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Theoretical resolution of the HÀ resonance spectrum up to thenÄ4 threshold.
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We report on a theoretical approach to the calculation of wave functions, energiesE, and widthsG of
high-lying resonances of H2, with application to the identification of 76 states of1Po, 1Do, and 1Fo symme-
tries up to then54 threshold, with widths down to about 131028–1310210 a.u., depending on symmetry and
threshold. The overwhelming majority of these resonances have not been detected experimentally. Previous
calculations by different methods allowed the identification of 35 of these states, with only very few cases
having a level of accuracy comparable to the one of the present work. We suggest that the measurement of
these resonances might become possible via two-step excitation mechanisms using ultrasensitive techniques
capable of dealing with the problems of very small widths and preparation cross-sections. In this work, the1D
state at 10.872 eV above the H21s2 1S ground state, already prepared and measured by electron scattering as
well as by two-photon absorption, is considered as the stepping stone for the possible probing of resonances of
1Po, 1Do, and1Fo symmetries via absorption of tunable radiation of high resolution. By classifying the results
according to the Gailitis-Damburg model ofdipole resonances~a product of a 1/r 2 -like potential! we find that
there are unperturbed as well as perturbed series, in analogy with the Rydberg spectra of neutrals and positive
ions ~a product of a 1/r -like potential!. For the former, the agreement with the Gailitis-Damburg predictions as
to the relationship of the extent of the outer orbital and of the energies and widths of states is excellent. The
perturbed series result from interchannel coupling and the remaining electron correlation. One of the effects is
the existence of overlapping resonances. For example, for two1Po states below then53 threshold there is
degeneracy on the energy axis (E1520.0555763612 a.u. andE2520.0555763099 a.u.) but the widths differ
(G151.1431024 eV andG255.4531026 eV). We also comment on whether consideration of the relativistic
Lamb shift splitting of the hydrogen thresholds is sufficient for deciding the truncation of the resonance series.
Our calculations were carried out by implementing previously published theories, whereby the resonanceE’s
andG ’s are determined from properly selected complex eigenvalues of non-Hermitian Hamiltonian matrices
constructed in terms of physically relevant square integrable real and complex function spaces representing the
localized and asymptotic parts of the resonance eigenfunctions. For the H2 series of resonances, the physical
relevance of the real functions implies the systematic construction of basis sets with average^r & extending to
thousands of atomic units, in order to account for the extreme diffuseness of the outer orbital as each threshold
is approached. The complex one-electron basis sets are Slater-type orbitals of a complex coordinatere2 iu.
Their inclusion into the overall calculation and their optimization via the variation of nonlinear parameters
~including u) accounts for the contribution of the asymptotic part of the resonance, and for the energy width
and shift beyond the real energyEo of the localized part.

PACS number~s!: 31.50.1w, 32.80.Gc
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I. INTRODUCTION

The objective of the research reported here and in
accompanying paper@1#, as well as in a recent letter@2#, was
to compute and analyze highly accurate resonance w
functions of the hydrogen negative ion H2, and to com-
pletely resolve the resonance spectrum of H2 in the energy
range up to then54 threshold.~In Ref. @2#, the calculation
of states of1Pe symmetry went up to then55 threshold!.
By resolution, we mean the accurate identification of all
physically relevant complex poles of the resolventR(z)
[(z2H)21, wherez is a complex variable andH is the total
Hamiltonian of the system. These poles are associated
nonstationary~resonance! statesuk&, whose energy is com
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plex; zk5Ek2( i /2)Gk , whereEk is the total energy andGk
is the total width.

Nonstationary states in the continuum of atomic negat
ions ~ANI’s ! or of any other atomic or molecular system a
represented by electronic structures signifying multiple ex
tation from, or electron attachment to, or creation of a hole
a subshell of a particular configuration. A research progr
since 1972@3#, whereby the computation and analysis of t
wave functions and properties of these states is done by
sidering them in a unified manner asdecaying states~see
Refs.@3–12#, and references therein! breaks down the over
all calculation into two steps, regardless of the number
electrons, of electronic structure, and of level of excitatio

The first step emphasizes the state-specific analysis
application of advanced many-electron methods for the
culation of electronic structures representing the localiz
part of resonances,co

k . These structures may be characte
ized in zero order by one configuration or by a superposit
©2000 The American Physical Society08-1
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of a few configurations with outer or inner subshell holes,
with both, or may represent shape resonances associated
ground or excited configurations. In this context, it has be
shown that state-specific Hartree-Fock~HF! or multiconfigu-
rational HF~MCHF! equations can be solved in a meanin
ful way analytically or numerically, even for triply excite
resonances of ANI’s~e.g., He2 2s22p 2Po, 2s2p2 2D). The
HF or MCHF solutions represent optimal square-integra
wave functions with energies inside the continuous sp
trum, and their validity is justified by following the conve
gence of the total energy to a local minimum based on lo
ization criteria such as occupancy, extent, and no
structure of the radials, and the satisfaction of the virial th
rem. Such zero-order representations of nonstationary s
allow the extraction of physically significant characterist
and an understanding of the extent to whichexchangeand
near-degeneracyinteractions, orpart of the continuumcon-
tribute to the stability of the resonance. The remaining el
tron correlation which contributes to localization is add
variationally. Both at zero order and all-order levels of c
culation of co , by construction, and by orthogonalizatio
~when necessary!, the function space of the open channe
leading to decay is excluded.

On the other hand, there are electronic structures of A
resonances such as the ones treated in this work, where
necessary to calculateco

k which are extremely diffuse, reach
ing to about, say, 5000 a.u. Therefore, different techniqu
numerically very accurate, have to be applied. As we disc
in Secs. V and VI, given the wave-function features of t
H2 resonances associated with each threshold, this prob
has been solved here by using basis sets covering a
range with a systematically controlled position distributio
thereby allowing a ‘‘group of states’’ specific representati
of co

k .
The second step addresses the issue of the incorpor

of the effects of the multichannel~in general! continuum and
of the final determination of the complex eigenvalue, witho
or with reoptimization of the components ofco . The func-
tions representing the asymptotic part of the resonance
be either numerical or suitably optimized analytic basis s
coupled to the appropriate term of the bound core. If r
coordinates are employed, the procedures are based on
tichannel reaction matrix theory@5,12#. If a basis set of com-
plex coordinates is employed, as in the present work,
procedure involves construction and diagonalization of n
Hermitian matrices, from which the search for the eigenva
zk is guided by conditions satisfied on resonance and by
fact that the overlap of the trial function withco

k must stay
maximum~see Refs.@4,7–10#, and references therein!.

Calculations within the framework referred to above, w
real or complex coordinates for the asymptotic compone
have dealt with the calculation of positions and total a
partial widths of a variety of states, ranging from doubly a
triply excited ANI resonances,~e.g., He21s2s2p2Po,
1s2p2 4P, 1snl2 4P, 2

S, n52,3, . . . ,6, 2s2p2 4P,2P,2D
etc.!, to inner hole Auger states~e.g., Be11s2s2 2S,
Ne11s2s22p6 2S). These calculations were done by fir
specifying the particular electronic configurations, regardl
of their energy position. In this work we ask a different que
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tion, demanding a much heavier load of computations: If
first specify a particular energy region in the continuo
spectrum of a particular system, how can we uncoverall the
resonance states of a given symmetry in this region and
duce theirEk andGk reliably? The fact that H2 has only two
electrons makes this question answerable to very high a
racy. At the same time, we stress that the theory is applica
to larger atoms as well, since the calculation of electro
structures corresponding to the variousco

k of N-electron at-
oms and ions can be done efficiently with currently availa
computer power.

The case of H2 is the simplest ANI from the point of
view of the number of electrons and of spin and angu
momentum couplings. However, the quest for the identifi
tion, theoretically or experimentally, of all the resonances
a particular symmetry within a given energy range is plagu
by the predictions of Gailitis and Damburg~GD!, who intro-
duced the model of H2 ‘‘ dipole resonances’’ @13# ~see also
Refs. @14–17#!. Accordingly, for a specific combination o
symmetry and thresholds, the number of resonances be
each threshold is infinite, with their spatial extent growi
exponentially and their widths decreasing exponentia
where the exponents are given by the theory of the mode
follows that the burden forab initio theory is to achieve the
identification of resonances whose widths are expected
decrease rapidly to extremely small values as threshol
approached~say ;10210eV). The question that then arise
is where to stop the calculation ofEk andGk asuk& approach
the corresponding threshold@18#, so as to have, on the on
hand, a definitive picture of the properties of H2 resonances
and, on the other hand, to avoid the expense of comp
tional effort in seeking insignificant information. Given th
fact that the herein suggested~Sec. II! dye-laser experiments
based on two-step excitation mechanisms should produc
principle, resolution of the order of 0.02–0.002 cm21

(1027–1028 a.u.), we thought it reasonable to adopt widt
as low as 131028–1310210a.u., as a cutoff criterion for
the search of H2 resonances, depending on the hydrog
threshold. This is an extremely small decay width for
many-electron resonance state and the goal of compu
such a property accurately as the excitation energy incre
considerably raises the demands on theory as regards
putational completeness, efficiency, and numerical precis

In the following sections we discuss the choice of t
states studied and the previous results for them, the theo
ical background, and the framework for the calculation
resonances ofN-electron atoms and ions, the present imp
mentation of which is particular to H2, and our results. The
total number of resonances of1Po, 1Do, and 1Fo symmetry
that were computed, and which constitute the H2 resonance
spectrum up to then54 threshold subject to the cutoff cri
terion, is 76. Of these, 41 are predicted here for the first tim
to our knowledge, while for the ones already calculated b
number of researchers since the 1960s, the present lev
accuracy is higher, with the exception of recent results
the 1Po resonances below then52 threshold~see Sec. III
and Table I!, which are also characterized by a high degr
of numerical accuracy. In addition to values forEk andGk ,
we calculate wave-function characteristics along the ser
8-2
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TABLE I. Energies and widths of H2 1Po Feshbach resonances below then52 threshold.

