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There is a class of quadruply excited states of S symmetry where electronic motion is highly
correlated and where the electrons tend to form a tetrahedron as the excitation energy increases
toward the four-electron ionization threshold. This conclusion has been reached following ab initio
state-specific calculations in Be for the lowest energy state of each intrashell manifold n, of the
energies, the average radii r„, and the average interelectronic angle H~q. In order to calculate H~q,

a general theory is developed, applicable to arbitrary N-electron atomic states. The value of 8&2

is straightforward to compute, and is given from a prescription transforming the expression for
the two-electron interaction energy of the state to a formula for the probability density of cos Hi2.
The state-specific calculations for each n, up to n = 6, were done by the multicon6gurational
Hartree-Fock method where all configurations with ni =——nq --——n3 ——n4 are included. For n = 3,
the main configuration 383' has a weight of 0.90 while 6Iig ——103.3'. As n increases, electron
correlation increases relative to the Coulomb nuclear attraction. With increasing degeneracy, many
con6gurations with high orbital angular momenta mix heavily, and 8~2 increases. For example, for
n = 6, the 6s6p configuration has a weight of only 0.59 and 8&2 ——106'. In this case, doubly, triply,
as well as quadruply excited con6gurations with respect to nsnp contribute to the wave function
signi6cantly. Finally, these four-electron ionization ladder states have a simple energy spectrum,
given to a very good approximation by E„= --A'/n (n'~ r„), where A' is a constant. In
conjunction with our earlier results on the geometry and the spectra of special classes of doubly and
triply excited states, this finding leads to the conclusion that for highly correlated electronic motion
the spectrum is dictated essentially by one dynamical variable, the average radius from the nucleus.

PACS number(s): 31.50.+w, 31.90.+s, 31.10.+z

I. INTRODUCTION

The present paper presents theory and numerical re-
sults for the conceptual and quantitative understanding
of quadrup/y excited states (QES) which can be grouped
into a class characterized by a linear combination of con-
6gurations with n = nq ——n2 ——n3 ——n4, where n, are
the principal quantum numbers of the excited electrons.
Speci6cally, by applying the state-speci6c approach to
the understanding and computation of wave functions
and properties of multiply excited states (MES), we show
that there is a class of QES with parallel spins, 9 sym-
metry, whose electronic geometry, as computed &om erst
principles, tends to that of a tetrahedron as the E = 0
threshold is approached, and whose spectrum obeys a
simple law, analogous to the ones that we derived previ-
ously for special classes of doubly excited states (DES)
and for triply excited states (TES).

The determination of the geometric localization of the
electronic distribution of these four-electron states, re-
quired the development of theory for the computation of
the average value of the angle among the electrons. This
theory is presented in Sec. IV.

II. BACKGROUND: COMPUTATION)
GEOMETRY AND ENERGY SPECTRUM
OF CLASSES OF DOUBLY AND TRIPLY

EXCITED STATES
The spectra of atoms are determined by the excita-

tions of electrons into states where the occupied shells

and subshells have quantum numbers n andjor / that
are larger than those of the ground state. There is an
infinite number of possible excitations to states with dif-
ferent quantum numbers, and a variety of spectroscopies
together with quantum theory and computation aim at
creating reliable knowledge as regards the fundamental
wave-function characteristics and the properties of indi-
vidual states as well as of groups of states which can be
assigned to classes with particular common features.

The simplest and the most extensively studied case of
a class of states whose common features have been under-
stood through a combination of experiment and theory,
is the one-electron Rydberg series. This understanding is
reHected in (1) the calculable function of the active elec-
tron for any symmetry and energy by solving appropri-
ate quantum or semiclassical one-dimensional differential
equations. (2) The hydrogenlike formula for the energy
spectrum of each symmetry

where n' is an e8'ective quantum number, with slight
or strong energy dependence coming &om the quantum
defect which measures the deviation &om the hydrogenic
situation due to the presence of the core electrons, or of
other Rydberg series, or of DES.

