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Partial autoionization widths of inner hole states of O V
from the complex-eigenvalue Schrodinger equation
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We have calculated the partial autoionization widths of the Ov ls2s 2p 'P and 'P states which
were measured in recent experiments by Bruch et al. In order to account for electron correlation
and interchannel coupling we have used the state-specific theory of autoionizing states with complex
coordinates. Our results correspond to well-defined regions of stability of the widths and yield ratios
for the partial widths which, contrary to existing theory, are in agreement with experiment.

I. INTRODUCTION

Recent experiments by Bruch et al. ' on 10-MeV
0 ++He collisions have produced Auger spectra for
inner-shell excited ionized oxygen of unprecedented accu-
racy. As compared with previous work, the clarity of the
spectra are such that they allow the unambiguous
identification of many autoionizing states. Out of the
many features, two stand out as most interesting.

(1) The most intense peaks in the 0 + spectra are those
which correspond to the decay of the Ov 1s2s 2p P
state to the OvI 1s 2s S and 1s 2p Po channels. Their
intensity ratio P / S is deduced to be 1.7 but no absolute
numbers for the Auger transition probabilities can be ob-
tained experimentally.

(2) Although in the case of the Ov ls2s 2p P state
both channels are intense, in the case of the 'P state the
1s 2s S channel has very small intensity. The experimen-
tal ratio P / S is now about 15.7. Since symmetry can-
not provide a direct explanation, this result must have a
dynamical origin.

The only previous information on these processes
comes from the recent theoretical work of Chen, who
carried out Dirac-Fock calculations, with the 2s + 2p
near-degeneracy included, where the scattering orbital is
computed without exchange and where the efFect of

nonorthonormality on the Auger transition matrix ele-
ment is neglected. His results are presented in Table I.
Since, in addition to the above, electron correlation is
neglected, the reliability of these calculations is limited.

The aforementioned facts suggest that if accurate infor-
mation became available from a theoretical calculation, it
could be utilized for a careful calibration and interpreta-
tion of most of the experimental data.

This report presents results on the partial and total au-
toionization widths of these states from calculations which
include electron correlation and interchannel coupling via
the application of the many-electron theory of autoioniz-
ing states in terms of complex coordinates. ' Since the
radiative widths are negligible, the correspondence with
the experimental spectrum' is direct.

II. THEORY

According to theory, the total autoionization width
is obtained from the solution of the X-electron
Schrodinger equation with complex eigenvalue, O' =E
—(i/2)t, using an N-electron square-integrable complex
wave function, %(p), with complex coordinates, p=re',
of the form

+(p) =a(&)+ (p0)+b(&)&(p) .

TABLE I. Partial and total autoionization rates (in 10' sec ') of the 0 v 1s2s 2p 'P and 'P states.

Experiment

3p0

Channel
Ratio

ls 22s S ( 2Po/2S) ls 22P 2P o Total

lpO

Channel
Ratio

s'2p P (P /S) ls 2p P Total

Bruch et al. , Ref. 1

Dirac-Fock
Chen, Ref. 3
This work'
This work

4.5

3.2

1.7

1.9

1.8

8.5
8.3
5.8

13.0

9.0

0.12

0.32

15.7

74. 1

14.7

8.7
9.4
4.7

8.8

5.0

'Our calculation used the single configuration, Hartree-Fock approximation.
Calculation includes electron correlation and interchannel coupling. Chen's calculation (Ref. 3) took

into account only the zeroth order mixing 2s ~2p, in the initial state, while exchange was neglected in
the computation of the continuum function, and the calculation of the autoionization matrix element was
carried out without taking into account nonorthonormality or any electron correlation.
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4o(p) contains the terms contributing to the stability of
the system and X(p) represents the asymptotic correlation,
i.e., the terms contributing to the decay.

The partial widths y; are obtained from the systematic
analysis and computation of the electronic structure of
%(p). The method for computing 4o and X has already
been amply demonstrated. Nevertheless, as we have
stressed in the past, given the novelty of such computa-
tions, more experience is required for the consistent
choice and optimization of the function spaces represent-
ing X(p). The approach of this work took the follow-
ing steps.

(1) The %o was obtained as before. In the present
case of the P and 'P states, it is composed of the fol-
lowing configurations: 1s2s 2p, 1s2p, 1sv, 2p, 1svp 2p,

1s2s2pvd, 1s2s2pv„ ls2sv~vd, 1s2svd, and 1s2sv, v~. The
v& represent optimized virtual orbitals.

(2) The form of the terms in X (8) is ls 2lel'
(21=2s, 2p, el'=op, es). The rotated bound orbital el'(8)
was expanded in terms of square-integrable functions,
@ '

(r;A, ), with real coordinates

N '(r;A)=(kr)'+ 'e " I. '+'(Ar), m =0, 1,2, . . . . (2)

L~' + ' are the generalized Laguerre polynomials, and A, is
a variational parameter.