CI close coupling CCR Algebraic close coupling CESE
Venuti and Decleva@42# Lindroth et al. @43# Gien @45# This work

State 2E (a.u.) G (a.u.) 2E (a.u.) G (a.u.) 2E (a.u.) G (a.u.) 2E (a.u.) G (a.u.)

~1! 0.126049581 1.3669@6# 0.12604985975 1.37@6# 0.12604518 1.386@6# 0.126049837 1.3618@6#

~2! 0.125035391 7.2313@8# 0.125035052 7.4@8# 0.12503492 7.53@8# 0.1250350503 7.28@8#

~3! 0.1250012 2.2@9# 0.1250011892 2.6655@9# 0.12500119344 2.64@9#

~4! 0.125000039758 9.615@11# 0.1250000408 2@11#
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such as the breakdown into components based on (l l 8) con-
figurations, and the systematics of the average radius of
outer electron. All these data are used to establish the e
tence of unperturbed and perturbed series of H2 resonances
with respect to the predictions of the GD model of dipo
resonances.

II. PRESENT CHOICE OF OBSERVABLE H À

RESONANCES OTHER THAN THE PREVIOUSLY
MEASURED LOW-LYING ONES

The nonrelativistic spectrum of each ANI is characteriz
by very few bound states and many resonances, corresp
ing to multiply excited configurations. As regards the bou
excited states, experimental information is rather scarce,
it is mainly theory and computation that have provid
knowledge of their existence and properties~See e.g., Ref.
@19#, and references therein!. As regards the resonances, th
preparation is in principle easier, due to the availability
more entrance channels. Nevertheless, the fact remains
the available spectroscopic data on resonances are still
few, while the measurement of the position,E and the width
G of even a single resonance often constitutes a serious c
lenge. This is due to a superposition of limiting factors su
as the general lack of easily prepared and controlled suit
initial states, the restrictions imposed by selection rules
energy difference and symmetry, and the requirements
high resolution when the resonances are narrow and/or
excitation cross section is very small. For example, cons
H2, the ANI of interest here. Even if one assumes the av
ability of a beam of 1s2 1S ground state ions and of tunab
radiation in the range 0–15 eV with perfect resolution, on
photon absorption excites doubly excited states~DES’s! of
only 1Po symmetry inLS coupling, leaving out many othe
singlet and all triplet symmetries.~For one-photon absorp
tion measurements of H2 DES’s, see Refs.@20,21#, and ref-
erences therein. For the excitation of the lowest1D reso-
nance at 10.87260.002 eV above the H2 ground state via
two-photon absorption, see Ref.@22#! @23#.

The above limitations on observation and measurem
can be rectified to some extent in three ways. The first is
perform electron-atom collision experiments, from which a
ditional information, especially for the low-lying states b
low each threshold, can be obtained~see, e.g., Refs.@24–29#
and references therein!. This approach is limited by require
ments of very high resolution which is necessary for ve
narrow resonances, as are the ones in H2 except the lowest-
lying ones. The second is to be able to follow the dec
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dynamics from higher-lying states excited in collisions,
e.g., it is done with beam-foil spectroscopy. For example
this way it became possible to observe, via its transition
the lower-lying He2 1s2p2 4P shape resonance, the tripl
excited 2p3 4So bound state of He2 @30#. However, the
population and measurement ofE and G of each resonance
from decays of higher-lying states is not practically feasib
even via ultrasensitive techniques for fluorescence detec

The third way is what we propose here as being the m
promising one, if fully developed in the future, for measuri
resonances which are high lying and have narrow widths
very small absorption oscillator strengths for a one-pho
transition from a lower resonance. This is based on the p
sibility of using a two-step mechanism, rather than a dir
excitation. Accordingly, the first step excites via one or mo
photons ~high resolution but symmetry restricted! a reso-
nance which serves as a stepping stone for the synchron
second excitation by a high-resolution tunable laser sou
~Say a 20-Hz nanosecond R6G dye laser with resolution
about 0.02 cm21).

An alternative to using a photon pulse as the first prob
to use an electron pulse. In this case, resolution is m
lower ~see below!, but more symmetries are in principl
reachable. For example, such a two-step excitation me
nism has been proposed for the creation of H2 triplets and,
specifically, of the H2 2p2 3P bound state which is used fo
the subsequent study of the variation of widths of two
more triplet DES’s coupled by external ac or dc fields@8#.

Here we note that in the case of a one-photon resona
resonance transition with a broad-band excitation of the
tial state, a recent theory taking into account the contribut
of the free-free dipole transition moment has produced
form of the absorption profile, with a quantitative applicatio
to the He 2s2p1Po→1D transition@31#. When electron ex-
citation is used as the first step, restrictions of resolut
allow the detection of only the lowest lying H2 Feshbach
resonances or of possibleshaperesonances associated wi
each threshold@24–29#. If one assumes that a certain su
state is created, further excitation by narrow width tuna
laser will be useless in detecting narrow higher-lying sta
because of the much larger width of the initial state. A w
out is to utilize accurate theoretical data onE andG, such as
the ones presented in this paper, in the following wa
Knowing the positions of the states which are collective
excited by the electron wave packet and knowing th
widths, the shot of the laser can be synchronized for furt
excitation after different durations corresponding appro
8-3
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mately to lifetimes of states to be excited.~Say 1, 5, 10, etc.
ns!. By this time the broader lower states, with lifetimes s
of the order of 100–900 fs, will have decayed and the sec
excitation wave packet will be narrow enough to resolve
number of higher-lying states via ultrasensitive fluoresce
or field ionization techniques. Such measurements are p
ably possible if one starts with a H2 beam of about 1012

atoms ~say from the photolysis of HCl by a polarize
193-nm excimer laser pulse! and thee1H cross section for
the formation of the initial H2 DES is of order of 10 Å2 or
larger.
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The above arguments about the utility of a two-step ex
tation mechanism can be tested by taking advantage of
fact that the lowest1D resonance has been prepared a
measured under controlled conditions via two-photon
sorption@22#. Although this state has also been measured
e-H collisions @32,28#, it is the precision of laser excitation
that permits the immediate possibility of a reliable execut
of high resolution measurements of higher DES’s using
second, tunable, laser. Thus the choice of the two-s
mechanism in this case is
H21s2 1S ——→
two photon

H2‘ ‘2 p2’ ’ 1D~resonance! ——→
tunable laser

H2 1Po, 1Do, 1Fo. ~1!
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Suppose we consider the energy region up to the Hn54
threshold, which is 2.631 eV above the experimental posi
of the 1D state@23#. We then ask the question:How many
and which resonances of each symmetry are there who
and G can be observed by measurements with resolution
say, 0.02–0.002 cm21 (;1027–1028 a.u.)?As already stated
in Sec. I, given this energy region the cutoff lower limits f
the widths which were searched for in our computatio
were in fact set at about 131028–1310210a.u. The limit of
the n54 threshold was chosen as providing a reasona
energy range for the testing of advanced theory of re
nances without an exorbitant expense of time for compu
tion. In addition, this range is also convenient for hig
resolution measurements via tunable photon absorption u
dye lasers. Of course, the limit of observability of the hig
lying and very diffuse resonances will also be determined
the size of the oscillator strengths and the degree of sens
ity of the technique of measuring absorption coefficients.

III. PREVIOUS RESULTS ON THE IDENTIFICATION
OF HÀ 1PO, 1Do, AND 1F o RESONANCES

UP TO THE nÄ4 THRESHOLD

The resonance spectrum of H2 is the result of interactions
of only three particles. Therefore, the relevant theory d
not have to account for the complications characterizing
bitrary polyelectronic atomic states. This fact has facilita
the implementation of variousab initio methods and the
model of dipole resonances since the early 1960s, when
first numbers on a few resonances were produced. Neve
less, a reliable quantitative answer to the question pose
Sec. II has been lacking.~See the reviews by Schulz@25#,
Risleyet al. @26#, Williams @27,29#, and Buckman and Clark
@33# on ANI resonances, the papers cited here, and their
erences.! The basic reason for this fact is the requirement
generality of the theoretical method and of very high nume
cal accuracy that the computation must achieve. Such a
culation must account for the details of dynamical screen
and polarization, configuration interaction, and interchan
coupling to all orders, and must be economical enough to
n
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carried out on a very fine energy~real or complex! mesh.
Otherwise, its results on the resolution of the resonance s
trum are bound to be incomplete.~For example, only the few
‘‘easy’’ cases may be identified.!

