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Computation of the position and the width of the B2 1s22s22p2 1D shape resonance

Christos Sinanis, Yannis Komninos, and Cleanthes A. Nicolaides*
Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue,

116 35 Athens, Greece
~Received 17 November 1997!

State-specific configuration interaction in the continuum calculations, with electron correlation included,
shows that shape resonances in polyelectronic atoms can be computed systematically to a high degree of
accuracy. Specifically, the B2 1s22s22p2 1D state is computed to be a shape resonance withE595 meV and
G554 meV, confirming the tentative identification given recently by Leeet al. @Phys Rev. A53, R633~1996!#
for the lowest resonance structure observed in scattering experiments.@S1050-2947~98!50605-1#

PACS number~s!: 32.80.Dz, 31.25.2v, 34.50.2s
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In a recent Rapid Communication, Leeet al. @1# reported
experimental energies and widths for the shape resonanc
Li2 ~1s22s2p 3Po, Eexpt55066 meV, Gexpt564625 meV!
and of B2(1s22s22p2 1D, Eexpt510468 meV, Gexpt568
625 meV).

As regards the Li2 3Po resonance, a recent theoretic
study of its structure and decay dynamics produced resul
agreement with experiment@2#. With regard to the B2 1D
resonance, Leeet al. @1# wrote that they considered its iden
tification tentative and stressed the need for corrobora
from reliable calculations. In this context they quoted a res
for the energy (E5115 meV) from unpublished work o
Froese-Fischer, which agrees with the experimental o
However, no description of this calculation is available a
no result for the width is quoted.

The published theoretical results on theE andG of the B2

1D state~see Table I and below! are at variance with the
measured values. This is not unusual for an atomic nega
ion ~ANI ! state such as B2 1s22s22p2 1D, whose electronic
structure immediately suggests thatE and G should depend
crucially on electron correlation characterizing the localiz
and the asymptotic parts of the resonance. In fact, eve
one, in general, pays attention only to the energy differe
between the ANI state and the corresponding bound stat
the neutral atom, i.e., the electron affinity~EA!, it is neces-
sary for the theoretical approach to be both rigorous
computationally practical~i.e., accounting for interelectroni
interactions in the discrete spectrum and in the continu
spectrum!, since small errors not only affect the absolu
value of the EA but also may change the nature of the A
state from resonance to a discrete state and vice versa
support this statement, we give three examples. The firs
fers to the value of EA of O2 2Po, a well-established
ground-state ANI. Even a huge configuration-interaction~CI!
calculation with about 300 000 configurations, using t
standard methods of quantum chemistry@3#, produced an EA
of 1.314 eV, 148 meV smaller than the experimental value
1.462 eV. The second refers to the Ca2 4s24p 2Po bound
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state. Until the theoretical@4# and experimental@5# findings a
decade ago, it was erroneously calculated to be a shape
nance with a finite width~e.g.,@6,7#!. The third refers to the
possibility of binding an electron by ground-state nob
gases. The prediction based on density-functional theory
the noble gases exist as stable negative ions@8# was shown to
be erroneous@9#.

Published calculations on the nature of the B2

1s22s22p2 1D state and its intrinsic properties can be d
vided into semiempirical@10–12# and ab initio @15,16#. Of
these, only the work of Hunt and Moiseiwitsch@12#, based
on the use of an empirically adjusted model potential~origi-
nally employed by Allis and Morse@13#! and on the solution
of a one-dimensional Schro¨dinger equation under scatterin
boundary conditions, produced the position as well as
width of the resonance~Table I!. The other approaches wer
intrinsically restricted to providing only a value for the e
ergy. The first study was by Johnson and Rohrlich@10#, who
employed screenedZ-dependent perturbation theory an
semiempirical extrapolation from ionization potentials. Th
method produced the result that the B2 1D state is bound
with respect to the B2Po ground state by 0.61 eV. Ten yea
later, Schaefer, Klemm, and Harris@11# analyzed a numbe
of negative ions in terms of particular, state-dependent c
relation effects, called ‘‘nondynamical correlation’’ in th
Silverstone-Sinanoglu@14# classification and, using empiri
cal data, concluded that ‘‘the B2 1D state does not exist,’’
since they calculated its energy to be 375 meV above thre
old ~Table I!.

Soon after the Schaeferet al. @11# paper, Moser and Nes
bet @15,16# published two results on the EA of the B2 1D
state, obtainedab initio. They employed the bound-state-typ
Bethe-Goldstone scheme of CI with all single- and doub
orbital @15# or configurational@16# excitations. The first cal-
culation ~@15#, Table II! showed that the B2 1D state is
essentially on threshold~6 meV above!, whereas the secon
~@16#, Table V! showed that it lies 275 meV above. Such
scheme-dependent discrepancy, between two large-scale
culations, demonstrates the difficulty in computing reliab
the EA of B2 1D, even without the explicit consideration o
the open-channel scattering function space.