In the case of DES, the conceptual and computational
simplicity of the one-electron picture is lost. Now, as
regards the prediction of the observable properties, one
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must compute wave functions which are very extended
and which contain quantitatively the self-consistent dy-
namical interelectronic interactions, the near degenera-
cies (which increase with excitation), and the remaining
electron correlation. Furthermore, the DES appear in ev-
ery N-electron system and not just in He-like ones, which
thus far have constituted the object of the majority of in-
vestigations. Hence, in the ¹lectron case (N ) 2), the
complexity of electronic structure (e.g. , many open sub-
shells), and the multiplicity of interelectronic correlation
effects (e.g. , triple, products of pairs, core-valence, etc. ,
virtual excitations), require the existence of general the-
ory and practical methods for its implementation.

An approach to the problem of calculating the corre-
lated wave functions and properties of MES, in position
or in momentum space, with particular emphasis to the
ab initio treatment of special classes of DES and of TES
where the zeroth order orbitals are assigned the same
principal quantuin number n (intrashell configurations),
has been presented by us in a series of articles (e.g. , [1—6]
and References therein). In spite of earlier discouraging
statements as to the validity and calculability of Hartree-
Fock (HF) or multiconfigurational (MCHF) wave func-
tions for bound states in the continuum or as to the
possibility of treating MES with strong correlations in
terms of O(3) configurational expansions, the main di-
rection in our research has been toward the computation
of state-specific wave functions using methods developed
for low-lying polyelectronic states. Thus the localized
wave function 4z of each MES, ~m), is written as

@0 @MCHF + Xloc & (2)

~here 4McHF is the MCHF wave function and X&,
stands for the remaining correlation configurations which
are added by the variational optimization of analytic vir-
tual orbitals. Our choice of the MCHF configurations is
based on the anticipated character of each state of inter-
est and on a strategy toward computational economy. As
regards the method for obtaining the MCHF orbitals, our
experience suggests that the numerical method [7) works
well for the low-lying states but that analytic methods
based on the iterative use of variational and of natural
orbitals are more convenient for the high-lying ones [1,5].

The theory is not restricted by the type of localized
or quasilocalized state of interest or by the number of
electrons. Furthermore, it has been employed for the ab
initio computation of DES not only of low energy but
also of high energy, in neutral atoms and in negative and
positive ions, thereby allowing us to draw conclusions on
previously unexamined questions about the properties
of two-electron states where electron correlation domi-
nates [1,2,5,8—10].

Returning to the problem of distinguishing special
classes of DES and TES and computing their proper-
ties, the work in [1—5] produced the following results and
conclusions which have been used as input to the present
study:

(1) Correlated wave functions of certain symmetries
where the zero-order MCHF description is given as a
combination of all the intrashell configurations, n = nq ——

n2 for DES and n = nq ——n2 ——n3 for TES, show local-

E„(TEILor THEIL) = —A„
n(n —1)

r.'
(for large n),n2

(3)

(4)

A„varies very slowly and r„ is computed as an average
value for each n. Equation (4) follows from Eq. (3) be-
cause our computations showed that the proportionality
constant converges and that r„ is proportional to n . It
should be noted that by writing an energy-independent,
integer quantum number in Eq. (4), we assume that the
energy region of interest is not perturbed strongly by, say
MES with (N + 1) number of electrons. (Incidentally, it
might be interesting to study a TEIL spectrum which is
perturbed by TES in N-electron ions. )

For the TEIL states, Eq. (3) reduces to the "dou-
ble Rydberg" formula proposed by Read [13] empirically,
&om data on low-lying states, and subsequently analyzed
and used by a number of authors who treat such states
in terms of collective coordinates [14—20]. In the recent
paper by Zhang and Rau [14], the comparison which is
made among various results [14,19,20] (Tables IV—VI),
shows significant discrepancies.

