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We present a state-specific approach to the calculation of correlated wave-functions and potential-

energy surfaces (PES s) of ground and excited states of diatomic molecules. Its emphasis is on the op-
timal choice of zeroth-order and of correlation-function spaces, which are computed separately. The
zeroth-order Fermi-sea multiconfigurational wave function is obtained numerically, using McCullough s

partial-wave multiconfiguration self-consistent field [Comput. Phys. Rep. 4, 265 (1986)] program
PwMcscF and numerical one-electron two-center orbitals as input. The correlation functions are ob-

tained from partial and total configuration interaction (CI), using two-center virtual molecular orbitals,
optimized by minimizing the energy. The method is demonstrated on the prototype He2 + 'Xg+. A num-

ber of wave functions of acsending accuracy have been calculated. The most accurate one is composed
of 116 configurations (multiconfiguration Hartree-Fock plus higher-order correlations), arising from 43
orbitals. It yields results which are lower over the entire PES than those obtained from the conventional
linear combination of atomic orbitals including full CI with 158 basis functions and 2282 configurations.

Compared with a published large CI calculation with r;, -dependent basis sets, only at the equilibrium po-
sition, where the influence of the Coulomb cusp increases, does the present approach yield a slightly
(4X 10 a.u. ) higher energy. For the rest of the PES, our calculation yields the lowest energies yet.

PACS number(s): 31.15.+q, 31.20.Tz

I. INTRODUCTION

The widely used approaches to advanced quantum
chemical calculations, such as full or hierarchical
configuration-interaction (CI}, multiconfiguration self-
consistent-field (MCSCF}, coupled-cluster and perturba-
tion expansions, have a common characteristic: They are
implemented in terms of the linear combination of atomic
orbitals (LCAO) concept, where the atomic-orbital (AO)
basis sets are common to the zeroth and the virtual N-
electron spaces. This fact refers not only to the treatment
of the ground state —where, in general, electron correla-
tions are more easily understood —but also to low-lying
excited states (if the formalism and method are truly
applicable there).

The prescription of an AO input common to the zeroth
order and virtual symmetry-adapted spaces facilitates the
construction of formalism as well as of related computa-
tional algorithms. On the other hand, such approaches
contain intrinsic limits of accuracy and efficiency, since
the ¹lectron function spaces which they utilize are not
optimal. Thus, although it is expected that by enlarging
the basis sets the reliability of results increases, it is well
known that in practice, when high accuracy is desired,
very quickly a law of diminishing returns sets in, even
with today's supercomputers. Furthermore, spectroscop-
ically and chemically significant situations, such as avoid-
ed intersections and valence-Rydberg-scattering (VRS)
mixing, depend crucially on the accuracy of the zeroth-
order radial description, regardless of the overall size of
the computation, and it is not clear how to improve the

accuracy via the adjustment of the input of AO basis sets.
Finally, because the wave functions resulting from such
computations are very large, it is often impossible to de-
pend on their use for the quantitative treatment of phe-
nomena involving more than one state, such as mutli-
channel scattering or laser-induced nonlinear e6ects.

In the state-specific theory (SST) of electronic structure
and properties [1-4], where the formalism includes the
continuous spectrum, emphasis has been given to the
determination of optimal as well as practical one-electron
and N-electron function spaces for the zeroth-order rep-
resentation and for the correlation correction, for each
state of interest. A large number of application have
been done. The extent of the full calculation and the
choice of correlations that must be incorporated in it de-
pend on the property which must be computed.

Here we present a method for the computation of elec-
tron correlation in diatomic molecules, which allo~s the
implementation of the SST in a manner analogous to that
which has been developed and applied over the years to
atomic ground and low- or high-lying excited states
[1—7]. As a test case, we chose the He&

+ 'Xs ground
state. In a separate paper we deal with the theory of ex-
cited states, and in particular with the a priori construc-
tion of correlated wave functions of diabatic states.

II. THEORETICAL FRAME%'ORK

By definition, the exact fixed-nuclei electronic wave
function 4 of a particular ground or discrete excited
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atomic or molecular state, can be written as

V=ao4o+ g a„4„, (la)

a,'+pa„'=1, (a,ie„)=0. (lb)

@o=Jake'o
k

(lc)

where 40 are symmetry-adapted self-consistent-field
(SCF) configurations with orbitals belonging to the
Fermi-sea [9]. Guidelines for the choice of the FS orbit-
als were given as a combination of empirical with a priori
rules [2,3]. As regards the computation of the single,
double, triple, etc., symmetry-adapted correlation func-
tions entering in 4„,these are obtained in terms of varia-
tionally optimized analytic virtual orbitals via nonortho-
normal CI methods [1,2,7].