For example, let us consider the most extensively stud
symmetry,1Po, and the question of the number and prop
ties of its resonances below then52 threshold. In this pape
we report on the existence and properties of four such n
relativistic resonances, two of them below the relativis
2p1/2 threshold~Sec. VI!. However, large-scale calculation
following the R matrix @34–36# or the complex coordinate
rotation ~CCR! @37,38# methods, have identified only on
such 1Po resonance. In fact, the positions of the first tw
were predicted by O’Malley and Geltman in 1965@39#, via
their pioneering variational calculations on the roots of t
explicitly constructed FeshbachQHQ Hamiltonian. They re-
ported E„1Po(1)…510.927 eV andE„1Po(2)…510.953 eV
above the H21s2 2S ground state. The experimental verific
tion of the second1Po resonance was first achieved in
recent photoabsorption experiment by Andersenet al. @21#,
where the energy was measured at 10.9519 eV but the r
lution was not high enough to deduce the width. The fi
prediction of this width was made in 1971 by Seiler, Ober
and Callaway@40# who implemented the Harris-Nesbet alg
braic close-coupling method. Using four coupled chann
they found E510.958 eV andG52.0631027 eV. Much
later, a more accurate theoretical prediction~especially for
the width!, which preceded the photoabsorption experim
by a few years, was given by Corte´s and Martı´n @41#, who
implemented Feshbach’s scattering formalism withL 2 basis
sets, to carry out calculations of the photoabsorption cr
section. Their values areE510.9522 eV and G51.7
31026 eV. A similar basis set expansion calculation b
Venuti and Decleva@42# also produced accurate results f
the first two 1Po resonances.~See Table I for a collection o
results of 1Po resonances below then52 threshold.!

A prediction for the position of a third1Po resonance
(10.9531 eV above H2 1s2, if we use 1 a.u.
527.19658 eV) was given in 1965 by Temkin and Walk
8-4
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TABLE II. Energies and widths of H2 1Po Feshbach resonances below then53 threshold.

R matrix CCR CI close coupling CESE

Pathaket al. @34# Ho @87# Lindroth @88# Venuti and Decleva@42# This work
State 2E (a.u.) G (a.u.) 2E (a.u.) G (a.u.) 2E (a.u.) G (a.u.) 2E (a.u.) G (a.u.) 2E (a.u.) G (a.u.)

~1! 0.062713 1.255@3# 0.06271675 1.1915@3# 0.06273 1.199@3# 0.06271651 1.19126@3# 0.06271692 1.19006@3#

~2! 0.0585715 9.0@6# 0.0585718 8.99@6# 0.05857 8.8@6# 0.0585697 8.968@6# 0.0585718096 8.9874@6#

~3! 0.056145 0.0561167 2.1@6# 0.05612 2.2@6# 0.05611661 2.136@6# 0.056116399 2.2578@6#

~4! 0.055903 6.65@5# 0.055907 7.0@5# 0.05590 7.096@5# 0.0559045 7.061@5# 0.05590626 7.0948@5#

~5! 0.05566 4@7# 0.05566923 4.611@7# 0.0556630559 3.9548@7#

~6! 0.05558 4@6# 0.05557517 4.067@6# 0.0555763612 4.1854@6#

~7! 0.055577623 1.188@8# 0.0555763099 2.0030@7#

~8! 0.055559828 1.760@8# 0.055559575918 1.5172@8#

~9! 0.055556725 2.444@7# 0.05555679529 2.5698@7#

~10! 0.055556333474 2.901@9#

~11! 0.05555570632 5.88@10#

~12! 0.05555562951 1.5280@7#

~13! 0.055555583 1.1@8#
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@14# without an ab initio calculation. Instead, they applie
the Gailitis-Damburg formula@13# @see Eq.~18! below# nor-
malized to the lowest root of theQHQ results of Ref.@39#.
Higher energies of1Po resonances were not given since,
following the argument first given by Gailitis and Dambur
they considered that the series of resonances must stop b
the relativistic 2p1/2 level. More than 30 years later@43,44#,
the third 1Po resonance was calculatedab initio, including
the coupling to the continuum. By addding relativistic co
rections, Lindrothet al. @43# found it to lie below the 2p1/2
threshold. Again, the claim was made that this is the last
in this energy range, due to the relativistic splitting of t
n52 threshold. We return to this issue in Sec. IV. Finally,
a very recent paper, Gien@45# presented very accurate no
relativistic results to many decimal digits for four1Po reso-
nances below then52 threshold, obtained by the algebra
close-coupling method.

For the region betweenn52 and 4@46#, there are experi-
mental observations of a couple of1Po resonances@20,29# as
well as a few theoretical results mainly on low-lying1Po

resonances~see Tables II and III!. Thus far, the largest num
ber of 1Po states identified below then53 threshold in that
achieved by the calculations of Venuti and Decleva@42#
~nine states!, while for 1Po states below then54 threshold,
Pathaket al. @34# identified nine states. No shape resonan
above then53 and 4 thresholds have been predicted. One
the important findings of the measurements@20# is that the
preferred decay channel is the one nearest, in agreement
earlier theoretical predictions and explanations@7,47#.

As regards the1Do and 1Fo symmetries, the existing the
oretical predictions ofE and G are as follows: The imple-
mentation and application by Callaway and co-workers@48–
50# of the algebraic close-coupling approach led to
prediction of one1Fo below n53 @48,49# and one1Fo and
one 1Do below n54 @50#. Lipsky et al. @51# predicted two
1Do states and two1Fo states below then53 threshold,
obtained from the roots of the truncated diagonalizat
method with hydrogenic functions. No widths are given@52#.
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By applying the CCR technique@53–55#, Ho, Bhatia, and
Callaway @56–58# have predicted one1Do and 1Fo reso-
nances below then53 threshold@57,58#, one 1Fo shape
resonance aboveEn53 @57#, and one 1Do and two 1Fo

Feshbach resonances belowEn54 @56#. Finally, two sets of
R-matrix calculations produced one1Do resonance and on
1Fo resonance belowEn53 @34,35#, and four 1Do reso-
nances and four1Fo resonances belowEn54 @34#. A collec-
tion of results for1Do and 1Fo resonances is given in Table
IV and V.

IV. THEORY: FRAMEWORK OF
THE PRESENT CALCULATIONS

In general, there are two ways to define and identifyE
andG) resonance states of a particular symmetry in the
ergy representation. One is to follow the changes of the s
tering phase shift~or of the relatedSmatrix! as a function of
real energy and to deduceE andG from the conditions that,
according to scattering theory, are satisfied on resona
The other is to look for the solution of an appropriate relati
producing directly a complex energy,zo5E2( i /2)G. Any-
way, the important issue as regards the physics of
N-electron systems is the possibility of computing accurat
E and G either for single states or for series of resonan
expected to exist in a particular energy region. In some re
tively simple cases, such an accurate computation
proven, over a few decades of research on resonance s
feasible by a number of methods. However, in the gene
case of arbitrary structures and/or of arbitrary energy ran
the requirements on theory and computation are stringen
recognition of this challenging difficulty, a number of publ
cations since 1972~see, e.g., Refs.@3,5–12,59–62#! have
presented a theoretical framework for the identification a
calculation of arbitrary excited states in the continuous sp
trum which emphasizes the significance of developing f
malism and methods that use physically appropriate
computationally manageable function spaces. These one-
8-5
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TABLE III. Energies and widths of H2 1Po Feshbach resonances below then54 threshold.

R matrix CCR CESE
Pathaket al. @34# Ho @87# Lindroth @88# This work

State 2E (a.u.) G (a.u.) 2E (a.u.) G (a.u.) 2E (a.u.) G (a.u.) 2E (a.u.) G (a.u.)

~1! 0.0371305 1.245@3# 0.03717945 1.0336@3# 0.03718 1.03@3# 0.0371794 1.034328@3#

~2! 0.034289 1.80@5# 0.03429405 1.83@5# 0.03430 1.84@5# 0.03429397 1.8328@5#

~3! 0.032324 2.25@4# 0.0323525 2.44@4# 0.03235 2.4@4# 0.032350629 2.4152@4#

~4! 0.032192 8.0@6# 0.0321985 7.7@6# 0.03220 7.7@6# 0.032198287 7.9216@6#

~5! 0.0316025 0.031613 5.95@6# 0.03161 6.6@6# 0.031613080 5.958@6#

~6! 0.0315535 4.65@5# 0.031562 3.15@6# 0.03156 2.2@6# 0.03155516 2.716@6#

~7! 0.0313515 0.0314975 6.47@5# 0.03150 6.3@5# 0.03149750 7.550@5#

~8! 0.031349759 8.718@7#

~9! 0.0313115 0.031315 1.2@4# 0.03132298 1.13866@4#

~10! 0.0313045 0.03131 1.5@5# 0.031304250 1.1694@5#

~11! 0.031282674 2.86@7#

~12! 0.0312645831 2.614@7#

~13! 0.0312627480 2.5110@6#

~14! 0.031260682 9.4@8#

~15! 0.0312535114 3.24@8#

~16! 0.03125293164 5.788@7#

~17! 0.0312511519 1.054@8#

~18! 0.03125067253 1.338@7#

~19! 0.03125053534 9.50@9#

~20! 0.0312503765 3.80@9#

~21! 0.0312501542 3.10@8#

~22! 0.031250120 3.4@9#

~23! 0.0312500159 1.34@9#

~24! 0.0312500172 1.8@8#
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N-electron function spaces consist of parts which are o
mized separately and which represent, on the one hand
short- and long-range self-consistent correlations contrib
ing to localization, (co ,Eo), and, on the other hand, th
coupled open channels whose mixing withco produces the
final characteristics of the eigenfunction and of the intrin
properties of the resonance state.

Given this framework and based on our previous exp
ence with accurate calculations of doubly and triply exci
resonances@9,63,64#, we considered that a comprehensi
cover of the1Po, 1Do, and 1Fo H2 resonance spectra up t
05250
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the n54 threshold would be a feasible project. The found
tions of our approach are briefly presented below.