III. THEORY AND COMPUTATION OF THE
FOUR-ELECTRON-IONIZATION-LADDER
(FEIL) STATES OF SS SY'MMETg& IN ge

We consider QES for Z = 4, where all spins are par-
allel and the overall symmetry is S . The configuration

ization tending to the rigid rotor for the DES and to the
equilateral triangle for the TES as n becomes large. The
first case represents states on the "Wannier ridge" [11]
and constitutes a two-electron ionization ladder (TEIL),
while the second case represents TES on a "hyperridge, "
defining the class of the three-electron ionization ladder
(THEIL) states. Both the angles and the average radii
are calculated &om first principles in terms of specially
defined functions. In fact, these findings have proven
useful for the adoption of a fixed-radius model for the
qualitative analysis of the TES [12].

(2) Of all the possible states corresponding to config-
urations with nq ——n2 or nq ——n2 ——n3, the states of
the TEIL or the THEIL correspond to the lowest root of
the Hamiltonian matrix constructed in these manifolds.
This is the original result of [1] for the TEIL states. It
is the lowest root, together with the conditional proba-
bility plots and the ab initio evaluation of average radii
and angles, that ought to be used for the identification
of such localized states and not the simplistic reference
to an intrashell single configuration (say the ns2 for the
i 8 TEIL). In fact, we have found that, as n increases the
dominant configurations of the TEIL or THEIL states
tend toward higher orbital momenta (e.g. , see Table I of
Ref. [4] for the He 2S TEIL resonances).

(3) The results of geometrical localization and of lowest
energy per intrashell manifold were used for the deriva-
tion of formulas for the excitation spectra of the TEIL
and the THEIL states [2], which have the remarkably
simple form, resembling Eq. (1):
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TABLE I. Mixing coefficients of the most important (coef-
ficients equal to or larger than 0.05) intrashell configurations
of the four-electron ionization ladder (FEIL) states in Be 8,
obtained from MCHF calculations.

Configuration g n = 3 4 5 6

nsnp 0.81 0.77
nsnpnd 0.46 0.48
nan fnd 0.20 0.23
ndnf np -0.24 —0.28
npnd nf 0.09 0.13
nfnd -0.08 -0.11

0.87
0.42
0.14

—0.18
0.05

—0.05

0.95
0.29

corresponding to the lowest state of this symmetry is the
2s2p . The problem then is how to compute the wave
functions and their energies as well as the electronic ge-
ometry of the intrashell QES corresponding to the lowest
energy state of each manifold n. The method and its
justification allowing the computation of correlated wave
functions of MES are discussed in the previous section
and in Refs. [1—6]. The theory which allowed the deter-
mination of the electronic geometry of these QES, and
which is applicable to any X-electron atomic state, is
given in the next section. Here we present our numerical
results.

As regards the constitution of the MCHF correlated
wave functions for each n, the most important configura-
tions and their coefficients (equal to or larger than 0.05)
are given in Table I. The calculations were done using
linear combinations of all nq ——n2 ——nq ——n4 config-
urations for each manifold n. As in the case of doubly
and triply excited states of the TEIL and THEIL spectra,
as n increases, that is, as energy and degeneracy increase
and the relative importance of interelectronic interactions
increases, the dominant single configuration nsnp loses
weight and even quadruply excited configurations acquire
significance. The calculations stopped at n = 6 because,
as we have stated in the past, for larger n there appear
convergence difBculties with the Froese-Fischer numeri-
cal MCHF computer code [7] and because by the time
we reach n = 6, the results are sufBcient to allow the
deduction of conclusions.