Thus, in Eq. (1), 4o is composed of one or more
configurations with numerical orbitals while the 4„con-
tain numerical as well as analytic functions (representing
the virtual orbitals). In this way, the radial details of the
important zeroth-order orbitals are not lost (as they are
when LCAO are used, especially in delicate situations
such as valence-Rydberg or covalent-ionic mixing, prop-
erties of negative ions or of multiply excited states, etc.),
while the correlation function spaces are manipulated
and optimized with flexibility, whether the state of in-
terest is ground or excited. This approach has been in-
corporated in a general theory and method of atomic
spectroscopy which include the multichannel continuous
spectrum, Rydberg series, and resonances [1,4].

The construction by McCullough [10] in the mid 1970s
of the numerical MCHF program for diatomic molecules
led to the expectation (Ref. [2], pp. 122 and 123) that
SST methods similar to the atomic ones ought to be pos-
sible for diatomics. In other ~ords, for each state of in-
terest, a numerical self-consistently-optimized @o could

The separation of 4 into two terms in directly related to
the fundamental characteristic of ao: Given the symme-
try of the state, its square is larger than 0.5, in which case
40 can be called the "zeroth-order" wave function. The
aim of a computationally oriented theory of electronic
structure should be to start with a radially optimal 40 for
which ao is close to 1, while the size of 40 is as compact
as possible and its calculation takes only a fraction of the
overall calculation of %. This statement is equivalent to
saying that the 4o and 4„ofEq. (1) should be computed
in such a way as to achieve convergence of the desired
answer (quantitative or semiquantative), reliably and
without sacrificing simplicity or economy of effort.

Soon after the publication of Froese Fischer's atomic
numerical multiconfiguration Hartree-Fock (MCHF)
computer code [8], Beck and Nicolaides [2,3] formulated
and implemented a variational approach to the computa-
tion of 4 based on the state-specific numerical MCHF
40, whose configurations were chosen according to the
Fermi-sea (FS) concept [1—3]. The Fermi-sea is the set of
zeroth-order spin orbitals that are deemed to be the most
important for the state of interest. Thus

replace the AO-based zeroth-order function of the con-
ventional methods, thereby reducing immediately an un-
controllable source of error. (For example, consider the
difficulties of choosing systematically "diffuse" bases for
the reliable calculation of negative ions, of nonlinear po-
larization or of highly excited states. ) The remaining
correlation would be adapted to the diatomic symmetry
and computed variationally. The method that is present-
ed in the next section shows how this can be accom-
plished.

III. METHOD OF CALCULATION

The calculation consists of two essential steps. (i) Con-
struction of the optimal, multiconfigurational FS 40 in
terms of numerical diatomic orbitals: (ii) variational op-
timization of virtual orbitals for the construction of the
higher-order terms 4„ofthe wave function.

A. Numerical zeroth order 40

1. Numerical orbital input to the MCHF procedure.
Orbital nodes

In prolate spheroidal coordinates, the one-electron dia-
tomic orbital (OEDO) is written as

g(r) =:-(g)H(g)e+' ~, m =0, 1,2, . . . (2)

where r = (g, rl, y ) is the position of the electron,
g=(», +rb)/R, rl=(r, r„)/R,y is the azim—uthal angle
and r„rbare the distances of the electron from the nuclei

Z„Zb, respectively, which are located on the z axis, a
distance R apart.

We use Power's quantum chemistry program exchange
(QCPE) one-electron diatomic molecule program OEDM

[12,13] to obtain the necessary information for the con-
struction of the OEDO's, as explained in the Appendix.

McCullough [11] also uses prolate spheroidal coordi-
nates to expand the orbitals used in the many-electron
wave function, which is a linear combination of Slater
determinants, in a partial-wave expansion over g,

max

g(r ) = g XJ(g) YJ (g, q ),
j=(m[

(3)

where Y. (g, y) are spherical harmonics. Accordingly,
we expand the OEDO's in partial waves over q, thus con-

The problem of the appropriate initial guess is very
crucial to the successful numerical computation of a
desired MCHF wave function based on McCullough's

[11] partial-wave multiconfiguration self-consistent field

program PwMCSCF. The program requires the orbital in-

put as a linear combination of Slater-type orbitals
(STO's). This approach may lead to much experimenta-
.tion. Furthermore, from our experience on excited
states, convergence to the correct state is often not
achieved. Therefore, we have implemented a different

approach where the input is taken from the solution of
the one-electron diatomic molecule in prolate spheroidal
coordinates.
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structing our initial guesses to the MCHF, as explained
in the Appendix.