A. Complex eigenvalue Schro¨dinger equation

In the energy region where the resonance structure
pears, the exact scattering statec(E) is a superposition of
bound and energy-normalized scattering components.
propriate relations among diagonal and off-diagonal ma
elements led to formulas for the energy-dependent ph
shift, and for the position and width of the resonance@65,66#.
TABLE IV. Energies and widths of H2 1Do and 1Fo Feshbach resonances below then53 threshold.

R matrix CCR CESE
Pathaket al. @34# Odgerset al. @35# Bhatia and Ho@58# Ho @57# This work

State 2E (a.u.) G (a.u.) 2E (a.u.) G (a.u.) 2E (a.u.) G (a.u.) 2E (a.u.) G (a.u.) 2E (a.u.) G (a.u.)

1Do(1) 0.0594095 2.755@4# 0.05943 2.645@4# 0.059431007 2.49901@4# 0.059430923 2.4991@4#

~2! 0.0555997787 2.6768@6#

~3! 0.055556101835 3.3034@8#
1Fo(1) 0.056558 5.5@6# 0.056875 0.0565588 5.02@6# 0.0565587519 5.0068@6#

~2! 0.05565771162 5.5402@7#

~3! 0.05556643170 5.972@8#

~4! 0.055556720982 6.408@9#

~5! 0.0555556809 6.8@10#
8-6
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TABLE V. Energies and widths of H2 1Do and 1Fo Feshbach resonances below then54 threshold.

R-matrix Variational close coupling CCR CESE
Pathaket al. @34# Callaway@50# Ho and Callaway@56# This work

State 2E (a.u.) G (a.u.) 2E (a.u.) G (a.u.) 2E (a.u.) G (a.u.) 2E (a.u.) G (a.u.)

1Do(1) 0.036498 1.175@3# 0.03635 1.25@3# 0.03652 1.2@3# 0.0365292 1.2286@3#

~2! 0.032067 2.16@4# 0.03209299 2.50202@4#

~3! 0.031709 7.0@6# 0.03171549133 7.42094@6#

~4! 0.0314025 4.55@5# 0.031416853 5.4614@5#

~5! 0.0312835667 1.12238@5#

~6! 0.03127688546 4.9388@7#

~7! 0.0312567786 2.276@6#

~8! 0.03125144201 2.6238@8#

~9! 0.03125137195 4.6184@7#

~10! 0.0312502777 9.378@8#

~11! 0.03125007408 2.10@9#
1Fo(1) 0.035098 6.55@4# 0.03515 6.5@4# 0.035125 6.5@4# 0.03511423 6.550@4#

~2! 0.0334555 1.80@5# 0.033461482 2.042@5#

~3! 0.031846 6.5@6# 0.03184856 7.578@6#

~4! 0.031661 4.85@5# 0.03170402 7.946@5#

~5! 0.03147 5@4# 0.0314357 3.880@4#

~6! 0.031418432 2.052@6#

~7! 0.031317286 1.4470@5#

~8! 0.031297999 5.820@7#

~9! 0.0312746 2.06@5#

~10! 0.0312637636 1.874@7#

~11! 0.031260405 2.424@6#

~12! 0.0312539447 4.90@8#

~13! 0.0312515877 3.660@7#

~14! 0.03125113086 1.376@8#

~15! 0.0312503239 4.72@9#

~16! 0.0312502433 5.562@8#

~17! 0.031250024 2.2@8#
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The resonance state can be identified with a nonstatio
state which is initially (t50) localized (co), and which is
decaying into the adjacent continuous spectrum spanne
the background scattering wave functions@3,11#. The phys-
ics of this picture implies that, on resonance, the asympt
form of the scattering state,c(E), represents the outgoin
wave only. By combining the above, it has been sho
@67,68# how a complex eigenvalue Schro¨dinger equation
~CESE! describing resonances~shapeor Feshbach! in short
range, Coulomb and linear~dc-ac Stark effect! potentials,
emerges simply but rigorously.

Specifically, following Fano@65#, the scattering state
function c(r ;E) expressing the superposition ofco(r ) with
the scattering functions,U(r ;E) of the continuous spectrum
into which it is embedded, can be written as

c~r ;E!5a~E!Fco~r !1PE dE8
VoE8

E2E8
U~r ;E8!

1l~E!VoE U~r ;E!G , ~2!

which is valid for all values of the reaction coordinater and
satisfies the stationary state Schro¨dinger equation
05250
ry

by

ic

n

~H2E!c~r ;E!50 ~3!

for any real value ofE in the continuous spectrum. In gen
eral, the matrix elementVoE mixing co(r ) with U(r ;E) is
given by

VoE5^U~r ;E!uH2Eouco~r !&, ~4!

with

Eo5^couHuco& real ~5!

and

E5Eo1PE dE8
uVoE8u

2

E2E8
1l~E!uVoEu2. ~6!

Equations~2! and~6! constitute the definition of the func
tion l(E), whose value is fixed by the asymptotic bounda
conditions of the problem as follows: According to the phy
ics of the decaying state, one must look at the asympt
behavior ofC(r ;E) which is obeyed under resonance co
ditions ~i.e., under conditions of outgoing wave only!. In
doing so,U(r ;E) are represented by their asymptotic analy
8-7
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forms corresponding to a short-range potential~Bessel func-
tion!, a Coulomb potential~Coulomb function!, or to a linear
potential ~Airy function!. By inserting these forms into Eq
~2! and by setting the ingoing wave part equal to zero,
value ofl(E) on resonance is found to be

l~E!52 ip, ~7!

so that the energy in Eq.~6! becomes complex,

E→zo5Eo1PE dE8
uVoE8u

2

E2E8
2 ipuVoEu25Eo1D2

i

2
G,

~8!

where to lowest order and to a very good approximat
D(E)'D(Eo) and G(E)'G(Eo). On resonance, then, Eq
~3! becomes a CESE,

~H2zo!c res~r ;zo!50, ~9!

where the asymptotic boundary condition forc res(r ;zo) is
@67,68#

c res~r ;zo!;b~zo!eiNr . ~10!

Both the coefficientb(zo), representing the flux of outgoin
particles, and the energy factorN, corresponding to the po
tential of interest, are complex and are given explicitly
terms of the quantities present in Eq.~2! @67,68#.

This derivation of the CESE does not involve theS ma-
trix, as does the well-known Siegert treatment of reson
scattering@69#, and reveals without restrictions as to the ty
of potential and of excitation process, the form of t
complex—and lacking a Hilbert space norm@see Eq.~10!#—
resonance eigenfunction,c(r ;zo), of the CESE. This form
consists of two parts, of which one,co , is square integrable
and contains all the function space components contribu
to the initial localization of the nonstationary state.

B. Norm issue and complex scaling

The reliable solution of Eq.~9! presupposes the possibi
ity of dealing effectively with all the difficulties of electroni
structure, electron correlation, and open channel mixing
addition to its non-Hilbert space character which is due
the fact that the resonance eigenfunction is unnormaliza
The last problem, known in nuclear physics since thead hoc
introduction of complex energies by Gamow, reduced
many decades the interest in tackling the problem of solv
directly for the complex energy~pole of the resolvent on the
second Riemann sheet!, representing a resonance state ev
of a small system. For example, Kemble@70#, in his 1937
book on quantum mechanics, discusses this issue in term
the possibility of defining a new norm by introducing th
attenuating factore2arn

. This idea, and further analysis usin
short-range potentials, was much later examined
Zel’dovich @71# and Berggren@72#.

In fact, a simple solution to the norm problem was pr
posed in 1961 by Dykhne and Chaplik@73# by extending
integration into the upper half of complex coordinate pla
i.e., by changingr into reiu. They showed that for the simpl
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model used by Zel’dovich, the same norm is obtained. Th
concluded that ‘‘in spite of the fact that the wave function
vanish at infinity, the energy values are complex becaus
the non-Hermitian character of the Hamiltonian in V˜ ’’ ~the
volume of integration!. About a decade later, the same res
was obtained in a mathematical language which analyzed
spectral properties of the rotated Coulomb Hamilton
H(u)[e22iuT1e2 iuV in the Hilbert space ofL 2 functions
@74–76#. It was shown that the complex eigenvalues ofH(u)
correspond to the second sheet poles of the resolvent, i.e
resonance states. The computational implementation of
mathematical results was pioneered by Doolen and
workers @53–55#, whose findings showed that, in practic
the identification of the resonance eigenvalue in the mids
a plethora of irrelevant complex energies can be done
focusing on the kinks of stability appearing in th
u-trajectories.

C. Form of the trial resonance wave function for
arbitrary atomic states and optimization of function spaces

It was recognized in the mid 1970s that the diagonali
tion of H(u) in a single basis set, a characteristic feature
the CCR calculations on two-electron resonance states w
started at that time, is not practical for the calculation
more difficult cases or of polyelectronic states.@Discussions
on resonance state calculations with different basis set
conjuction with theH(u) Hamiltonian were initiated by
Doolen and co-workers@53–55# and Bainet al. @77#.# This
limitation is analogous~but more severe! to the one presen
with the brute-force diagonalization of the realH for the
calculation of discrete states. Furthermore, such an appro
does not allow for a calculation of partial widths, althoug
on the positive side, it allows for a calculation of triply ex
cited states where not only one- but also two-electron ch
nels are open@64#.

