examined herein may be explained by increased oxidative stress.

Importantly, significant differences in the redox status were found between patients
sensitive or resistant to subsequent platinum-based therapy. Indeed, we found that PBMCs
from responders are characterized by lower baseline and cisplatin-induced GSH/GSSG
ratios compared with patients who are non-responders. Previous studies have shown
that the increase in cellular GSH plays a crucial role in cisplatin resistance because of its
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detoxification effect [56]. That is, before attaching to DNA, many platinum molecules
form a Pt(GS)2 conjugate with GSH, which is subsequently removed from the cell. Even
though this conjugation may deplete the antioxidant reservoir of the cells and result in
oxidative stress, high levels of GSH lower the quantity of reactive cisplatin, thus limiting
its anticancer effectiveness [57]. Therefore, it would be expected that an increase in GSH
synthesis in cancer cells will cause resistance to platinum-based regimens.

Since the generation of ROS following treatment with many anticancer drugs may
augment the treatment efficacy, there is growing interest in combining ROS-inducing
agents with chemotherapy [58–60]. Indeed, pro-oxidative anticancer drugs, including
curcumin and its derivatives, Choline Tetrathiomolybdate (ATN-224), 15-Deoxy-Delta-
12,14-prostaglandin J2 (15d-PGJ2), 2-Methoxyoestradiol, and carnosol, are in various stages
of research and development [61]. On the other hand, oxidative stress disrupts cellular
processes, including the regulation of the cell cycle, apoptosis, and DNA repair mechanisms
that are essential for antineoplastic agents to exert their maximum cytotoxicity on cancer
cells [62]. This results in the increased lipid peroxidation products, the decrease in blood
plasma’s capacity to trap radicals, the reduction of the plasma levels of beta-carotene, vita-
min C, and vitamin E, the induction of oxidative DNA damage, as well as the decrease in
tissue glutathione levels after chemotherapy [63]. Thus, oxidative stress can also adversely
affect normal tissues that undergo rapid proliferation, such as the heart, liver, lungs, kid-
neys, and gastrointestinal system [64]. Moreover, other adverse events, such as tumor cell
adaptation to oxidative stress and cell cycle changes by oxidative stress, decrease the effec-
tiveness of chemotherapy and induce cancer metastasis and recurrence [65]. Interestingly,
combination treatment including antioxidants to reduce the side effects of chemotherapy
might potentially decrease the efficacy of anticancer agents [66].

Since cisplatin cytotoxicity is mainly due to its ability to cause DNA damage, DNA
repair capacity is expected to be one of the most important cisplatin-resistance mecha-
nisms. In this study, we found that patients with lung cancer exhibited decreased NER
and ICL repair capacities compared with healthy controls. NER pathway is an important
repair mechanism, as it is responsible for the repair of a variety of DNA lesions caused by
multiple factors such as UV light, ionizing irradiation, ROS, and chemotherapeutic drugs,
including cisplatin [67]. Evidence has suggested that this pathway may be inhibited in
lung cells exposed to tobacco smoke [68], with a recent study showing correlations between
NER mutations and smoking status in patients with NSCLC [69]. Specifically, an ERCC1
genetic polymorphism was found to be increased in patients who are heavy smokers with
NSCLC [69]. ERCC1 is known to be indispensable for the NER pathway, and it has been
previously implicated with chemoresistance in lung adenocarcinoma [70]. Moreover, our
previous study has shown deregulation of the genes encoding the NER-related molecular
components of the heterodimer DDB complex (DDB1 and DDB2) in patients with lung
cancer [52]. In line with the NER results, herein we found that PBMCs derived from patients
with lung cancer are characterized by decreased ICL repair capacities. In addition, we
found reduced apoptosis rates in patients with lung cancer. These results are in accordance
with previous data showing that the absence of apoptotic regulation prolongs the life of
cancer cells and provides more time for mutations to accumulate, which might enhance
invasiveness as the tumor grows, deregulate differentiation pathways, and promote angio-
genesis [43]. Corresponding results on most DDR-related parameters were also obtained
in cell line experiments, thus further validating the broad applicability of our results. In-
terestingly, lung cancer cell lines additionally showed higher endogenous/baseline DNA
damage (both single- and double-strand breaks) compared to normal fibroblasts, partly
due to the elevated levels of oxidative stress that were found in malignant cell lines.

Importantly, significant differences in the NER and ICL repair capacities were observed
between lung patients sensitive or resistant to subsequent platinum-based therapy. Indeed,
following treatment with UVC or cisplatin, limited lesion accumulation in non-responders’
PBMCs was found, probably emerging from excessive DNA repair activity of both NER
and ICL repair mechanisms, resulting in strong resistance to apoptosis in non-responder
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samples. These results are in line with previous studies in solid tumors, including lung can-
cer [71–74], head and neck cancer [75–78], ovarian cancer [52,79,80], testicular cancer [79],
and colorectal cancer [22], as well as in hematologic malignancies [44,81–84]. These results
suggest that it might be possible to predict chemotherapy outcomes by measuring DDR
signals in PBMCs derived from patients with cancer.

A limitation of the present study is that we measured DDR-related parameters in
the whole PBMC fraction derived from patients with lung cancer. Since PBMCs are not
a homogeneous cell population but are composed of various cell types, such as T cells
(45–70%), B cells (5–10%), monocytes (10–30%), natural killer cells (NKs; 5–20%), and
dendritic cells (0.5–2%) [85], it is important to determine if subpopulations of PBMCs might
vary in their response to DNA damage. Therefore, analyzing DDR-associated parameters
in the subpopulations of PBMCs from patients with lung cancer with different response
rates is an important direction for our future research.

5. Conclusions

In order to protect against genotoxic effects, cells have developed a number of genome-
protection mechanisms, which are collectively referred to as the DNA damage response
network. Interestingly, dysregulation of this system has been linked to the onset and
progression of multiple diseases, such as cancer, as well as the response to therapies
that cause damage to DNA. In addition, multiple diseases, such as cancer, are caused by
disruption of redox homeostasis, which is necessary for human health, with oxidative
stress also playing a crucial role in the cytotoxicity of platinum drugs. Therefore, herein we
investigated the relationship between the therapeutic benefit of platinum-based regimens,
the redox status, and the DDR-related signals of PBMCs derived from patients with lung
cancer at baseline. We found that redox status expressed as the GSH/GSSG ratio, the
apurinic/apyrimidinic sites, the DNA repair capacity of critical DNA repair mechanisms,
namely NER and ICL repair, and the apoptosis rates display significant differences among
patients and correlate with the clinical responses to platinum-based therapy. These findings
might be exploited as tools to design novel non-invasive predictive biomarkers and might
contribute to the identification of patients with lung cancer who are more likely to benefit
from this type of therapy.
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