Using OEDO's as input has the advantage, compared
to the linear combinations of STO's (used originally by
McCullough [11]), that one can use the conservation of
the number of their nodes in order to lead convergence to
the desired state, especially if it is excited. The OEDO s
are customarily labeled by their united-atom-limit quan-
tum numbers n, I, and m, where l =s,p, d, . . . and
m =o., ~,5, . . . , corresponding to the numerical values

0, 1,2, . . . , respectively. For homonuclear molecules the
inversion symmetry is described by subscripts g for l even
and u for l odd. They may also be characterized by the
number of nodes (i.e., nonmultiple zeros} that they pos-
sess in each coordinate g, ri, y. Let n&, n„,and n~ be the
number of nodes of:-(g), H(rl), and cos(m q&), or
sin(my), respectively. As R varies, these node quantum
numbers are conserved, except at infinite R, for
heteronulcear diatomic molecules, where n

„

is not neces-
sarily conserved [12]. In terms of the united atom limit
quantum numbers, n&

=n —I —1, n „=l —m, and

n =m. The conservation of the node quantum numbers
can be used for the identification of the desired orbital
during the SCF procedure. For a MCHF orbital the
partial-wave functions X (g) decrease uniformly, with in-

creasing j, while the number of their nodes is not neces-
sarily the same for all of them. However, the character
of the orbital is mainly determined by the first one, X& (g),
which usually does not significantly differ from the corre-
sponding OEDO (this is especially true for a Rydberg
state, where the orbital is almost purely one electron).
Thus, it is possible to identify the MCHF orbital by
counting the nodes of its first partial-wave component
X&((). In the Appendix we give some examples.

2. Choice and optimization of40 IEq. (1c)]

The choice of the form of @o is made with the criteria
presented in Sec. II. One might argue for as large a 4o as
possible. However, this is unnecessarily uneconomical
and, beyond a certain number of 40 which depends on
the state under consideration, convergence is elusive. On
the other hand, according to the SST the correlation
correction beyond a compact 4O ean be picked up
efficiently, for ground as well as for excited states, in
terms of separately chosen and variationally optimized
analytic virtual orbitals. This fact is known from our cal-
culations of electronic structures in O(3) symmetry
(atoms}. Here we shall give an example of a similar result
for electronic structures in D „I,symmetry.

B. Electron correlation beyond the Fermi-sea 40

1. Computation of the @„
The most general method of obtaining electron correla-

tion beyond 40 is the diagonalization of the Hamiltonian
matrix constructed from the wave function (1) in its trial
form. The construction of this matrix requires the expli-
cit form of N„.These represent single, pair, pair-pair,
etc. , excitations from occupied numerical molecular or-

bitals (MO) in 4o to virtual MO's (VO's) in 4„.For each

VO, all possible symmetry-adapted configurations are
constructed. These are determined by using Shaefer's

quantum chemistry program exchange (QCPE) direct di-

agonalization program HEDIAG [14] (see Appendix).
Having constructed the 4„,the energy matrix is diago-

nalized, either in small parts for each correlation function
or fully for each value of the set of parameters eharaeter-
izing the VO's. The parameters are varied so that the
final solution corresponds to the energy minimum.

y( )
—

asap(g 1)m/ 'q s(1 )mn mlp (4)

These are four-parameter function (a,g, y, 5) of the form

tt(g)Hr s(ri)e' r (5)

and must also be expanded in partial waves in the same
manner as the OEDO's [Eq. (2)]. In principle, each virtu-
al orbital is to be variationally optimized with respect to
the nonlinear parameters (a,P, y, 5). By expanding the
terms of the form (/+1)e or (lkri)J in the OEDO func-
tions [Eqs. (A4) and (A5)], we see that the OEDO's are
essentially sums of elliptic basis functions, since the
singular behavior is common to both.

This leads to the third possibility of VO's which we
found to be very efficient and practical. We use paramet-
ric OEDO's as VO's. Then the description of the VO is
more natural to the diatomic molecule, whereby the non-
linear variational parameters are reduced to two, e.g., the
effective nuclear charges. This procedure is much faster
than the individual four-dimensional optimization and
has yielded satisfactory results. Moreover, it gives some
intuition as to what kind of orbitals the electrons would
"like" to be excited to. These VO's in OEDO form are
directly comparable to the Sturmian-like functions, used
as virtual orbitals in atomic calculations. They both
share the characteristic that their effective nuclear charge
is large enough to contract the otherwise diffuse virtual
orbital, so as to describe an electron at positions compa-
rable to the occupied orbitals, with the result that their
energies become generally large and negative (see pp.
124—139 or Ref. [2] for choice and optimization of virtu-
al orbitals}.