The bypass of this bottleneck is achieved by making
connection of the formalism of decaying states~Sec. IV A!
with the requirement of regularizing the resonance eig
function. No transformation of the Hamiltonian coordinat
is necessary. This has been discussed in a series of pa
where emphasis was given to the possibility of obtain
efficiently accurate solutions to Eq.~9! for many-electron
atomic and molecular nonstationary states, without or w
the presence of a strong dc or ac electric or magnetic fie
~see, Refs.@8,9,12,61,68#, and references therein!. The rela-
tions and equations which have gauged the strategy for d
ing computationally with Eq.~9!, as do the calculations o
this work, were produced already in 1977–1980@78,4,67# in
forms expressing the notion of a two-part decaying sta
where each part is represented by separately optimized f
tion spaces, and where the asymptotic part containing
information about the energy shift and width is only an a
dendum of symmetry adapted complex functions.

For example, although the full implementation of th
theory was delayed considerably due to the lack of comp
power at the time, the first such calculations on the
2s2p 1Po resonance gave good results with a small exp
sion. The localized part was a numerical Hartree-Fock fu
8-8
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tion together with correlation vectors such as 2pd, p8d8,
s8p9, etc., and the asymptotic part had Gamow orbitalsgj of
the form

r njexpH 2kjexpF i S u2a j1
3p

2 D G J ,

wherekj anda j were optimized subject to the virial theore
constraint. It was argued that on resonance, the general
of the expansion should be@4# ~see section 7!

c5a~u!co1(
n

bn~u!un , uau21(
n

ubnu251 ~11!

with un being complex functions. In subsequent work, ha
ing already observed that most matrix elements in the n
Hermitian matrix remain the same when all coordinates
rotated, and with the availability of large computer memo
and speed, it was found convenient to have the square
grablegi for each channeli, expanded in terms of Slater o
Gaussian orbitals. Thus the substitution ofgi by L 2 basis
functions is

gi~r!→(
k

Ck~u!fk
i ~r !, ~12!

where, in practice, the construction of the non-Hermitian m
trix is done by keeping all coordinates of the Hamiltoni
operator and of the bound functions real, except for thos
fk

i for which r→r* 5re2 iu.
Optimization is carried out with respect to variations ofu,

of expansion size and of other nonlinear parameters infk
i

~see Sec. V! searching for the stable root closest toEo and
with

u^cuco&u5max. ~13!

When more than one resonance state is searched for s
taneously, as in the present work, the construction and dia
nalization of the complex matrix accounts for all direct a
indirect interactions.

V. THEORY: FEATURES OF THE H À

RESONANCE SPECTRUM AS THEY RELATE
TO THE PRESENT CALCULATIONS

According to the present decaying state viewpoint,
appearance of a resonance state in the continuous spectr
the result of temporary wave-function localization caused
an effective multielectron potential particular to the state
interest. The localized stateco , not being an eigenstate o
the full Hamiltonian, is nonstationary and decays into t
adjacent continuum with a rate whose magnitude depe
primarily on the overlap of bound and scattering compone
near the nucleus@59#.

A crucial element in the calculation of a resonance sta
especially of the very difficult cases of the series of H2

resonances treated here, is an efficient and at the same
numerically accurate determination of, first, a zero-order
proximation ofco , and, second, of the additional functio
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space which contributes to its localization. This zero-ord
approximation is usually multiconfigurational, especially f
electrons in the same shell. In the case of H2, an understand-
ing of the nature of configurations which are expected to m
when the effective multielectron potential providing the co
ditions for localization is created, can be obtained from e
isting results on two categories of wave functions for dou
excited states. In a full calculation, as in the present wo
the basis set must contain the fine details of the function
both categories since the exactco

k are superpositions o
these.

The first category denoted here byfn
o(I ), consists of com-

binations of intrashell configurations from the same hyd
gen shell,n,

fn
o~ I !5(

l ,l 8
Cn

l ,l 8u~nl !~nl8!&, ~14!

wherel ,l 8 are dictated by the total symmetry of the state
Ab initio results on thefn

o(I ) and their properties have
been obtained forn up to 15 in a series of publications sinc
1986 ~see Refs.@10,60,62#, and references therein!, for H2

as well as for other small atoms and ANI’s. Localization
zero order is obtained efficiently by calculating the radi
self-consistently, with numerical as well as analytic tec
niques. Among other things, it was shown@60# via explicit
computation of expectation values and conditional proba
ity plots that the state of the lowest energy at each manif
has special geometrical properties, and constitutes a step
ladder of resonances leading to a classically determined
ometry atE50, where the electrons are free. Additional r
sults in Refs.@10,60,62# are also relevant to the understan
ing of the H2 resonance spectrum and to the pres
calculations.

~1! The use of hydrogenic rather than self-consistent ra
als in fn

o(I ) gives poor results for the properties of the
states. It follows that if fixed basis sets are used in the ove
calculation ofco

k , as in the present case, the space of sin
excitations corresponding to eachfn

o(I ) must be represente
extensively.

~2! As the energy excitation increases, double subst
tions from fn

o(I ) influence more the wave-function chara
teristics than the total energy. It follows that in the calcu
tion of a property sensitive to electron correlation such as
width, the function space for double excitations in H2 reso-
nance states must be very accurate. The recognition of
influence of double substitutions follows from the systema
examination of the degree of validity of the Herrick
Sinanog˘lu @79# classification scheme of (K,T) quantum
numbers, where the model space did not include pair exc
tions. It was found@62# that this classification deteriorates a
n increases, even for the lowest-energy state of each
trashell manifold. By including pair correlations in the co
related wave functions, it was shown that a new sche
(F,T) provides a consistently better description of su
states as well as of the others belonging to the same m
fold. The quantum numberF is defined asF5N212K,
whereN and K are no longer good numbers@62#. We note
8-9
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that these conclusions were drawn after actual projectio
correlated wave functions onto the (K,T) and (F,T) basis
functions.

~3! Within the small uncertainty of the remaining ener
shift due to the interaction with the function space represe
ing the open channels, the energy spectrum of the low
energy intrashell resonances is given by a simple, yet ge
ally applicable and computable, relation~see Ref.@60#, and
references therein!

2En5A
n~n21!

r n
2 ~15!

.
A8

n2 for largen, ~16!

where the radiusr n is obtainedab initio from the computed
wave functions, andA is a constant characteristic of the sym
metry of the ladder states. Equation~16! follows from Eq.
~15! because it is found computationally thatr n;n2. The
dependence ofEn and especially ofr n on n2 constitutes a
distinguishing feature for wave functionsfn

o(I ) vis a vis
those which are dominated by zero-order functions of
second category,fn

o(II ), whose averager is defined essen
tially by the outer orbital in a range reaching thousands
a.u. for each threshold. In practical terms, this means tha
two-electron basis sets which are used for the calculatio
co

k , ~mixtures of functions of both categories! must be large
and flexible enough to represent both compact~relatively
speaking! wave functions in the regionsr;n2, something
like the ‘‘valence’’ states of neutral atoms, and diffuse wa
functions associated with the ‘‘dipole resonances’’ discus
below.

The second category of H2 wave functions contains a
zero-order wave functions for a particular symmetry the
perposition of intershell configurations,

fn
o~ II !5 (

n8,l ,l 8
Cn

n8,l ,l 8u~nl !~n8l 8!&, ~17!

wheren8.n, andl , l 8 are dictated by the total symmetry o
the state. It is immediately evident that now, as the diff
ence between the values (nl) and (n8l 8) increases, the oute
electron orbital becomes very diffuse, with exchange a
correlation tending to zero. The question then is the follo
ing: Should one expect zero-order wave functions l
fn

o(II ) to produce effective potentials of localization? I
deed, the answer is positive, and is given by the penetra
analysis by Gailitis and Damburg@13#. These authors mad
reasonable assumptions for the description ofe2-H scatter-
ing in the vicinity of each hydrogen threshold, and put fo
an exactly solvable one-electron coupled-channel mode
resonance creation in H2. In this model, where only the larg
r part of the outer electron is considered, where excha
forces are neglected and where only the dipole term of
full Coulomb interaction is kept, localization is due to a
attractive, one-electron effective potential, of the form 1/r 2,
characteristic of each degenerate threshold of hydrogen.
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potential is capable of supporting an infinity of bound sta
below each threshold which fall into one or more regu
series. For each symmetry and thresholdn, the energy spac-
ings ek[E(n)2Ek(H2) and the widthsGk of each series
are related by a fixed ratio

ek

ek11
5

Gk

Gk11
5e(2p/Im l)5R, k52,3,4, . . . , ~18!

wherel is obtained from the theory of the model@13,17#.
Furthermore, the extent of thedipole resonancewave func-
tions also grows exponentially for successive states, wit
long-range tail described by Hankel functions of the fi
kind @13–15#. It is then clear that the configurations i
fn

o(II ) must involve an inner, compact arbital, and a nume
cally accurate very diffuse outer orbital.

Formulas~15! and ~16! and other properties of H2 reso-
nances whose zero-order wave functions are thefn

o(I ), have
been obtained viaab initio calculations including self-
consistent radial relaxation and electron correlation~see
Refs.@10,60#, and references therein!. On the other hand, the
degree of satisfaction of the predicted regularity of the H2

resonance spectra below each threshold@Eq. ~18!# has re-
mained without quantitative verification or falsification, a
though some related discussion exists@13,34,45#. For this to
be done reliably, a complete resolution of H2 resonance
spectra of different symmetries up to a reasonable leve
excitation, say up to then54 or 5 thresholds should exis
Such a resolution implies the computation to high numeri
accuracy, and to all orders in the interaction, of the direct a
indirect mixing of correlatedco

k , and of the continua into
which they are embedded. The correlatedco

k are superposi-
tions of zero-order functionsfn

o(I ) andfn
o(II ) and of con-

figurations representing virtual one- and two-electron exc
tions into the function space of the closed channels.

