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Energies and widths of triply excited n =2 intrashell autoionizing states of He
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We have computed to high accuracy the energies and the total widths of five triply excited n =2 intra-
shell resonances in He, the 2s 2p P', 2s2p D', P', P', and 2p' D'. These states are characterized
by strong localized and asymptotic correlation effects and by their proximity to He doubly excited states.
The possible Inany open channels correspond not only to one- but also to two-electron continua. The
resonance parameters were established by applying the complex-coordinate rotation method with large
basis sets of orbital and r;~-correlated configurations. The expansion length of the trial wave functions
went up to 1300 terms for the 2s2p D' resonance. This resonance is found to be below the He 2s2p 'P'
threshold, in agreement with experimental observations and contrary to existing theoretical results.
Similarly, the position of the 2s2p P' resonance is also below the He 2p 'P' threshold, in agreement
with a recent theoretical prediction. The widths of these states range from 10 meV for the 2s2p P' to
331 meV for 2p' D'.

PACS number(s): 31.50.+w, 32.80.Dz

I. INTRODUCTION

The He states arising from the n =2 intrashell
configurations 2s 2p, 2s2p, and 2p correspond to reso-
nances in the continuous spectrum of He [1],with the ex-
ception of 2p S', which localized electron correlation
pushes below the He 2p P' bound state [2] and symme-
try does not allow its radiationless decay via Coulomb au-
toionization [3].

In spite of numerous experimental and theoretical
studies of these prototypical states [1—28], for some of
them definitive information about accurate decay widths
or about energy positions relative to thresholds of doubly
excited states (DES's) of He is still lacking. Related is-
sues were brought forth in recent theoretical analyses and
computational studies of these states [26,27], such as the
question of the identity and position of the He reso-
nance structure of D symmetry relative to the He
2s2p P' threshold at 58.31 eV and the question of the
rigorous and reliable calculation of its autoionization
width. We note that for the 2s2p D' as well as the
2s 2p P' state, the available theoretical widths from the
early close-coupling calculations of Smith et al. [14] do
not agree with the experimental ones. On the other hand,
the 2s2p P', 2p D', and 2p P resonances have not
yet been identified experimentally.

In this paper we present results of accurate calcula-
tions of the positions and the widths of the He n =2 in-
trashell resonances. The main problexns which appear
when one aims at the calculation of the properties of such
states are the following. (1) The applied theory must for-
mally allow the calculation of interelectronic interactions
representing localized as well as asymptotic correlations,
where the continuum contains one- as well as two-
electron interacting open channels. In the recent treat-
ment of these resonances [27], the two-electron continua

II. METHOD OF COMPUTATION

The total wave functions 4 are chosen to have the
form

%=+ cRNR
R

(2.1)

where the @z are products of orbital configuration and

were neglected and the widths were calculated in the
independent-channel approximation (ICA). (2) The ex-
treme proximity to thresholds of DES's of He requires
very high accuracy in the calculation of wave functions
and energies, since the relative position of the negative-
ion resonances to these thresholds determines whether a
particular channel is open or closed. (3) For such states,
the calculation of the autoionization widths is more sensi-
tive than usually to the details of the wave functions.
The function space used for the application of the theory
must contain accurate representations of the localized
one-, two-, and three-electron correlations, as well as the
scattering orbitals, of their interchannel coupling, and of
their interaction with the core. Since the He DES's are
highly polarizable [29], this last interaction, which was
neglected in [27], may a6'ect the width.

Given these requirements and our experience with the
calculation of resonances, we decided to tackle this prob-
lem by using the complex-coordinate rotation (CCR)
method [30—32], in conjunction with large basis sets hav-
ing explicit r; dependence. The construction of the
correlated trial wave functions was carried out as in pre-
vious CCR calculations on resonances of three-electron
atoms [28,33], using the techniques developed by
Woznicki and co-workers [34,35] for discrete states and
real Hamiltonians. The method is briefly reviewed in Sec.
II. The results are presented and discussed in Sec. III.
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functions of r, . [34—36]. Basis sets with r;~ factors are
known to speed up convergence in ground states such as
ls or ls 2s. On the other hand, the structure of highly
excited states is different, due to the importance of the
multiconfigurational self-consistent field, to large electron
radii, and to heavy mixing among different
configurations. These facts require the use of at least ap-
propriate orbital configurations for reasonable accuracy
to be reached [27,37]. Thus, in this and in our previous
work [28], by using very large expansions in (1), we ex-
pect that all the crucial orbital, configuration-interaction
(CI), and r;~.-dependent details of the Hilbert space con-
tributing to the complex eigenvalues of these three-
electron resonances are taken into account.