The variational procedure may generally lead to local
minima in the energy hypersurface. In order to reduce
this danger and expedite convergence, the VO's must be
properly initialized. If a VO is to describe an excitation
from some MCHF molecular orbital to it, the electron
should be located in the same space region as in the
specific MO which is replaced. According1y, the VO's
parameters are initially chosen so that the expectation
value of some operator related to the electronic position
be the same, for example (MO~g' ~MO) = (VO~g ~VO),

2. Choice and optimization of the Uirtual orbitals

In order to construct the virtual orbitals entering in 4„
we consider three possibilities. The first is to extend the
MCHF calculation of 40 by including a few more
configurations from the set of 4„.The second is to use
elliptical basis functions [15]
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where A, =l or —1, or the overlap (MO~VO) be max-
imum. It turns out that initialization by overlap is
sufficient.

Each VO is then made orthogonal to all lower-lying or-
bitals, either MCHF or virtual, and the nonlinear param-
eters are varied so as to eventually minimize the energy.
This procedure determines variationally optimal parame-
ters for each VO.

Orbitals Energy (a.u. )

TABLE I. The convergence of the SST scheme for the He~ +

'X~ ground state when 4o consists of two configurations, 1o.
g

and 10'„,and four virtual orbitals are added sequentially, as
shown in the first column. The second column shows the total
number of configurations used to obtain the energy shown in the
third column. R =1.4 a.u.

IV. APPLICATION TO THE SHORTEST BOND
KNOWN: THE He2 + 'X~ GROUND STATE

A. Essential background

+o
Above
Above
Above
Above

+20.
g

+ 1m„
+20.

„

+ 30'g

—3.6636
—3.6665
—3.6733
—3.6739
—3.6740

As regards the question of limits of efficiency and accu-
racy, small systems are the commonly accepted proto-
types. The He2 + 'X+ ground state was chosen since its
wave function and potential-energy surface (PES) have
unusual features, and since there exist accurate results
from representative conventional methods for the compu-
tation of electron correlation [16—18].

The equilibrium distance of He2 + 'X+ constitutes the
shortest bond known. It is computed to be [16—18)
R, =1.33 a.u. Given that the charge distribution is com-
pact, the calculation at equilibrium is very demanding if
high accuracy is desired. Furthermore, the PES of He2

+

has a volcanolike from (Fig. 1), where the minimum is lo-
cal, lying above the energy of the dissociated products,
He+ +He+. (This fact was first computed and interpret-
ed by Pauling [19],in terms of the mixing of different ion-
ic structures). Thus, apart from its minimum, it is
characterized by the barrier and its maximum corre-

O

CO
CD
CD

I

CI
C)
CO

Q

X C)
O—

TABLE II. The convergence of the SST scheme for the
He2 + 'Xg ground state when the MCHF 4„,beyond 4o
{los, lo „),are six configurations (2og, 2o„,3ost, 1+s, 2H, and
3'�„)and 16 virtual orbitals are added sequentially. R = 1.4 a.u.
The columns are described in Table I ~

Orbitals Energy (a.u. )

sponding to the transition state as well as by the IlR
repulsive form at large internuclear separation. The rela-
tive importance of the zeroth-order terms and of the
correlation effects, describing covalent as well as ionic
bonding, vary as we move across these three physically
significant regions. Therefore, a good theory should yield
consistently accurate results in all three of them.

The calculations of this work are variational and will
be compared with three previous large scale variational
calculations. The oldest one is by Yagisawa, Sato, and
Watanabe [16] who employed the James-Coolidge
method [20] in which the basis sets depend explicitly on
r, 2. The number of such basis functions was 75 and
single-parameter optimization was carried out at each R.
The other two calculations have been performed in this
institute [17,18]. Both followed the conventional CI ap-
proach with large basis sets. The first [17] employed the
extrapolation technique of the MRD-ct program [21] with
a threshold of 10 pH, thus improving convergence. We
found that for R ) 3 a.u. (i.e., beyond the barrier max-
imum), the conventional LCAO-CI yields lower results
than those of Ref. [16]. The second computation [18]was

CI
D2
C)

CI
V3
C)

1.0
I

2.0 3.0
R (a.u.)

4.0

FICs. 1. Energy (in a.u. ) vs nuclear separation (in a.u. ) of the
He2 + 'X+ ground state along with those of Refs. [16—18].
Solid line: Yagisawa, Sato, and Watanabe [16]. A dotted line
and a dashed line represent the results of this work and of Val-
tazanos and Nicolaides [18], respectively. These two lines are
indistinguishable in this scale. For details see Figs. 2(a) —(c).
Dashed-dotted line: Metropoulos, Nicolaides, and Buenker
[17].