The overall mixing produces resonance eigenfunctio
with energiesEk and widthsGk , accumulating to a particu
lar threshold, as well as the occasional appearance of ashape
resonance just above this threshold. As regards the form
they correspond to thedipole resonancesand offer the pos-
sibility of direct numerical comparison with Eq.~18! and,
consequently, of the classification of the H2 spectra for each
symmetry and threshold into perturbed and unpertur
spectra. As regards the latter, i.e., the resonances just a
threshold, their wave functions are relatively compact, due
the dominant presence of intrashell functionsfn

o(I ). As en-
ergy increases, the probability of the appearance of sh
resonances of different symmetries increases, since hy
genic degeneracy is broadened, leading to larger numbe
fn

o(I ) and of different series of dipole resonances.
In closing this section, we point out that, as the title im

plies, what we discussed above regards the very accu
solution of the CESE and, consequently, theab initio reso-
lution of the H2 spectrum and the determination of the cha
acteristics of the eigenfunctions~Sec. VI!. In so doing, we
adopted the Gailitis-Damburg approximation as the ze
order model not only to test the validity of its formal predi
tions but, especially, to utilize it for the purpose of class
8-10
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TABLE VI. The orbital basis set used in the present computation of1Po, 1Do, and 1Fo resonances. The number of localized rad
STO’s, Nloc , and the number of complex rotated radial STO’s,Nrot , for each orbital symmetryl are given. The STO’s are chose
systematically for groups of states so as to have their averager fall in a more or less regular way inside the range defined by^r &min and
^r &max.

s p d f g h i k
Nloc Nrot Nloc Nrot Nloc Nrot Nloc Nrot Nloc Nrot Nloc Nrot Nloc Nloc ^r &min ^r &max

1Po 33 35 33 34 33 33 31 32 29 27 25 1.2 6600
1Do 31 34 31 33 31 32 29 27 25 2.0 4300
1Fo 30 33 30 32 30 31 30 30 28 29 26 28 24 22 1.6 450
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cation of the computed complex eigenvalues a
corresponding states into groups.~In Sec. VI we will see that
in certain cases electron correlation causes the appeara
of loner states, of overlapping resonances, and series pe
bations, thereby destroying the regularities predicted by
model.! As regards previous attempts to classify doubly e
cited states of H2, we already mentioned the Herrick
Sinanog˘lu (K,T) scheme@79# and the more recent (F,T)
scheme@62#. Other work, based on approximate calculatio
of low-lying states below each threshold, or on models or
formal analysis leading to approximate quantum numb
can be found in Refs.@80–84#.

Relativistic shape resonances?

The 1/r 2-like effective potential and the model predictio
of an infinity of ‘‘dipole resonances’’ result from the prop
erty of nonrelativistic hydrogenic degeneracy forn
52,3,4, . . . . However, Gailitis and Damburg pointed ou
that in reality, the resonance series is truncated by the
structure of the hydrogen thresholds. The question the
how many resonances of each symmetry actually exist in
neighborhood of each threshold. In response, Gailitis@13#
employed a simple formula for the maximum number
resonances of each symmetry below then53 threshold. The
same formula was later used by Pathaket al. @34#, who pre-
pared a related table. For example, for the1Po symmetry
below then52 threshold, the prediction of Ref.@34# is that
the number is 2. A more flexible treatment was done
Rotenberg and Cordes@16#, who numerically solved the ap
propriate coupled-channel equations with explicit inclus
of threshold splittings.

Since the same theme was tackled again very recently
states below then52 threshold@43,44,85#, this time the em-
phasis being on high numerical accuracy and explicit con
eration of relativistic wave-function mixing, we would lik
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to make a related comment. The calculations of Re
@43,85,44# were based either on the CCR method with n
merical basis sets@43#, or on coupled-channel scattering wit
model potentials@85,44#, the latter aiming, as in Ref.@16#, at
determining the number of resonances for finite values of
splitting of the n52 state. Both calculations were used
make specific predictions of the number of observable re
nances. For example, consider the1Po symmetry. The con-
clusion of Ref.@43# is that there are only three1Po reso-
nances. A fourth root of the CCR Hamiltonian matrix w
discarded@43#, as not representing a resonance state sinc
energy was found to be above the H 2p1/2 threshold. Thus in
their Table II they reported the existence of only three1Po

resonances, while a possible fourth resonance, for whic
complex eigenvalue was obtained, is characterized as ‘‘n
existent.’’ The same conclusions are published in Ref.@44#:
The introduction of relativistic corrections into relevant i
teraction matrices and to then52 threshold energy led to th
result and conclusion that only ‘‘a third state is actually
bound by about1.431026 Ry’’ @44#. ~The same conclusion
was reached about the1S symmetry for which ‘‘all higher
than four states are shifted above the p1/2 threshold and
therefore disappear out of the series’’@85#!.

We would like to argue that the existence or not of res
nances in H2, or in any other spectrum of negative ion
need not depend exclusively and uniquely on whether
position of the predicted resonance lies below or above
corresponding threshold. In other words, aresonance state
may exist above its potential barrier or above its thresho,
in the nonrelativistic or in the relativistic~Dirac-Breit! spec-
trum. For example, the1Po resonance spectrum of H2 gives
rise to the previously mentionedshaperesonance just abov
the nonrelativisticn52 threshold. Its existence implies tha
the residual Coulomb interactions,~or even relativistic ones!,
coupling the localized component to the open chann
1sep, 2sep, 2pes, and 2ped, are not sufficient to make this
n

7

TABLE VII. The basis set expansion for the CESE computation of1Po, 1Do, and 1Fo reso-
nances. For a given total symmetry, the number of radial terms within the angular contributiol l 8
is given.

sp pd d f f g gh hi s f pg dh f i gk Total

1Po 998 822 675 576 511 435 4017
1Do 869 768 689 601 519 3446
1Fo 701 606 534 456 756 621 520 468 395 505
8-11
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TABLE VIII. 1Po shaperesonance above then52 H threshold. The realE and imaginary
2

1
2G parts of the complex energy, the energy position with respect to then52 H threshold

(20.125 a.u.)dE, and with respect to the H2 ground stateDE and the widthG, are given. Our
results are compared with the experimental@89,90,29# and theoretical ones obtained from the CC
@91,88,86#, L 2 Feshbach@41#, close-coupling@49#, andR-matrix @34,36# methods.

Reference 2E (a.u.) 1
2G (1024 a.u.) dE (1025 a.u.) DE (eV) G (meV)

present 0.124387 3.55 61.3 10.9697 19.3
@91# 0.124351 2.60 64.9 10.9707 14.1
@88# 0.12437 63.0 10.9702 18.5
@86# 0.12436 3.45 64.0 10.9705 18.8
@41# 0.12424 76.0 10.9737 22.6
@49# 0.124395 3.68 60.5 10.9695 20.0
@34# 0.124328 5.8 67.2 10.9713 32
@36# 0.124242 3.425 75.8 10.9737 18.6

Experiment
@89# 10.971 21.2~11!

@90# 10.974~3! 20~1!

@90# 10.970~3! 30~1!

@29# 10.971~3!a 22~3!

aThe result of Williams@29# is 10.217(3) eV above the 1s H ground level; this result has bee
shifted to the 1s2 H2 position by the electron affinity 0.7544 eV.
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spectral concentration disappear. Similarly, we expect tha
a series of nonrelativistically determined resonances for
lightest of atoms crosses a relativistic threshold, a resona
whose position is now above this new threshold will rem
in existence, in spite of a possibly very weak binding, if t
relativistic corrections cannot destroy its localization. The
fore, in order to prove the disappearance of such a reson
in a light atom, one would have to apply a rigorous theory
resonances with the Dirac-Breit one- and two-electron op
tors.

Our calculations~Secs. V and VI! produced a well-
defined fourth complex eigenvalue above the 2p1/2 threshold
and below the 2s1/2 one. Relativistic corrections will cer
tainly affect slightly its energy and width. However, it is
moot point whether such weak interactions will wipe it ou
It is also possible that they will simply transform it into
relativistic shape resonance.
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VI. CALCULATION AND RESULTS FOR THE
HÀ 1Po, 1Do, AND 1F o RESONANCES

According to the contents of Secs. IV and V, the tr
wave functions used in this work have two parts: a localiz
part, which is composed of functions of real coordinates
counting in a judicious way for the details, at large as well
at smallr, of electronic structure and of electron correlatio
contributing to the stability of the state; and an asympto
part, which is composed of two-electron configuration
where one set of basis representing the outgoing electro
a function ofre2 iu and, therefore, complex.

The hydrogen states associated with the open chan
were represented by real Slater-type orbitals~STO’s! with
the exponents chosen to be equal to 1/n so that, when com-
bined, they can form the exact hydrogen functions. The r
STO’s which describe the localized part of the wave fun
tion, as well as those complex STO’s~Gamow orbitals! that
6

umber
from
TABLE IX. Results of the present CESE~complex eigenvalue Schro¨dinger equation! calcula-
tions for H2 resonances of1Po symmetry below then52 threshold.E: total energy in a.u.„for
H2, 1 a.u.527.2113963@M /(M11)#527.19658 eV…. G: total width. em[Eth2Em : the energy
distance from threshold.Re[em21 /em , andRG[Gm21 /Gm .