The expectation values of these correlated wave func-
tions are presented in Table II. Column 1 contains the to-
tal energies. The lowest state is about 266.4 eV above the
Be 1s 2s S ground state. Our experience with state-
specific calculations of TEIL and THEIL states [1,2,4,5]
has shown that the effect of Xi, [Eq. (2)] is small, and
as n increases it becomes essentially negligible. There-
fore, in this work only the 4M&HF and EMcHF were com-

I

TABLE II. Results of calculations using the Be S FEIL
correlated wave functions. r and H„represent the average
distance and interelectronic angle respectively. A„and A, '„

are defined by Eqs. (3) and (4). These results, in conjunction
with the fact that Eq. (3) is decuced from the geometry of
the oblate symmetric top (see text), show that in the limit of
E„-+0, the four electrons leave the atom in the tetrahedral
geometry. Energies and distances are given in atomic units.

n, —E„ r —"2 O„A„.4,'.„
4.8743 0.43 99.5' 7.21 19.50
2.2871 0.43 103.3' 5.80 20.60

4 1.3173 0.43 105.2' 5.30 21.08
5 0.8528 0.43 105.7' 5.03 21.32
6 0.5962 0.43 106.0' 4.80 21.46

1.72
3.90
6.95

10.86
15.55

IV. THEORY AND COMPUTATION
OF THE AVERAGE INTERELECTRONIC

ANGLE 8gg

The general second-order density matrix, in its spinless
form, is defined through the many-body wave function as

puted. Column 2 contains the average r„. These values
are smaller than those of the Li THEIL states [Table I
of Ref. [2]] whose main configuration is 2p ~S . Column
3 demonstrates that r„n, a key feature of the struc-
ture of not only the one-electron atom but also of the
TEIL and THEIL states [1,2,4,5]. Thus, together with
the results of column 5 and of the corresponding energy
spectrum (see below), it is seen that these states fall into
a class with special properties. %e call this class the
four-electron ionization ladder (FEIL).

Column 5 contains the average value of the angle
among pairs of electrons. The computation of this prop-
erty for a many-electron system has not been done before
and required the development of the necessary theory.
This is given in the next section, together with an analy-
sis of the related importance of electron correlation. The
results of column 5 show that as n increases, the angle
tends to that of tetrahedral geometry (109.5').

Finally, we have applied Eqs. (3) and (4) to the calcu-
lated results. The justification for doing so for the FEIL
states in conjunction with the results of the oblate sym-
metric top is given in Ref. [2]. Indeed, these equations
fit our computed energies very well and the correspond-
ing proportionality constants A„and A„are given in
columns 5 and 6 of Table II. As n increases, A„' con-
verges to a constant value.

I'(r'„r'„.ri, rz) =
~1,~2, - ~ ) roan

e(r', o.i, rz, ro3z0 , . .3. , r„)oI'(irro ir izro3z, 0. .3. , r„o„)dr3 . dr„,

where summation over all spin variables is performed [21].
Its diagonal element is the probability density of simul-
taneously finding one particle at rq and another at r2. In
terms of the latter quantity, the energy of the two-particle
interaction f(ri, r2) can be written as [21]

E = N(N —I)/2 J'(ri, r2)I'(ri, rz, ri, rz)dridrp i, (6)

where the factor W(K —1)i2 is the number of electron
pair S.
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p(cos Hiz) = I'(ri, rz, ri, rz)dri drz .
Hag =CODSt

(7)

Similarly, we define the probability that the position
vectors of two particles form an angle Oqz as

tribution is computed according to the Slater-Condon
rules [22]. In general, the calculation of g(cosHiz) re-
quires the evaluation of the following expression over four
orbitals:

Let 4 be a linear combination of ¹ lectron determinants
over a set of orthonormal spin-orbitals. If two determi-
nants difFer by more than two spin-orbitals, their product
does not contribute to g(cos Hiz). Otherwise, their con-

u (ri)ui, (rz)u, (ri)uq(rz)dridrz .
81g —COI1St

Separating radial and angular parts, this is written as

{R-IR,)(Ri ]Ra) &t. (Hi, yi)&i, , (Hz &pz)&i', .(81 &pi)+l (82, +2)dlldlz .
egg =COIlSt