4o
Above +1~„
Above +15
Above +4o g
Above +5o.
Above +3m„
Above +6o.

g
Above +2~g
Above +4o

„

Above +16„
Above +4m„
Above +26g
Above + 1$„
Above +7o.

g
Above +5'„
Above +3m.

g
Above +5m„

8
11
12
16
21
26
32
35
39
40
47
50
51
58
63
68
77

—3.677 15
—3.6774
—3.677 78
—3.677 80
—3.677 81
—3.6779
—3.6780
—3.6781
—3.678 15
—3.678 25
—3.678 41
—3.678 42
—3.678 45
—3.678 50
—3.678 51
—3.678 53
—3.678 55
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a full CI using the MELDF programs [22]. A very large
basis set was used [18] consisting of 15s, 10p, 4d, and 1f
functions, with exponents ranging from 43000 to 0.008.
These results are superior to the previous ones [17].
However, they are still higher than those of the James-
Coolidge method in the range R (2.4 a.u. (See Figs. 1

and 2.)

B. Results

In order to study the convergence of our scheme we

performed three tests at R = 1.40 bohr, using different 40
and 4„[Eq.(1)]. The results are shown on Tables I—III.
In each case, 4O is composed of the configurations 1crg

and 10.„,consisting of doubly occupied MCHF orbitals,
and 4„areconfigurations describing possible excitations

from the 4o orbitals to each VO (either MCHF or analyt-

ic). Tables I—III show 4o along with the MCHF 4„,the
virtual orbitals, the number of configurations used, and
the corresponding energies.

(i) 40 consists of 1o s and 1o„,computed self-

consistently. Four VO's have been added variationally,
shown in Table I along with the corresponding energies.
The MCHF energy is —3.664 a.u. With increasing virtu-
al space the SST energy converges to —3.674 a.u.

(ii) 40 as in (i) with six more @„configurations has
been computed within MCHF. Sixteen VO's have been
added variationally. The MCHF energy is —3.6772 a.u.
while the full SST energy is —3.6786 a.u. Details are
shown in Table II.

(iii) 4o as in (i) with 23 more 4„configurations that
have been computed within MCHF, and 18 VO's have

(a)

C)
02
CO
CO

I

1.3
R (6.11.)

I

1.4 1.5

I

5 /
CR j

/I /

z/o ./
R (B.u.)

I

(D

I

CO
CQ
CO

I

CQ

Cg
C)

I

4.0
I

4.1 42 43
R (B.L1.)

I I

4.4 4.5

FIG. 2. (a) Same as Fig. 1 at the region of the minimum. (b) Same as Fig. 1 at the region of the maximum. (c) Same as Fig. 1 for
nuclear separations R )4 a.u.
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Orbitals Energy (a.u. )

40
Above
Above
Above
Above
Above
Above
Above
Above
Above
Above

+ 35g
+6o

„

+6~„
+25„
+2/„
+9og
+4mg
+45g
+ ling
+9 more'

25
28
34
40
42
44
53
57
61
62

116

—3.679 015
—3.679 022
—3.679 024 6
—3.679 024 7
—3.679 043
—3.679 053
—3.679 054
—3.679 061
—3.679 086
—3.679 097
—3.679 10

'10o g, 7cr„,7m „,Sns, 55g, 8ir„,35„,3P„,and 6ng, with 72, 79,
86, 91, 96, 104, 107, 110,and 116configurations, respectively.

TABLE III. The convergence of the SST scheme for the
He2 + 'Xg state when the MCHF 4„,beyond 40 (lo.g, lcr„),
are 23 configurations (2og, 2o„,3og, le~, 2H, 3o'„,lvr„, 15r,
4o g, 5o, 3n„,6o g, 2m g, 4o 2, 152, 4H, 25g, 1$„,7crg, 5o'„,3m',
5m„, and 8og) and 18 virtual orbitals are added sequentially.
R = 1.4 a.u. The columns are described in Table I.

nuclei gradually become important, as the overall wave
function tries to satisfy the cusp conditions.

