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The fraction of degrees of freedom occupied by solitons in the classical Toda chain is evaluated as a
function of temperature. Our results, derived within the framework of the Bethe ansatz (BA), are in

complete agreement with recent numerical simulations that employ a soliton counter and reveal a T' '
dependence in the limit of low temperatures. The agreement confirms the existence of a T-independent
soliton-phonon boundary in momentum space within the BA formalism, which apparently shares a com-
mon physical basis with the soliton counter s effective distinction between bound and scattering states.

The Toda chain has been an important model for test-
ing fundamental aspects of nonlinearity; being a discrete
lattice with the exact balancing of nonlinearity and
dispersion, it can support pulselike soliton excitations.
Because of its complete integrability property, it is
amenable to an exact formulation of its statistical
mechanics in terms of interacting solitons and pho-
nons. Furthermore, it appears that some of its prop-
erties (e.g., soliton shape) represent generic features of
large-amplitude motion in nonlinear lattices. As a
consequence, results derived within the context of the
Toda lattice can be reasonably expected to serve as useful
guides for the behavior of real quasi-one-dimensional ma-
terials.

One of the first questions that can be asked about a
soliton-bearing system at thermal equilibrium concerns
the average number of thermally excited solitons. Muto,
Scott, and Christiansen carried out a large-scale numeri-
cal simulation of Toda lattice dynamics and argued that,
with a reasonable choice of parameters, their conclusions
may have some relevance to the transport properties of
DNA. Using a soliton counting technique, they deter-
mined the fraction of solitonlike degrees of freedom to be
proportional to T' in the limit of low temperatures.

The T' power law has a rather long history. It was
first derived in the context of the ideal soliton gas the
derivation was later shown to be erroneous" (the
correct' soliton density in this approximation is propor-
tional to T at low temperatures). It reappeared later
within the framework of somewhat more sophisticated
theories, which took into account the interaction of a sin-

gle soliton with the thermal phonon gas. ' ' However,
the predicted prefactors disagree with the results of the
simulation and, what is more important, these one-soliton
theories are known to fail in predicting other thermo-
dynarnic properties, e.g. , specific heat or thermal expan-
sion. Thus, once again, one cannot a priori exclude the
possibility of a fortuitous result.

It is the purpose of this paper to use the Bethe-ansatz
(BA) theoretical framework, which has been developed
for the classical thermodynamics of the Toda lattice,
in order to calculate an exact value for the soliton density

as a function of temperature. Besides the obvious interest
in comparing the results of the numerical simulation to
those of an exact theory, we hope that this will deepen
our understanding of dynamical processes at finite tem-
peratures, by explicitly relating the microscopic dynamics
predicted by the BA to the physical basis of the "soliton
counter", i.e., the fact that the soliton is a localized exci-
tation.

In the following we shall give a concise account of the
theoretical background on the statistical mechanics of
the Toda chain, to the extent that is necessary in order to
introduce concepts and notation used in this work. For
details the reader is referred to the original literature. '

The Hamiltonian,

N 2

H= g +—e '" '+a(y;+, —y;)
pi a —b(y;+i —

yt)

i=1

describes a chain of X atoms with equal mass m, coordi-
nates y; and momenta p, The potential consists of a
nearest-neighbor exponential repulsive interaction of
range b ' and an attractive linear part, mathematically
equivalent to an external force of strength a, which is re-
sponsible for holding the particles together in the lattice.
In what follows, we shall use dimensionless quantities in
which length is measured in units of b ', and energy in
units of a/b; as a consequence, temperature is measured
in units of To=(a /b) /k' and pressure in units of a; fur-

thermore, we shall need the dimensionless coupling con-
stant defined by the ratio of phonon-to-soliton energy,

g =%toolkit To, where coo=&ah/m .
The dynamical evolution of particle motion in the

infinite Toda lattice can be described in terms of the in-
verse spectral transform (IST). In the context of the IST
it is possible to identify two distinct types of dynamical
behavior, according to the position of the eigenvalues in
the spectrum of the operator associated with the particu-
lar nonlinear problem: (a) extended, subsonic, dispersive
[phononlike] excitations arising from the continuum part,
and (b) localized, supersonic, nondispersive [solitonlike]
excitations arising from the discrete part of the spectrum
of the associated linear operator.
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Scattering of any number of excitations is a completely
elastic process and can be described by pairwise additive
phase shifts. ' As a result, a complete description of
equilibrium statistical mechanics can be given in terms of
solitons, phonons, and their interactions, or, equivalently,
in the framework of the BA. Thermodynamic proper-
ties can be expressed in terms of the distribution of mo-
menta in k space. The densities of occupied and unoccu-
pied states are denoted by p(k} and p&(k), respectively,
and the ratio p(k)/pl, (k)=—exp( —Pe(k)), where P is the
(dimensionless) inverse temperature, defines a quasiparti-
cle energy.

8%at is a thermal soliton within the BA framework?
At zero temperature, particle states occupy all k values
up to a certain kz. In the classical limit A' —+0 it has been
shown that k +=2/g and the function p(k) has a singu-
larity at k =kF, single-particle excitations correspond ex-
actly to solitons or phonons, according to whether they
are particlelike or holelike; the dispersion curves and
other dynamical properties derived within the BA
framework are identical with those of the IST.