In the case of an L,S-coupled state, the correlated
configurational function of the total quantum numbers
I.,M, S, and M& can be written as

C'~ =~[' I'rc(ri . rx)r;,'XsM, ] (2.2)

where A is the X-electron antisymmetrizer, ™Iixis a
spatial function corresponding to the configuration K,

is an X-electron spin function, and r; is a non-

negative power v of the interelectronic distance r; . . The
spatial function Fz is, due to the angular symmetry re-
quirements, a linear combination of the products of
Slater-type orbitals corresponding to the configuration E.
For v=O the correlation factor becomes equal to 1 and
4& becomes the usual configurational function. In an ac-
tual calculation both v=0 and v&0 terms should be
present.

The basis set described above is nonorthogonal, i.e., the
overlap matrix S is a nondiagona1 matrix. In order to
simplify the calculations, the T and V matrices,
representing, respectively, the kinetic and the potential
parts of the original (unrotated) Hamiltonian, were calcu-
lated in this basis set and were then transformed to an

orthonormal basis set by symmetric orthogonalization:

T =S-'"TS-'" V'=S-'"VS-'" (2.3)

Once the transformed matrices T' and V' were computed,
they were used to diagonalize the rotated Hamiltonian
matrix

H(8) =T'e "s+V'e (2.4)

for as many values of the complex rotation angle I9 as
necessary for finding the optimum energy.

In order to select the proper eigenvalue of H(8), corre-
sponding to a given resonance, the well-known procedure
was followed [31,32]. The complex eigenvalues computed
in a given basis for several values of 8 form 8 trajectories
on the complex plane. When the quantity ~dE/d8~ goes
through a loca1 minimum versus 0, the corresponding
complex energy E characterizes the sought-after reso-
nance.

III. RESUI TS AND DISCUSSIONS

%'e performed CCR computations for He for all the
n =2 intrashell resonances that can be derived from the
2s 2p, 2s2p, and 2p configurations. Stabilized results
were obtained for the 2s 2p ~P', 2s2p g)', 2s2p P',
2s2p I", and 2p D' states. The basis sets used for
them are summarized in Table I. The angular types of
three-electron configurations, l, l2l3, are listed together
with corresponding numbers of radial terms: the number
of orbital configurations, E, and the number of r,"-
correlated configurations, K„. The basis used for the rep-
resentation of 2s2p I" is the smallest. This is mainly
because the quartet symmetry allows only one way of
spin coupling, in contrast to doublet states, where two
ways of spin coupling are possible. Another reason is the
number of open channels which have to be properly

TABLE I. Basis sets for the CCR calculation of the triply excited He resonances. Each angular
type of configuration I

& l2l3, was represented by K configuration functions constructed of Slater-type or-
bitals [v=0 in Eq. (2)] and IC, configuration functions of this type multiplied by r;,

" factors (v=1 was
used in most of these terms; only a few terms with v=2 were taken).

Angular type

2s 2p P' 2p3 2Do 2s2p 2 2D' s2p 4P 2s2p P'

ssp
spd

ppp
ppf
ddp

spp
ssd
spf
Sdd

ppd

216
96
50
36

416
96
50
36

252
192

180
176

104
96

250
207
132
84

110

250
90
44
60

70 35 15

100
60

156

80

36

147 124 450 220

Total
398 598 800

996
200

1000
783 514

1297 372 1082
209 163 766 316
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represented by the basic set. For each of the states under
consideration there is an infinity of channels open for its
decay. However, because of basis electronic structure
features, only a few of them are important. The
2s2p P' resonance decays mostly into the ls2p( P)ep
channel. On the other hand, non-negligible contributions
to the decay of the 2s2p D' state may come from seven
single-electron open channels: ls2s(' S)ed,
ls2p(' P)ep, ls2p(' P)ef, and 2s ed. In addition to
configurations and their correlation terms representing
these channels, many more configurations must be in-
cluded in the basis so as to account for localized correla-
tion as well as for two-electron continua.