The energies of the last calculation are shown in Table
IV along with those of Yagisawa, Sato, and Watanabe
[16], Metropoulos, Nicolaides, and Buenker [17], and
Valtazanos and Nicolaides [18], and they are plotted in
Fig. 1. Portions of Fig. 1 corresponding to the minimum
of the curve, the maximum, and the large nuclear separa-
tions (R ~3 a.u. ) are shown in Figs. 2 —4, respectively.
The SST results, based on 43 orbitals and 116
configurations, are lower than those obtained by full CI
[18], using 158 basis functions and 2282 configurations,
or by extrapolated multiple-reference double-excitation
configuration interaction and a smaller basis [17], by at
least 10 a.u. , for all nuclear separations. For R ~2
a.u. , which is just before the maximum, they are still
lower than those of Yagisawa, Sato, and Watanabe [16]
by even 10 a.u. They are only inferior around the
minimum, (by 4X 10 a.u. ) where the bond is extremely
short and relatively large contributions to electron corre-
lation come from the region r&2~0.

been added variationally, shown in Table III along with
the corresponding configurations. The MCHF energy is
—3.67901 a.u. while the full SST energy is —3.67910
a.u.

In general, when n in the virtual orbitals increases, the
effective nuclear charges increase (in the He2

+ case they
may grow up to Z" -=25) so that the average electronic
position for the VO's with large quantum numbers be
similar to that of the occupied orbitals. This also means
that contributions from electronic positions closer to the

V. CONCLUSIONS

The theory of this paper addresses the problem of the
efficient and reliable computation of electronic structures
of diatomics, in ground or in excited states. It starts with
the form depicted by Eq. (1) and aims at the state-specific
and optimal computation of 40 and of +„separately,
thus avoiding the drawback of the conventional ap-
proaches which are based on the use of a common atomic
orbital basis set [23].

TABLE IV. The potential-energy surface of the He&
+ 'Xg ground state obtained by different

theories. Column 1: Yagisawa, Sato, and Watanabe [16],obtained by the James-Coolidge method [20]
with 75 basis functions optimized at each R. Column 2: our numerical MCHF calculation with 40 and
4„asin Table III. Column 3: Valtazanos and Nicolaides [18] obtained by full CI [18],using 158 basis
function and 2282 configurations. Column 4: Metropoulos, Nicolaides, and Buenker [17],obtained by
the MRD-CI [21] method.

R (a.u. )

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.2
2.4
2.5
3.0
3.5
4.0
4.5

Ref. [16]

—3.599 73
—3.648 96
—3.672 96
—3.681 10
—3.679 57
—3.672 59
—3.663 01
—3.652 85
—3.643 47
—3.635 76
—3.630 25
—3.626 56
—3.631 83
—3.637 00
—3.675 58
—3.711 88
—3.739 93
—3.757 37

MCHF

—3.598 97
—3.648 25
—3.672 29
—3.68047
—3.679 01
—3.672 08
—3.662 58
—3.652 50
—3.643 20
—3.635 58
—3.630 18
—3.626 75
—3.632 30
—3.637 69
—3.676 90
—3.717 54
—3.751 44
—3.778 69

Ref. [18]

—3.598 730 6
—3.647 984 3
—3.672 023 3
—3.680 223 0
—3.678 779 7
—3.671 882 6
—3.662 410 6
—3.652 354 1
—3.643 076 2
—3.635 474 3
—3.630 082 7
—3.626 653 5
—3.632 210 3
—3.637 595 3
—3.676 801 4
—3.717 5142
—3.751 348 4
—3.778 482 0

Ref. [17]

—3.5937

—3.6677

—3.6755

—3.6597

—3.6410

—3.6283
—3.6251
—3.6309

—3.6756
—3.7163
—3.7501
—3.7773

40+ 18 VO's'

—3.672 38
—3.680 56
—3.679 10

—3.630 25
—3.626 79
—3.632 33

'35g, 6o„,6rr„,25„,2P„,9o, 4~, 45, 1$~, 10o g, 7o„,7m„,5rrr, 55g, 8'„,3.5„,3P„,and 6es. The
correction is 0 (10 ') and was calculated around the local extrema.
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In its application to the demanding PES of the Hez +
'X+ state (the PES contains a local minimum with the
shortest known bond, a transition state and an ionically
repulsive region}, the herein new computational method
has proven more efficient and accurate than the LCAO-
based full-CI calculation with a huge basis set (158 func-
tions) and overall more reliable than the r,"-basis-

dependent configuration interaction.
The major ingredients of this state-specific method are

the following.
(i) The separation of Eq. (1) is adopted, where the dia-

tomic orbitals of the multiconfigurational zeroth-order
4p are obtained numerically. The advantage of such a
calculation over the conventional LCAO-based one has
been documented for atoms [1—4] and for diatomics (e.g.,
see the results of McCullough [24] and of Nicolaides,
Mercouris, and Piangos [25] on the hyperpolarizabilities
of FH and of H ). We argued that the expansion of the
diatomic orbitals in partial waves has the advantage of
treating not only diffuse ground states (e.g, negative ions
[26)) but also Rydberg and doubly excited states with
state-specific accuracy. By counting the nodes of the first
partial wave, and hence identifying the desired orbital
structure, convergence to the correct and radially opti-
mized zeroth-order description is achievable.