(3) By carrying out the inverse transformation of
rare ', the Hamiltonian matrix is composed of the fol-
lowing diagonal and off-diagonal elements:

(+o(8)
~
H(8)+o(8) & = & +o(0)

l
H(0)

l
+o(0) ) =&o

( +o(8)
~

H(8)
~

ls (8)21(8)P' (0)}= ( Vo(0)
~

H(0)
~

ls (0)21(0)P' ( —8)),
( ls (8)21(8)$' (0)

i
H(8)

i
ls (8)21(8)$' (0) ) = ( ls (0)21 (0)$' ( —8)

i
H(0)

i
ls (0)21(0)$' ( —8) ) .

(3a)

(3b)

(3c)

The above implies that only one open channel function is
back-rotated, and this is expanded in terms of the basis
set of Eq. (2).

(4) The complex eigenvalue corresponding to each
channel is 0 dependent. Therefore, the diagonalization is
repeated for values of 8 between 0' and 90' [the parameter
A. of Eq. (2) is also varied] searching for the region of sta-
bility of the complex eigenvalue closest to Eo.

(5) First, the following autoionizing processes were ex-
amined separately.

(i) ls2s 2p P ~ls 2p P es P

(ii) ls2s 2p P ~ ls 2s ~Sep P

(iii) ls2s 2p 'P ~ls 2p P es 'P

(iv) ls2s 2p 'P ~ls 2s Sap 'P
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FIG. l. ls2s 2p P ~ls 2p P es'P . Stability of the au-
toionization half-width (in a.u. ) as a function of the rotation an-

gle 8, for A. =4.0, 6.0, 8.0 [Eq. (2)].

FICx. 2. ls2s 2p 'P ~ls 2s Sap P . Stabilify of the au-
toionization half-width (in a.u. ) as a function of the rotation an-
gle 8, for A. =4.0, 6.0 [Eq. (2)].
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FIG. 3. 1s2s~2p 'P ~ls 2p P es 'P . Stability of the au-
toionization half-width (in a.u. ) as a function of the rotation an-
gle 8, for A. =4.0, 6.0 [Eq. (2)].
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FIG. 4. 1s2s 2p 'P ~1s 2s Sap 'P . Stability of the au-
toionization half-width (in a.u. ) as a function of the rotation an-
gle 0, for 2=4.0, 6.0, 8.0 [Eq. (2)].

Orbitals 1s,2s, 2p, for each decay channel, were in analytic
form. For el'( —8) we used eight to eleven functions of
Eq. (2) and diagonalized 9X9 to 12X12 matrices, whose
matrix elements are as in Eq. (3). The calculation was re-
peated for t9=5, 15', . . . , 85' and X=4.0, 6.0, 8.0, fol-
lowing the root corresponding to Eo. The stability region
for the widths is found to be between 0=30 and L9=50'.
(See Figs. 1, 2, 3, and 4.)

(6) By using the assumption that interchannel coupling
does not aA'ect significantly the radial characteristics of
each asymptotic pair correlation function which yields the
partial width in the independent asymptotic pair approxi-
mation, we construct the total non-Hermitian matrix and
diagonalize it. The diagonalization yields the total reso-
nance wave function for each spin multiplicity:

4'=a+o+C(1s 2pes+Cpls 2sep .

In this computation es and ep are held fixed (8 and k
are the stability region) and each partial complex eigenval-
ue 8 1s given by

III. RESULTS

Our results are presented in Table I, where they are
compared with those of Chen from Dirac-Fock calcula-
tions and the golden rule formula, and with the experi-
mental values of Bruch et al. ' The agreement with exper-
irnent is very good. We note that we present only our
final results, with interchannel coupling included. The
method for doing so was first presented in Refs. 4 and 6.

The explicit consideration of interchannel coupling
must be within the practical reach of a fully correlated
many-body theory. This is why the present calculation
constitutes a good test for the complex eigenvalue rnany-
electron approach. On the other hand, a useful result has
emerged, i.e., that its effect on the partial widths in the
present and previous cases has been very small. For ex-
ample, whereas before coupling the partial widths (y;/2
in electron volts) for the P and 'P states are S:
0 01 72' P 0 019 25 and S 0 9875 Q 10 P
0.015 41, respectively, after coupling they become S:
0. 10 67, P: 0.019 20 and S: 1.056' 10 and P:
0.015 47 eV, respectively.

=6'—(i/2)y', i = 1,2

(21=2s,2p, el'=up, es) .

The total width and energy shift are given by

I = gy',
(6)

EV. CONCLUSION

The herein timely, new application of the state-specific
theory of autoionizing states in terms of real or complex
coordinates '' ' has yielded results (Table I) which
concur with the recent experimental findings' about the
ratio of the partial Auger rates. This favorable compar-
ison suggests once again that for the reliable description of
the phenomenon of autoionization, the theory must be
capable of incorporating systematically both the localized
as well as the asymptotic correlation.
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