At finite temperatures, a direct interpretation of the
BA quasienergies is less clear. ' ' There is no singularity
in either the p(k} or the e(k) curves. In fact, it has been
shown' that in the space of the original quantum num-
bers defined in the BA context, the Fermi sea literally
"evaporates" as soon as we heat the [classical] system.
Nonetheless, it has been established ' that the classical
limit of the BA description is exactly equivalent to the in-
teracting soliton-phonon gas picture (i.e., a scheme in
which solitons and phonons retain their identities as
defined at T=0}. The equivalence of these two distinct
formulations of thermodynamics rests on the existence of a
"Fermi momentum" kr, which is deftned at zero tempera
ture ' and remains constant.

As a consequence, in spite of the absence of any singu-
larity at kF within the BA formalism, an unambiguous
procedure for counting thermal solitons is suggested: to
count all states with ~k~ )k~ as solitons If such a.pro-
cedure yields the same results with the soliton counter of
Ref. 9 at all temperatures, this would imply that kz re-
tains some physical significance even within the context
of an "evaporated" Fermi sea.

Given a chain of N atoms and length L, the number of
solitons N, is deftned (cf. above) via

e B—I;B,P& 2—gPl I2 g t P(1+p)a
ai

~here

t =2P k/k F
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is a solution of
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(parabolic cylinder function). Using Eqs. (2)-(5) and Eqs.
(12) and (28) of Ref. 6, it is straightforward to establish
that
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A, =P(1+p)
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n, —AT'i +BT +O(T), (9)

where A =2X3'~ /[I'(1/3)) =0.4019. The simplest
way to extract from the theory accurate results valid at
all temperatures is via numerical integration of the non-
linear (Ricatti) equation, which arises in the context of
the closed-form solution and turns out to have a much
smoother behavior than the integral on the right-hand
side of Eq. (6). If f+ =Fe'e, and w =F'/F, then (7) is
equivalent to

d8
dt

(10)

= —(t +2w)g,

The expression (8) represents the prediction of the exact
(BA) statistical mechanics for the fraction of degrees of
freedom occupied by solitons. Using the known asymp-
totic expansions for f& and f2, we have derived the
leading-order behavior of (8) for p =0 and T~0:

N,
dkp k (2)

de = —w(w+t)+P —
A, ,2

dt

with initial conditions

(12}

In order to determine the soliton fraction n, =N, /N we
shall further use: (i) the relationship'9

0(0)=0,

$(0)=f2(0)/f, (0)=&2
I(A, /2)

(13)

(14)

pa«}=— I Be
2& Bp

(3)

valid in the classical limit, where d =N/L is the density
and, (ii) the closed-form solution of the integral equa-
tion, which determines the quasiparticle energy e(k) un-
der the condition of given external pressure p, i.e.,

w(0}=0 . (15)

The initial value problem defined by Eqs. (10)—(15) was
solved numerically with a high degree of accuracy using
the Bulirsch-Stoer method ' and for a number of adjacent
values of A.. The fraction of degrees of freedom occupied
by phonons under conditions of vanishing external pres-
sure p is given by the last term in Eq. (8) [computed with
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FIG. 1. The fraction of degrees of freedom n, occupied by
solitons as a function of temperature plotted on logarithmic
scales. Also plotted are results extracted from Fig. 1 (circles)
and Fig. 2 (triangles) of Ref. 9(b), appropriately rescaled to our
dimensionless units; the exact relationship (cf. Ref. 1) between

energy (the nominal temperature of Ref. 9) and temperature has
been taken into account. We attribute the residual discrepan-
cies (more pronounced at the high-temperature regime) to the
fact that constant energy simulation runs do not exactly reflect
the behavior of a constant temperature system.

a relative accuracy of O(10 }]. The rest is solitons.
The results are plotted in Fig. 1 together with two (ap-
propriately scaled} curves from Ref. 9. The agreement
with the simulations is satisfactory over the entire tem-

perature range. An analysis of the low-temperature re-

sults (Fig. 2) confirms the T' law and provides a value

for the prefactor A =0.402 in excellent agreement with

the result of the asymptotic expansion (9), as well as an

estimate 8 = —0. 148 for the leading correction term.
We have presented a theoretical calculation of the den-

sity of thermal solitons in the Toda lattice, based on the
classical limit of the thermodynamics of the Bethe-
ansatz, and the concept of a temperature-independent
boundary in momentum space, separating phononlike

FIG. 2. The ratio n, /T' ' plotted as a function of T' '. The
results extrapolate to a value A =0.402 (Richardson extrapola-
tion") in the limit T~O. The limiting slope provides a value

for the coeScient 8 = —0. 148 in the asymptotic expansion (9).

from solitonlike excitations. The agreement of our re-
sults with the numerical simulations suggests that our
procedure shares a common physical basis with the clas-
sical soliton counter, which in effect tests whether a par-
ticular excitation is extended or localized.

Our [exact] results confirm that in the case of the Toda
chain —a key model of lattice anharmonicity —,the most
elementary global manifestation of nonlinearity, i.e., the
extent to which nonlinear excitations occupy available
phase space at finite temperatures, occurs in the form of a
simple potoer law. In this context, the fact that the I/3
exponent can be derived by approximate theories, '

which do not invoke exact integrability, but are based on
more generic features (e.g. , phase shifts} of a single [non-
topological] soliton's interaction with thermal phonons,
prompts the speculative question: is there a kind of
universality in the statistical properties of nonlinear lat-
tices'7
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