The 0 trajectories corresponding to the 2s 2p P',
s2p D', 2s2p P', 2s2p P', and 2p D' states are

shown in Figs. 1 —5, respectively. In the figure captions,
the reader can find the information on the number of 0
values used to plot a given 6I trajectory, and on the opti-
mized energy. One should notice that the sequential
points displayed on the 6 trajectories correspond to the
same step of the 0 variation, 60=0.04. However, the
scale in different figures is different. This is because the
stabilization property of the L9 trajectory changes a lot
from one case to another.

The best stabilization and accuracy was achieved for
the 2s2p P' state. This resonance is narrow and quite
well separated from the He thresholds. The closest one,
the 2s2p P' level, lies about 0.9 eV above the 2s2p P'
level. The worst stabilization we obtained was for the
2p D' state, which is the widest one. In general, the
narrower the resonance and the better separated from the
thresholds, the better stabilization and accuracy can be
reached in a basis of reasonable size. Using basis sets of
about 1300 functions we could not obtain the complex

000000 i I I I I I I I I ( I I I I I;I I I i ( I I I i I I I i i

-0.0005—

-0.0010—

0 0015 I I I i i i i i i ~ i i & I I I I I I I ~ ~ & i i i & I i

—0.7620 -0.7615 -0.7610 -0.7605

Re(E) (a.u.)
FIG. 2. 0 trajectory for the 2s2p D'resonance of He . The

trajectory consists of 19 points, but only the points separated by
50=0.04 are displayed. The point on the real axis corresponds
to 0=0 and the last one on the trajectory to 0=0.4. The op-
timum complex energy is E= —0.760 86—i X0.00091 a.u. ,
chosen at 0=0.12.

energies for the 2s 2p S', and 2p P' states stable
enough against variation of the complex-rotation angle 0.
Evidently, their calculation according to the CCR
method requires either more carefully optimized or larger
basis sets.

The energies and widths of the resonances are given in
Table II. The doubly excited two-electron states are also

0 ~ 0000 0.0000

-0.0005— —0 ~ 0001—

-0.0010— —0.0002—

—0.0015
-0.8020 -0.8015 —0.8010 —0.8005

—0.0003
—0.7938 —0.7937 —0.7936 —0.7935

I i ( i i i I I i I I I ) I I I 1 i I I I I

Re(E) (a.u.) Re(E) (a.u.)

FIG. 1. 0 trajectory for the 2s 2p P'resonance of He . The
trajectory consists of 22 points, but only the points separated by
40=0.04 are displayed. The point on the real axis corresponds
to 0=0 and the last one on the trajectory to 0=0.4. The op-
timum complex energy is E= —0.801 21 —i X0.001 30 a.u. ,
chosen at 0=0.24.

FIG. 3. 0 trajectory for the 2s2p P'resonance of He . The
trajectory consists of 23 points, but only the points separated by
50=0.44 are displayed. The point on the real axis corresponds
to 0=0 and the last one on the trajectory to 0=0.44. The op-
timum complex energy is E= —0.793 610—i X0.000 190 a.u. ,
chosen at 0=0.22.
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FIG. 4. 8 trajectory for the 2s2p p' resonance of He . The
trajectory consists of 17 points, but only the points separated by
60=0.04 are displayed. The point on the real axis corresponds
to 8=0 and the last one on the trajectory to 8=0.32. The op-
timum complex energy is E= —0.715 51—i X0.00059 a.u. ,
chosen at 0=0.18.

FIG. 5. 0 trajectory for the 2p D' resonances of He . The
trajectory consists of 24 points, but only the points separated by
60=0.04 are displayed. The point on the real axis corresponds
to 8=0 and the last one on the trajectory to 8=0.44. The op-
timum complex energy is E= —0.72464 —i X0.00609 a.u. ,
chosen at 8=0.32.

given for comparison. The results are compared with a
few published theoretical data for the 2s2p P', 2p D',
and 2s 2p P' states. The position obtained for the
2s2p P' state is in a very good agreement with the re-
sults obtained from variational calculations on the real
axis [17,18] even though these did not contain the contin-
uum shift. The agreement of the present results with our
previous ones [28], also obtained by the CCR method, is
not accidental. In Ref. [28] we showed that the conver-

gence of the CCR computation of the 2s2p P' state was
very good. In the present work we changed and enlarged
the basis set a little. The results are essentially the same.