In this Rapid Communication we present the results
calculations that accounted for the effects of the se

,
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TABLE I. Energies~eV! with respect to theB 1s22s22p 2Po ground state and widths~eV! of the B2

1s22s22p2 1D shape resonance obtained from various theoretical approaches and from measuremen

Theory Experiment

1959 1969 1970 1971 1972 1996 1997 1996
Reference @10# @11# @12# @15# @16# a This work @1#

E 20.61 0.375 0.45 0.006 0.275 0.115 0.095 0.10460.008
G 0.11 0.054 0.06860.025

aUnpublished result by Froese-Fischer, quoted in Ref.@1#.
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consistent fields and of electron correlation in the discr
and in the continuous spectrum. These were carried ou
the framework of the state-specific configuration interact
in the continuum~CIC formalism and methods@17–20#. In
addition, in order to produce results of high accuracy, a s
tematic extrapolation scheme in conjunction with a series
highly correlated wave functions was tested successfully
details will be given elsewhere@21#. Our results show tha
the B2 1s22s22p2 1D state corresponds to a shape re
nance withE595 meV andG554 meV, thereby confirming
the tentative identification and the values forE andG given
by Leeet al. @1# for the lowest resonance structure.

The strategy of the overall state-specific calculation is
following: First, emphasis is placed on computing t
square-integrable partC0 and the energyE0 of the 1D reso-
nance, very accurately, in terms of its own function space
optimizing via energy minimization the zeroth order~multi-
configurational Hartree-Fock! and the correlation part by th
nonorthonomal CI methods of the state-specific theory~@22#
and references therein!. For theL shell, singly, doubly, tri-
ply, and quadruply excited configurations were includ
with Slater-type orbitals withn53,4,5. The resulting ener
gies for the B2Po state were 224.601 70 a.u. ~431
symmetry-adapted configurations!, and for the B2 1D state
were 224.593 99 a.u.~2892 configurations!. The accuracy
was improved by applying a systematic extrapolation pro
dure suitable for negative ions@21#. The final result for
L-shell correlation isE0(1Do2L shell)5224.596 61 a.u.
As regards the energy for the2Po state~the threshold!, this
was obtained by extrapolating to the limitN→` from the
last three values of the energy given in Table II of Ref.@23#.
The extrapolated energy for the ground state beco
E(2Po-L shell)5224.602 52 a.u. Therefore, at this level
calculation, the1D resonance lies 174 meV above the2Po

threshold. TheK shell,K-L shell, and relativistic effects ar
estimated, based on the results of Ref.@23# for the B2

1s22s22p2 3P affinity, to contribute25 meV. Therefore,
for the bound-state-type calculation, the1D resonance ap
pears at 169 meV above the boron2Po ground state.

The next phase in the overall calculation is the inclus
of the contribution of the remaining part of the continuum
the B2 1D state, i.e., the part that was not accounted
during the energy minimization to the local minimum corr
sponding to the resonance. This is done by first represen
the open-channel orbitals,«p and« f , by numerical scatter-
ing functions computed in the potential of the multiconfig
rational Hartree-Fock~MCHF! core B 1s2 (0.97 2s22p
20.23 2p3)2Po. It turns out that, after the CIC, the contr
bution of the« f channel to the energy shift and width
negligible. Hence, the continuum with which the fully op
e
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mizedC0 (1D) interacts in a quantitatively meaningful man
ner is B(2s22p 2Po)«p 1D. The value of the resonance po
sition is obtained by solving the equation

E5E01F~E![E01PE
0

`

d«
W2~«!

E2E~2Po!2«
, ~1!

where P denotes principal value integration and

W~«!5V~«!2ES~«!5^C0uH2EuU~«!&, ~2!

with U(«) being the scattering wave function at energy«.
WhenV(«) andS(«) are computed systematically and the
extrapolated, the position of the1D resonance is compute
to be 96 meV.

Finally, we improved the accuracy by taking into accou
the effect of the pseudostates arising from the diagonal
tion of the Hamiltonian in the space of the square-integra
functions@17#. The result is a correction to the shift of onl
21 meV. The explanation for this small number is as fo
lows. Because of the overwhelming inclusion of the co
tinuum contributions intoC0 , the interchannel coupling be
tween open and closed channels affected by the inclusio
the pseudostates has an insignificant impact. This result
accordance with the formal and numerical demonstrati
given recently for the cases of widths of resonances@24#.

Thus, the combined effect of the self-consistent field a
of electron correlation in the discrete and in the continuo
spectrum results in the energy position for the B2 1D reso-
nance of 95 meV. Finally, the width of the resonance w
computed from the formula@17,24#

G52p
W2~«!

12F8~«!
, «5E2E~2Po!, ~3!

where F8(«) is the derivative ofF(«) defined in Eq.~1!.
Using the extrapolated matrix elements, the result from
~3! is G553 meV. Our final result, including the pseu
dostates, isG554 meV.

It should be stressed that the width of the resonanc
very sensitive to the energy of the escapingp electron, since
near threshold it behaves likeG}«3/2. Therefore, the calcu-
lation of G depends crucially on the position of the res
nance. This fact provides the justification for developing a
applying a sophisticated polyelectronic theory for the relia
computation of shape resonances close to threshold.
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