(ii) The interelectronic correlations beyond the Fermi
sea 40 are incorporated in the 4„[Eq.(1)], which are
symmetry-adapted configurations with one-, two-, etc. di-
atomic virtual orbitals whose parameters are optimized
variationally by minimizing the total energy. The great
advantage of this feature is that once even a small 40 has
been computed, convergence is rapid and guaranteed.
This is not the case when one attempts to obtain 4„via
the MCSCF procedure over the entire PES.

(iii) The calculation of the MCHF function as well as of
the correlation vectors 4„is facilitated considerably, and
in some case literally made possible [27], by the way the
input is chosen. For the MCHF calculations, the input
orbitals are the exact OEDO's expressed in prolate
spheroidal coordinates. For the @„calculations, the pa-
rameters of the diatomic virtual orbitals are initialized so
as to maximize overlap with the occupied ones in 40
[1—3].

y is the azimuthal angle, the Schrodinger equation for a
one-electron diatomic molecule is separated into [12]

dg dg

+ —c —p (g —1)—
2

+R (Z, +Zb )g:"(g')
2 ]

=0, (A3a)

m+ c —p (1—
q ) —

2
—R (Z, —Zb )g H(r))

1 —g

=0 . (A3b)

Here c, p, and m are the separation constants, related to
the energy E by

2p Za ZbE=— + (A3c)

—1X gg.
j=0

(A4)

homonuclear

H(g)= g f P (q),
j=m

or m+1

(A5a)

heteronuclear (small R),

(Asb)

The solution =(g)H(g)e' ~ is achieved by expansion in

the series [13]
' m/2

(g}=
k+1
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APPENDIX A: OKDO INPUT TO THE NUMERICAL
HF PROGRAM

heteronulcear (large R)

(A5c)

where P. (g) are associated Legendre polynomials.
These expansions, when substituted in (A3), lead to re-
currence relations for coefficients f~ and gj, of the form

By separating the one-electron diatomic orbital

P(r) =:-(g)H(q)e —' +, m =0, 1,2

in prolate spheroidal coordinates r = (g', g, qr ), where

g=(r, + r~ )/R,
r)=(r, rq)/R, —

(Al)

(A2)

aj.g, +p~ gj. +yjg. +&
—0, j. =0, 1,2, . . .

g )=0, (A6}

where aj., P~, and y depend on R, Z„Zb,p, c, and m.
Power [13] solves the set of these simultaneous equations
directly for p and c by expanding them in continuous
fractions, using the Newton-Raphson method.
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We use the values ofp and c and the relations between

a, ,p, , y and R, Z„Z&,p, c, and m in order to compute
the expansion coefficients f and g, and from these to
calculate the OEDO's.

For =(g),

a =(j—1 —o )(j —1 —o —m),

P. =Rz —c+(m +1)(m +o —2p) —2j(j —o +2p), (A7)

y =(j+1)(j+1+m),

where Rz =R (Z, +Z& ) and o =Rz/(2p) m ——l.
For H (rl) homonuclear,

a, =p (j —1 —m)(j —m)/[(2j —3)(2j —1)],

2 (j+1—m)(j+1+m)

(jz —m )

(4j —1) (A8)

heteronuclear (small R),

a = — [2pj+R (Z, —
Z& )],

2j —1

y =p (j+2+m)(j+1+m)/[(2j+3)(2j+5)],

(a)
P =c —j(j+1),

y~
= [2p (j+ 1)—R (Z, —

Z& ),j +1+m
2j+3

(A8b)

and (large R),

a.=2p(j+m)+R (Z, —Z& ),
P~ =c j(j +1)——(m +2p)(2j+m + 1)

—R (Z, —Z&), (A8c)

yj=2(j+1)(j+1+m) .

We expand the OEDO's in partial waves over g. If

1.0
I

3.0 5.0 7.0

max

:-(g)H(ri)e™'= y XJ(g)&, (q, q)
j=/m/

(A9a)

o j
/

r

O—

—1.0
i

—0.5
I

0.0 0.5
i

1.0
1.0

I

3.0
1

5.0 7.0

FIG. 3. (a) Input OEDO's along the g coordinate. Solid line:
lo.g. Dotted line: 1o„.Dashed line: 2o.g. Dashed-dotted line:

1~„.The nuclear charges used are both 2, 2, 1.6, and 1.6, re-

spectively. (b) Same as (a) but along the g coordinate.