The positions of the 2p D' and 2s2p P' states ob-
tained in present work are about 0.17 eV lower than
those of Nicolaides, Piangos, and Komninos [27]. Their
widths differ from the present ones by about 50 meV. As
regards the relative position to the nearest threshold, this
difference is without consequence for the 2p D' state.

TABLE II. Triply excited n =2 intrashell resonances of He . The energy positions E (eV) with
respect to the He ground state and the widths I (meV).

This work Other theoretical results

Threshold

2p2 3pe

2s2p P'

2s' 'g'

59.64

58.309

57.84

Resonance

s2p P
2p3 2g) o

st D

2s2p P

22p 2p o

Ea

59.537
59.288

58.303

57.412

57.205

I a

32
331

49

10.3

71

Ea

59.70
59.45
59.5

57.413
57.412
57.412'
57.427

I a

79
282

10.4'
15'

Ref.

[27]
[27]
[41]

[17]
[18]
[28]
[28]

'The energies have been converted from atomic units using the value of —2.903 724 a.u. as the ground-
state energy of He, and 1 a.u. =27.2079 eV.
For comparison with other theoretical and experimental results, see Table IV below.

'Computed by the CCR method.
Obtained by a medium-size computation using the state-specific complex-energy approach.

'For comparison with other theoretical and experimental results, see Table III below.
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Indeed, this resonance definitely lies between the 2s2p P'
and 2p P' thresholds and its width is about 0.3 eV. As
regards the 2s2p P' state, the lowering of its energy is
what had been anticipated in Ref. [27] for a larger calcu-
lation of the localized correlation. Thus the He
2s2p P' resonance is indeed about 0.1 eV below the
2p 3P' level. For the width of 2s2p P' we obtained
I =32 meV, which is more than twice as small than the
value obtained by Nicolaides, Piangos, and Komninos
[27]. This difference refiects the importance of the vari-
ous interactions which were included in this work (see the
Introduction), but were neglected in [27].

Our results for the energy and width of the 2s 2p P'
resonance are E =57.205 eV and I =71 meV. In Table
III they are compared with the literature data. The
width disagrees with the value of 2.4 meV computed by
Smith et al. [14]. On the other hand, it is in quite good
agreement with the experimental value of 90 MeV ob-
tained by Quemener, Paquet, and Marmet [6] (the result
given originally by the authors is corrected by a factor of
2 as in Ref. [8]) and by Marchand [8]. The position of the
2z 2p P resonance agrees very well with the experimen-
tal data. Taking into account the experimental uncer-
tainties, only the Quemener, Paquet, and Marmet [6] ex-
periment does not cover our result. Nevertheless, the
discrepancy is quite small even in that case. The saddle-
point and Feshbach-projection results [18] agree with the
results of experiments and of this work. However, the
calculations of [18] do not contain the continuum contri-
bution, which could shift the energy either up or down.

The case of the 2s2p D' resonance has attracted con-
siderable theoretical and experimental attention (see
Table IV). It contains strong-correlation effects while at
the same time it lies very close to the He 2s2p P' au-
toionizing state at 58.31 eV. Therefore, the accurate
determination of its position and its width requires the
use of function spaces capable of representing the details

of the localized as well as the asymptotic correlation. For
example, a recent reasonably large state-specific calcula-
tion of %o, the square-integrable part of the resonance
[13,27] containing the localized correlation, put this reso-
nance below the He P' threshold [38]. However, since
the continuum shift turned out to be positive [38], the
resonance position was pushed just above the He P'
threshold. This indicated that an even larger calculation
of both the localized and asymptotic correlations, such as
the present one, ought to be carried out for the results to
be definitive. The results of the present work, E =58.303
eV and I =49 meV, are in accordance with the accurate
experimental results [6,11]. This implies that this reso-
nance is real and of Feshbach type [13,26,27,25, 17,39].