As a function of Hiz, the integral can be expanded in terms of the orthogonal Legendre polynomials Pi, (cos Hiz). After
some straightforward algebra, the coefBcients of this expansion, expressed in terms of 3-j symbols, are found to be

ci, = h + „ .+ ,Q(2l + 1)(2ls + 1)(2t, + 1)(2l~ + 1)(—1) '+

s d
i i

s d2~+1&I. I. a t'I, 4 kl & Z.
2 ( 0 0 0) ( 0 0 0) (m —m, —m +m, ) (ms —mg —mi, +my)

Apart from the factor (2k + 1)/2, these coefficients are
the same as the ones appearing in the expression of the
Coulomb interaction matrix elements in terms of the B"
integrals. In this case, the integral over three spherical
harmonics appears due to the expansion of the two-body
operator r~& in terms of the Legendre functions. Com-
parison of the two cases gives this correspondence

R (a, b; c, d) ~ {R~~R,) {R&~R&) P&(cos Hiz) . (11)
2k+1

2

Thus, an expression of the Coulomb interaction can be
transformed into an expression of g(cos Hiz) by the sub-
stitution (11). Therefore, g(cos Hiz) of each state is com-
putable and is directly related to the two-electron in-
teraction energy expression of this state, either in the
independent particle approximation or with electron cor-
relation included. We note that when prescription (11) is
followed, division of the energy expression by the number
of electron pairs is necessary in order that the normal-
ization condition

p(cos Hiz) sin(Hiz)d8iz ——1
0

is satisfied, as it is shown by comparing (6) and (7).
In practice, because of the orthonormality condition

of the Legendre polynomials and since Pi(cos 8) = cos 8,
the expected value {cosHiz) for a single configuration is
proportional to the coefficient of the Gi integral (divided
by the number of electron pairs). Thus if a Gi integral is
absent, the expected value of cos Hiz is 0 (i.e., Hiz is vr/2).
In the present case of the Be S state, the expectation
value of oqz from just the 2s2p configuration is 99.5 .
The main contributor to the opening of the angle for the
first few TEIL states is the nsnpnd configuration (Ta-
ble I) because of its large mixing coefficient and because
of its large R integral with nsnp . Note that because

of the overlaps in (ll), correlation corrections with vir-
tual orbitals where n' g n contribute much less to the
g(cos Hiz) of an atomic state than the intrashell angular
correlations.

V. CONCLUSIONS

The state-specific approach to the computation and
analysis of multiply excited states [1—6], in conjunction
with the theory of Sec. IV for the calculation of inter-
electronic average angles for arbitrary ¹ lectron atomic
states, was applied to intrashell quadruply excited states
of Be of 5S symmetry for n = 2 to 6. Following the the-
ory and results of [1—5] on special classes of doubly and
triply excited states, we focused on the properties of the
state of lowest energy of each manifold n. These proper-
ties turned out to be n dependent in a regular manner.
As n increases, i.e., as we enter the regime where the
interelectronic correlations dominate and the Coulomb
attraction is diminished, two remarkable results emerge
clearly.

The first is that, as a result of the mixing of many
intrashell configurations with self-consistently obtained
orbitals, the average angle between the electrons opens
up, tending to that of a tetrahedron (Table II). This
finding can be added to the ones for the TEIL [1,2] and
THEIL [2] states, where the linear and equilateral trian-
gle geometries are approached as n increases.

The second is that Eq. (4) is also satisfied for the FEIL
states. In other words, two results from the physics of
the hydrogen atom, the 1/nz dependence of the energy
spectrum and the r„n proportionality, are shown
to be valid also in special classes of' doubly, triply, and
quadruply excited states. The common feature of these
states is that they represent situations where, for each
value of n the interelectronic correlations are maximal,
regardless of the number of electrons.
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