FIG. 4. The partial-wave functions (PW) X,(g), j=1,2, 3 of
2o g treated as a MCHF virtual orbital at self-consistency. Solid
line: j =1. Dotted line: j =2. Dashed line: j =3. We observe
that the first PW X, (g) maintains the 2os OEDO characteris-
tics (shape, number of notes, etc.).
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(b)

1.0
I

3.0 5.0
I
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0.0
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I
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I
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FIG. 6. Contour —. a 0 in utur plot of the 2ag VO at y=O. (a) OEDO in ut

X

Optimal VO input (minimizin the
a 0 input (before self-consistency). (b) MCHF VO

) b f h 1 (d) 0
ion. e orthogonalization introntroduces new nodes making the OEDO V

ion. ptimal VO (minimizin theg e energy) after orthogonaliza-

e x axis is alon the nug clei. They axis defines the ori f h
e 0 similar to the MCH

'gin o t e azimuthal Ip angle.
F VO (both after orthogonali t ).iza ion.
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and

H(q)e™~= g a, Y) (q, y),
j=[m(

(A9b)

Then the expansion coefficients xk obey the recurrence
relations

+kxk +~k —lxk —1+ Yk —2xk —2

then

&,(g) =a, :"((), (A9c)

=2[4p R—(Zg+Z~ )]xk 3+4p xk 4, (A12)

where, in terms of R, Z„Zb,p, c, and m,
T 2

where

a =f Y (q, y. )'H(q)e' "dQ . (A9d)

172a = k+-k
m

4

McCullough [11] treats X.(g) numerically for g large
enough. For g close to 1 he expands them in power series
over g=(g —1)/2, for 1 & g & go,

Pk = k+ —(2k +m +1)—c+R (Z, +Z&), (A13)

y = k+ — k+ —+1 —c —4p +3R(Z +Z ) .k 2 a b

k=0
(A 10)

We match the analytic and the numerical expressions at

Accordingly, we expand:-(g) in a similar power series for
g close to (= 1,

APPENDIX B: CONFIGURATION INPUT
TO THE NUMERICAL HF PROGRAM

5

-(g) —gm/2 y x gk
k=0

(Al 1) The symmetry-adapted configurations are determined
by using Shaefer's method (the QCPE program HEDIAG)

CQ

~6
N
gS
a

~a ~
lA

rl

65

0 o
Q. w

C)

-&.o o.o z.o -0 6.o

u

o P)P)O
C)

-~-O-q '-' ~.o , 0 6

C3

N
g6

(c)
LA

R
g
QJ

~rl

o 8
C)

'k. O o.o .o B.o

~rl

0
O
o

'k. {) 0.0
o s.o

FIG. 7. The probability density for the 2og VO along an arbitrary plane containing the nuclei. The labels (a)—(d) (and the corn-

rnents) are as in Fig. 6.



45 STATE-SPECIFIC THEORY AND METHOD FOR THE. . . 2711

[14], according to which those Slater determinants are
chosen, which have the correct total m, and m, and diag-
onalize the operator

(S —
—,'X o „)

with the minimum eigenvalue [14]. Here S is the total
spin and g is the character of the o.„symmetry in the

group C„„.
APPENDIX C: NODES OF OEDO'I

AND OF PARTIAL-WAVE FUNCTIONS

In this section we give examples and illustrations con-
cerning the shape of the OEDO input orbital and of the
partial-wave functions of the MCHF orbitals, as well as
of the VO's in OEDO form, in the case of He&

+ 'X+.
Figures 3(a) and 3(b) show the OEDO functions =(g) and

H(ri), respectively, for the orbitals lo. , lo„,1st„,and
2o. . At self-consistency, the partial waves of these orbit-
als show almost the same shape, as in Fig. 3 except for
the 2os. The partial-wave functions, X ((},j=1, . . . , 3
of 2o. are shown in Fig. 4. We observe that the number
of nodes of partial waves higher than first order is not
conserved. However, the Srst one, X,(g), is very similar
to the corresponding OEDO. This can be used for the
identification of the 2o orbital. The same orbital is
shown in Fig. 5 as a VO in OEDO form within the SST
treatment. The variational effective nuclear charges after
the energy minimization are Z,*=4.1, Zb'=4. 3. The
contour plots of this orbital as OEDM input, MCHF,
and VO are shown in Figs. 6(a)—6(d), respectively. Final-
ly, Figs. 7(a}—7(d} show the probability density for an
electron to be in this orbital, mapped on the zx plane (it is
cylindrically symmetric along the z axis).
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