State 2E (a.u.) e (1029 a.u.) G/2 (10210 a.u.) Re RG

1 0.126 049 837 104 983 7.0 6809.0
2 0.125 035 050 3 350 50.30 364.0 29.952 18.70
3 0.125 001 193 44 1193.44 13.2 29.369 27.576
4 0.125 000 040 8 40.80 0.1 29.251a

The value of the ratio given by the GD model is@17# 29.334

aBecause of the extreme diffuseness of this state function and of the corresponding small n
for G, the value forRG did not have the same level of accuracy, and therefore it is excluded
the list.
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TABLE X. As in Table IX, for 1Po H2 resonances below then53 threshold. Two series are
established, labeledA andB. Note the existence of overlapping resonances:A3 andB4.

A B

State 2E (a.u.) e (1028 a.u.)

G

2
~1028 a.u.!

Re RG Re RG

1 A1 0.062 716 92 716136 59503
2 B1 0.058 571 809 6 301 625.40 449.37
3 B2 0.056 116 399 560 84.3 112.89 5.378 3.981
4 A2 0.055 906 26 35070 3547.4 20.420 16.774
5 B3 0.055 663 055 9 107 50.03 19.774 5.217 5.709
6 A3 0.055 576 361 2 2080.56 209.27 16.856 16.951
7 B4 0.055 576 309 9 2075.43 10.015 5.180 1.974
8 B5 0.055 559 575 918 402.0362 0.7586 5.162 13.202
9 A4 0.055 556 795 29 123.973 12.849 16.782 16.287
10 B6 0.055 556 333 474 77.7918 0.1451 5.168 5.228
11 B7 0.055 555 706 32 15.076 0.0294 5.160 4.935
12 A5 0.055 555 629 51 7.395 0.7640 16.763 16.818
13 B8 0.055 555 583 2.7 0.55 5.493a

The values of the ratio given by the GD model are@17# 16.752 5.164

aSee the footnote of Table IX.

TABLE XI. As in Tables IX and X, for1Po H2 resonances below then54 threshold. Note the appearance of the stateD, which does
not belong to any of the three series, (A, B, andC), which are predicted by the GD model. This resonance overlaps with the neighb
ones,B4 andA4.

A B C

State 2E (a.u.) e (1026 a.u.)

G

2
~1028 a.u.!

Re RG Re RG Re RG

1 A1 0.037 179 4 5929.4 51716.4
2 B1 0.034 293 97 3043.97 916.4
3 A2 0.032 350 629 1100.629 12076 5.387 4.283
4 B2 0.032 198 287 948.287 396.08 3.210 2.314
5 C1 0.031 613 080 363.080 297.9
6 B3 0.031 555 16 305.16 135.8 3.108 2.917
7 A3 0.031 497 50 247.50 3275 4.447 3.687
8 B4 0.031 349 759 99.759 43.59 3.059 3.115
9 D 0.031 322 98 72.98 5693.3
10 A4 0.031 304 250 54.250 584.7 4.562 5.601
11 B5 0.031 282 674 32.674 14.3 3.053 3.048
12 C2 0.031 264 583 1 14.5831 13.07 24.897 22.79
13 A5 0.031 262 748 0 12.7480 125.55 4.256 4.657
14 B6 0.031 260 682 10.682 4.7 3.059 3.043
15 B7 0.031 253 511 4 3.5114 1.62 3.042 2.901
16 A6 0.031 252 931 64 2.931 64 28.94 4.348 4.338
17 B8 0.031 251 151 9 1.1519 0.527 3.048 3.074
18 A7 0.031 250 672 53 0.672 53 6.69 4.359 4.326
19 C3 0.031 250 535 34 0.535 34 0.475 27.241 27.51
20 B9 0.031 250 376 5 0.3765 0.190 3.059 2.774
21 A8 0.031 250 154 2 0.1542 1.55 4.361 4.316
22 B10 0.031 250 120 0.120 0.17 3.138 a

23 C4 0.031 250 015 9 0.0159 0.067 a a

24 A9 0.031 250 017 2 0.0172 0.9 a a

The values of the ratio given by the GD model are@17# 4.360 3.047 27.299

aSee the footnote of Table IX.
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TABLE XII. As in Tables IX–XI, for 1Do H2 resonances below then53 threshold.

State 2E (a.u.) e (1029 a.u.)

G

2
~1029 a.u.!

Re RG

1 0.059 430 923 3875367 124955
2 0.055 599 778 7 44223.1 1338.4 87.632 93.36
3 0.055 556 101 835 546.28 16.517 80.953 81.03
The value of the ratio given by the GD model is@17# 80.552
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describe the outgoing electron, were chosen so that their
erager values formed geometrical sequence covering the
gion from ^r &min to ^r &max. The values of̂ r &min and^r &max
are given in Table VI together with the number of localiz
STO’s,Nloc , and complex rotated STOs,Nrot , for each or-
bital symmetryl. The rotated orbitals were combined wi
the STOs representing the hydrogen target states to form
two-electron configurations describing the asymptotic par
the wave function. The real localized STO’s are used to c
struct the localized configurations. Since in the resona
states which are to be represented in such a basis set
electron is supposed to be, on average, close to the nuc
whereas the other one is diffuse, the whole orbital basis
was used for the outer electron and only half of it~the low
^r & part! was used for the inner electron. The number
configurations obtained in this way is given in Table V
together with the specification of angularl l 8 terms. The non-
Hermitian Hamiltonian matrices were built from such ba
and diagonalized for twelve values ofu in the range from 0.2
rad up to 0.75 rad. Thêr &min parameter was also optimize
within a range of a few atomic~the values of̂ r &min given in
Table VI determine the lowest limit for this range! units, in
order to obtain the bestu stabilization of the complex root
corresponding to the sought after resonances.

Our final results for the resonance energies and widths
presented in Tables I–III for1Po, and in Tables IV and V for
1Do and 1Fo resonances below then53 and 4 thresholds
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respectively. The decimal figures which are given we
found to be stable against variation ofu. Our results are
compared with the most accurate and extensive previous
culations. Apart from the fact that only very few states, t
ones lower lying in the region below a given threshold, we
identified by the previous computations, it is noteworthy th
some sequences of lower-lying resonances were incomp
with some states missing because of their small widths;
e.g., Tables III and V. In Table VIII we give our result fo
the only shaperesonance we obtained, the1Po state lying
above then52 H threshold. It compares very well with re
sults of other authors. Especially, it is in an agreement w
data of Callaway@49# and of Ho and Bhatia@86#.

The aim of our computation was to provide a comple
list of resonances including extremely narrow and close
the threshold ones so that one can analyze general prope
of the resonance spectrum and of the wave functions. Ta
IX–XV are devoted to the analysis of regularity and of pe
turbances of the H2 resonance spectra. Given the predicti
of the dipole approximation@13#, we classified resonance
into series according to the ratio,Re[em21 /em , whereem
[Eth2Em , and according to the ratio of their widths,RG

[Gm21 /Gm . The GD model predicts that the ratiosRe and
RG should be the same for a given series as defined by
~18!. The values of this ratio, obtained by Pathak, Burke, a
Berrington@17# are also given in the tables. It is seen that,
the cases of single series below a given threshold or of
26

23
TABLE XIII. As in Tables IX–XII, for 1Do H2 resonances below then54 threshold. Note the
existence of overlapping resonances:B3 andA6.

A B

State 2E (a.u.) e (1026 a.u.)

G

2
~1026 a.u.!

Re RG Re RG

1 A1 0.036 529 2 5279.2 614.3
2 A2 0.032 092 99 842.99 125.101 6.262 4.910
3 B1 0.031 715 491 33 465.491 33 3.710 47
4 A3 0.031 416 853 166.853 27.307 5.052 4.581
5 A4 0.031 283 566 7 33.5667 5.6119 4.971 4.866
6 B2 0.031 276 885 46 26.885 46 0.246 94 17.314 15.0
7 A5 0.031 256 778 6 6.7786 1.138 4.952 4.931
8 B3 0.031 251 442 01 1.442 01 0.013 119 18.644 18.8
9 A6 0.031 251 371 95 1.371 95 0.230 92 4.941 4.928
10 A7 0.031 250 277 7 0.2777 0.046 89 4.940 4.925
11 B4 0.031 250 074 08 0.074 08 0.001 05 19.466a

The values of the ratio given by the GD model are@17# 4.940 18.777

aSee the footnote of Table IX.
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TABLE XIV. As in Tables IX–XIII, for 1Fo H2 resonances below then53 threshold.

State 2E (a.u.) e (10210 a.u.) G/2(10210 a.u.) Re RG

1 0.056 558 751 9 10 031 963 250 34
2 0.055 657 711 62 1 021 560.6 2770.1 9.820 9.03
3 0.055 566 431 70 108 761.4 298.6 9.393 9.27
4 0.055 556 720 982 116 54.26 32.04 9.332 9.32
5 0.055 555 680 9 1253 3.4 9.298 9.424
The value of the ratio given by the GD model is@17# 9.323
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lowest starting series,Re converges to the model value from
above, whereasRG does so from below. This should be in
terpreted as a reflection of the fact that the lower-lying me
bers of the series are bound more strongly, i.e., their p
tions are lower and they are more stable aga
autoionization than predicted by the GD model. On the ot
hand, higher series in general are less regular or not at
For example, theC series of 1Po resonances below then
54 threshold~Table XI! is quite irregular. The values ofRe
at the beginning of the series are smaller than those pred
by the model. This means that the lower-lying members
such series are pushed up via the interaction with the par
series. In the case of theC1 andC2 1Fo states~Table XV!
the values ofRe andRG differ by eight orders of magnitude
from the GD model value. Finally, let us note that among
1Po states below then54 threshold~see Table XI! there
appears a loner stateD, which does not belong to any of th
series predicted by the model.