IV. SYNOPSIS

In order to compute reliably the positions and widths
of negative-ion multiply excited resonances, the theoreti-
cal method must account for all the interactions contrib-
uting to the stability and localization as well as for the
decay of the state into a multichannel (in general) contin-
uum. The possibility of using square-integrable basis sets,
real or complex, has the serious advantage that these in-
teractions can be computed to all orders via diagonaliza-
tion of appropriate matrices which produces complex ei-
genvalues [28,32]. In previous work [40] it was shown
that the interaction of two free electrons in the continu-
um can be calculated using a Hamiltonian with real coor-
dinates and an expansion over antisymmetrized products
of complex functions. In the present work, the demand
of high accuracy has led us to the execution of large cal-
culations where the Hamiltonian has complex coordi-
nates and the trial function is a superposition of correlat-
ed configurations [28,33—35] containing the effects of
both the closed and the open channels. Up to 1300 terms

TABLE III. The energy E and the width I of the 2s 2p P' resonance.

Reference

Kuyatt et al. [4]
Cxrissom et al. [5]
Quemener et al. [6]
Sanche and Schulz [7]
Marchand [8]
Hicks et al. [9]
Roy et al. [10]

Eliezer and Pan [12]
Nicolaides [13]
Smith et al. [14]
Ahmed and Lipsky [15]
Nesbet [16]
Bylicki [18]
Chung quoted in Ref. [18]
This work

Method

Experimental

Theoretical
Stabilization
State specific
Close coupling
Truncated diagonalization
Stabilization
Feshbach projection
Saddle point
Complex-coordinate rotation

E (eV)

57.1+0.1

57.21+0.06
57.15+0.04
57.16+0.05

57.2+0.05
57.22+0.04
57.19+0.03

57.3
57.3
56.48
57.35
57.41
57.196'
57.207'
57.205'

I (me V)

90+ 14

90+200

2.4

71

'The energies have been converted from atomic units using the value of —2.903724 a.u. as the
ground-state energy of He, and 1 a.u. =27.2079 eV.
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TABLE IV. The energy E and the width I of the 2s2p D' resonance.

Reference

Kuyatt et al. [4]
Cxrissom et al. [5]
Quemener et al. [6]
Sanche and Schulz [7]
Marchand [8]
Hicks et al. [9]
Roy et al. [10]
Cxosselin and Marmet [11]

Eliezer and Pan [12]
Nicolaides [13]
Smith et aL [14]
Nesbet [16]
This work

Cxosselin and Marmet [11]
Mannervik [42]
Ho [43]

Method

Experimental

Theoretical
Stabilization
State specific
Close coupling
Stabilization
Complex-coordinate rotation

Position of the 2s2p P' threshold
Scattering experiment
Spectroscopical experiment
Complex-coordinate rotation

E (eV)

58.2+0. 1

58.31+0.08
58.23+0.04
58.25+0.05

58.3+0.05
58.30+0.04
58.29+0.03

58.283+0.003

58.3
58.4
58.34
58.52
58.303'

58.309+0.003
58.312+0.003

58.313'

I (me V)

50+20

59+4

24.6

'The energy has been converted from atomic units using the value of —2.903724 a.u. as the ground-

state energy of He, and 1 a.u. = 27.2079 eV.

(for the He 2s2p D' resonance) were included in the
trial function so as to establish good convergence.

Reliable results were obtained for five He resonances:
s 2p P', 2s2p D', 2s2p P', 2s2p P', and 2p D

For the 2s 2p P' and 2s2p D' states the computed pa-
rameters are in good agreement with the experimental
data. In particular, the 2s2p D' position was obtained
below the 2s2p P' threshold, settling the 15-year-old, ap-

parently open question [17,25 —27,39]. The 2s2p P',
2s2p P', and 2p D' resonances have not been ob-
served. Their parameters obtained in this work should
help possible future experiments. We did not obtain the
intrinsic parameters of two other n =2 intrashell He
resonances, the 2s2p S' and the 2p P', since the calcu-
lations did not produce sufticiently stable results. We will
come back to this problem in the near future.
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