The classification of resonances into series is also s
ported by the recognition of their electron correlation p
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terns. We consider the wave-function characteristics, incl
ing the estimate for the size of states due to the ou
electron,^r out&, computed as the average of the distance
the outer electron from the nucleus, and the angular te
contributions to the resonance wave functions. The re
nances belonging to a given series have common ang
electron correlation pattern; that is, they have the same c
tributions of various angular terms to their wave functions
one considers the size of states, it changes regularly alo
series. The ratioR^r &5^r out&m11 /^r out&m converges along a
given series to a quite well-determined value which is ch
acteristic for the series. For example, let us consider the1Po

resonances below then54 threshold, for which we give the
wave-function characteristics in Table XVI@92#. The GD
model predicts three series of resonances converging to
threshold. We have identified them by our computation a
assigned the labelsA, B, andC. The dominant contributions
to the A series wave functions come from thepd angular
terms with important admixture ofd f andsp partial waves.
In the B series, thesp terms play the leading role with con
:
TABLE XV. As in Tables IX–XIV, for 1Fo H2 resonances below then54 threshold. Note the existence of overlapping resonancesC1
andB3.

A B C

State 2E (a.u.) e (1026 a.u.)

G

2
~1026 a.u.!

Re RG Re RG Re RG

1 A1 0.035 114 23 3864.23 327.5
2 B1 0.033 461 482 2211.482 10.21
3 B2 0.031 848 56 598.56 3.789 3.695 2.695
4 A2 0.031 704 02 454.02 39.73 8.511 8.243
5 C1 0.031 435 7 185.7 194.0
6 B3 0.031 418 432 168.432 1.026 3.554 3.693
7 A3 0.031 317 286 67.286 7.235 6.748 5.491
8 B4 0.031 297 999 47.999 0.2910 3.509 3.526
9 C2 0.031 274 6 24.6 10.3 7.549 18.835
10 B5 0.031 263 763 6 13.7636 0.0937 3.487 3.106
11 A4 0.031 260 405 10.405 1.212 6.467 5.969
12 B6 0.031 253 944 7 3.9447 0.0245 3.489 3.824
13 A5 0.031 251 587 7 1.5877 0.1830 6.554 6.623
14 B7 0.031 251 130 86 1.130 86 0.006 88 3.488 3.561
15 B8 0.031 250 323 9 0.3239 0.002 36 3.491 2.915
16 A6 0.031 250 243 3 0.2433 0.027 81 6.526 6.580
17 B9 0.031 250 024 0.024 0.011 a a

The values of the ratio given by the GD model are@17# 6.496 3.485 8.516@8#

aSee footnote of Table IX.
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tributions from thepd configurations. In theC resonances
the angular correlation is richer. Here thed f terms constitute
the main part of the wave function together with a lar
addition of sp terms. Thepd and f g contributions, though
three times smaller than thesp contribution, are not negli-
gible. Finally, the stateD corresponds to a wave functio
which bears some resemblance to theC case. However, the
sharing ofpd and f g contributions is different. Moreover
the radial distribution of the electron density, represented
the ^r out& values, does not fit the pattern for theC series, for
which theR^r & is about 5, while thê r out& value for theD
state is smaller than that of theC1 state lying belowD.
Hence we have concluded that theD state is not a member o
the seriesC.

One can see that in all the cases of single series thes
regular and the characteristic ratiosRe , RG , and R^r & con-
verge very well, in most cases monotonically. If there a
two or more series of resonances of the same symmetry
given region, they exhibit perturbations. The situation b
comes extremely interesting when accidentally two re
nances overlap, i.e., their energy difference is smaller tha

TABLE XVI. Wave-function characteristics for the1Po H2

resonances lying below then54 threshold.̂ r out& is the estimate
for the size of each state due to the outer electron, computed a
average of the distance of the outer electron from the center of m
~in a.u.!. R^r & is the ratio of consecutive values of^r out&. The nota-
tion @x# means 102x. TheD state does not belong to any of the thr
series predicted by the GD model.

State ^r out& R^r & sp pd d f f g gh hi

1 A1 35.20 0.289 0.563 0.144 0.5@2# 0.7@5# 0.5@7#

3 A2 71.74 2.038 0.249 0.551 0.190 0.011 0.4@4# 0.6@7#

7 A3 151.4 2.110 0.215 0.542 0.226 0.017 0.2@4# 0.3@7#

10 A4 314.9 2.080 0.205 0.511 0.258 0.027 0.1@3# 0.1@6#

13 A5 666.3 2.116 0.196 0.521 0.257 0.025 0.1@4# 0.1@7#

16 A6 1397 2.097 0.198 0.520 0.257 0.025 0.3@5# 0.2@8#

18 A7 2920 2.090 0.195 0.520 0.260 0.025 0.6@6# 0.5@9#

21 A8 6095 2.087 0.195 0.519 0.261 0.026 0.1@6# 0.1@9#

24 A9 9679 1.588 0.235 0.508 0.240 0.017 0.6@7# 0.5@10#

2 B1 53.54 0.610 0.338 0.050 0.2@2# 0.5@5# 0.1@7#

4 B2 96.41 1.801 0.585 0.352 0.062 0.3@2# 0.4@5# 0.8@8#

6 B3 172.0 1.784 0.568 0.355 0.073 0.4@2# 0.1@4# 0.1@7#

8 B4 308.3 1.792 0.550 0.369 0.077 0.4@2# 0.6@6# 0.9@9#

11 B5 543.8 1.764 0.543 0.372 0.081 0.4@2# 0.2@6# 0.3@9#

14 B6 953.3 1.753 0.539 0.372 0.084 0.5@2# 0.3@6# 0.3@9#

15 B7 1675 1.757 0.529 0.377 0.089 0.6@2# 0.2@7# 0.3@10#

17 B8 2928 1.749 0.529 0.377 0.088 0.6@2# 0.8@8# 0.1@10#

20 B9 5109 1.745 0.528 0.376 0.090 0.6@2# 0.7@8# 0.8@11#

22 B10 8549 1.673 0.516 0.384 0.094 0.6@2# 0.1@8# 0.2@11#

5 C1 77.59 0.271 0.172 0.490 0.067 0.4@3# 0.5@6#

12 C2 319.0 4.111 0.295 0.116 0.495 0.095 0.3@4# 0.3@7#

19 C3 1578 5.948 0.302 0.102 0.493 0.103 0.1@5# 0.1@8#

23 C4 6858 4.346 0.315 0.092 0.493 0.101 0.6@7# 0.6@10#

9 D 55.32 0.304 0.059 0.489 0.146 0.2@2# 0.2@5#
05250
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comparable to the width of at least one of such states. O
can find such overlapping resonances in Tables X, XI, X
and XV. The overlappingA3 andB4 1Po resonances lying
below then53 threshold~Table X! can also be recognize
in the results of Venuti and Decleva@42#. However, there are
two differences: First, in our case the narrower state,B4, lies
above the broader one,A3, whereas the result of Ref.@42# is
the opposite. Second, in our case the overlap is stronger
cause the energy difference is five times smaller than
predicted by Venuti and Decleva@42#. An interesting case is
the 1Po resonances below then54 threshold, where reso
nanceD overlaps with its two neighbors:B4, lying below,
andA4, lying above. The appearance of the loner resona
D, which is not predicted by the dipole model, is a result
strong correlation and exchange effects not taken into
count by this model.

VII. SYNOPSIS

Given certain characteristics of the H2 resonance spectra
identified quantitatively from the Gailitis-Damburg model
dipole resonances, we defined demanding cutoff criteria
solved to very high accuracy, via the systematic and gro
of-states-specific choice and optimization of real and co
plex functions, the matrix complex eigenvalue Schro¨dinger
equation, for all states of1Po, 1Do, and 1Fo symmetry, up
to then54 threshold~see, Ref.@1# for results on1S and 1D
states up to then54, threshold and Ref.@2# for results on1P
states up to then55 threshold!. We suggest that at least
subset of the theoretically identified resonances should
observable in sophisticated experiments based on multi
excitation mechanisms and ultrasensitive detection te
niques.

This ab initio approach to the problem defined herein, i.
to the possibility of resolving completely the resonance sp
trum of a multiparticle system with a reasonably large a
physically relevant span of its continuous spectrum, has p
vided a wealth of new and significant information on ea
resonance individually as well as on the spectral featu
collectively. As regards the latter, it was shown that,
adopting the Gailitis-Damburg model as the zero-ord
model, the resonance spectra of H2 can be classified into two
groups, just as it is possible to do with the spectra of neu
atoms and positive ions, where the zero order potential
be taken as having the Coulomb 1/r form. The first group
contains unperturbed series whose energies and widths
isfy the GD conditions of Eq.~18!, and have similar angula
correlation characteristics. The second group contain p
turbed series and loner states, with the occasional existe
of strongly overlaping resonances.
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